Skip to content
2000
image of Kinase Inhibitors for Targeted Cancer Therapy

Abstract

Precision medicine's quick development has transformed the way cancer is treated, and because small-molecule kinase inhibitors can specifically block the abnormal signaling pathways that cause tumor growth and progression, they are now a key component of targeted therapy. This review explores the most recent advancements in kinase inhibitor design and optimization, with a focus on novel drug scaffolds, improved structure–activity relationships (SARs), and molecular modification techniques meant to improve target selectivity, potency, and pharmacokinetic profiles. Emerging strategies to combat resistance mechanisms are heavily emphasized, such as the use of dual-target inhibitors that block parallel signaling cascades, allosteric modulators that bind to non-ATP sites, and combination therapies that work in concert to increase efficacy while reducing resistance. A thorough summary of the kinase inhibitors that are now FDA-approved for use in treating different forms of cancer is also included in the review, along with information on their safety profiles, clinical effectiveness, and changing indications of usage. Additionally, it examines encouraging results from preclinical research and ongoing clinical studies assessing next-generation kinase inhibitors, which have the potential to further customize cancer treatment. In order to improve patient outcomes, address therapeutic resistance, and broaden the therapeutic scope of kinase-targeted interventions in oncology, the review concludes by highlighting future research directions, such as drug repurposing, computational drug discovery, and advanced precision oncology approaches.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266382257250721051440
2025-07-30
2025-10-26
Loading full text...

Full text loading...

References

  1. Manning G. Whyte D.B. Martinez R. Hunter T. Sudarsanam S. The protein kinase complement of the human genome. Science 2002 298 5600 1912 1934 10.1126/science.1075762 12471243
    [Google Scholar]
  2. Ubersax J.A. Ferrell J.E. Jr Mechanisms of specificity in protein phosphorylation. Nat. Rev. Mol. Cell Biol. 2007 8 7 530 541 10.1038/nrm2203 17585314
    [Google Scholar]
  3. Zhou P. Gao C. Song W. Wei W. Wu J. Liu L. Chen X. Engineering status of protein for improving microbial cell factories. Biotechnol. Adv. 2024 70 108282 10.1016/j.biotechadv.2023.108282 37939975
    [Google Scholar]
  4. Alberts B. Molecular biology of the cell Garland science 2008
    [Google Scholar]
  5. Krebs E.G. The phosphorylation of proteins: A major mechanism for biological regulation. Biochem. Soc. Trans. 1985 13 5 813 820 10.1042/bst0130813 2998902
    [Google Scholar]
  6. Theivendren P. Kunjiappan S. Mariappa Hegde Y. Vellaichamy S. Gopal M. Rajan Dhramalingam S. Kumar S. Importance of protein kinase and its inhibitor: A review. IntechOpen 2021 10.5772/intechopen.98552
    [Google Scholar]
  7. Steinberg S.F. Post-translational modifications at the ATP-positioning G-loop that regulate protein kinase activity. Pharmacol. Res. 2018 135 181 187 10.1016/j.phrs.2018.07.009 30048755
    [Google Scholar]
  8. Klövekorn P. Pfaffenrot B. Juchum M. Selig R. Albrecht W. Zender L. Laufer S.A. From off-to on-target: New BRAF-inhibitor-template-derived compounds selectively targeting mitogen activated protein kinase kinase 4 (MKK4). Eur. J. Med. Chem. 2021 210 112963 10.1016/j.ejmech.2020.112963 33199152
    [Google Scholar]
  9. Qiao Y. Chen T. Yang H. Chen Y. Lin H. Qu W. Feng F. Liu W. Guo Q. Liu Z. Sun H. Small molecule modulators targeting protein kinase CK1 and CK2. Eur. J. Med. Chem. 2019 181 111581 10.1016/j.ejmech.2019.111581 31400711
    [Google Scholar]
  10. Singh R.K. Protein Kinases - Promising Targets for Anticancer Drug Research IntechOpen 2021 10.5772/intechopen.82939
    [Google Scholar]
  11. Roskoski R. Jr Properties of FDA-approved small molecule protein kinase inhibitors: A 2020 update. Pharmacol. Res. 2020 152 104609 10.1016/j.phrs.2019.104609 31862477
    [Google Scholar]
  12. Gaji R.Y. Sharp A.K. Brown A.M. Protein kinases in Toxoplasma gondii. Int. J. Parasitol. 2021 51 6 415 429 10.1016/j.ijpara.2020.11.006 33581139
    [Google Scholar]
  13. Zhao P. Saltiel A.R. From overnutrition to liver injury: AMP-activated protein kinase in nonalcoholic fatty liver diseases. J. Biol. Chem. 2020 295 34 12279 12289 10.1074/jbc.REV120.011356 32651233
    [Google Scholar]
  14. Alghamdi F. Alshuweishi Y. Salt I.P. Regulation of nutrient uptake by AMP-activated protein kinase. Cell. Signal. 2020 76 109807 10.1016/j.cellsig.2020.109807 33038517
    [Google Scholar]
  15. Li X. Liu R. Zhang L. Jiang Z. The emerging role of AMP-activated protein kinase in cholestatic liver diseases. Pharmacol. Res. 2017 125 Pt B 105 113 10.1016/j.phrs.2017.09.002 28889972
    [Google Scholar]
  16. Lee P.Y. Yeoh Y. Low T.Y. A recent update on small-molecule kinase inhibitors for targeted cancer therapy and their therapeutic insights from mass spectrometry-based proteomic analysis. FEBS J. 2022 35313089
    [Google Scholar]
  17. Diering S. Stathopoulou K. Goetz M. Rathjens L. Harder S. Piasecki A. Raabe J. Schulz S. Brandt M. Pflaumenbaum J. Fuchs U. Donzelli S. Sadayappan S. Nikolaev V.O. Flenner F. Ehler E. Cuello F. Receptor-independent modulation of cAMP-dependent protein kinase and protein phosphatase signaling in cardiac myocytes by oxidizing agents. J. Biol. Chem. 2020 295 45 15342 15365 10.1074/jbc.RA120.014467 32868295
    [Google Scholar]
  18. Ghione S. Mabrouk N. Paul C. Bettaieb A. Plenchette S. Protein kinase inhibitor-based cancer therapies: Considering the potential of nitric oxide (NO) to improve cancer treatment. Biochem. Pharmacol. 2020 176 113855 10.1016/j.bcp.2020.113855 32061562
    [Google Scholar]
  19. Biswas B. Huang Y.H. Craik D.J. Wang C.K. The prospect of substrate-based kinase inhibitors to improve target selectivity and overcome drug resistance. Chem. Sci. 2024 15 33 13130 13147 10.1039/D4SC01088D 39183924
    [Google Scholar]
  20. Uitdehaag J.C.M. de Roos J.A.D.M. van Doornmalen A.M. Prinsen M.B.W. de Man J. Tanizawa Y. Kawase Y. Yoshino K. Buijsman R.C. Zaman G.J.R. Comparison of the cancer gene targeting and biochemical selectivities of all targeted kinase inhibitors approved for clinical use. PLoS One 2014 9 3 e92146 10.1371/journal.pone.0092146 24651269
    [Google Scholar]
  21. Turk B.E. Understanding and exploiting substrate recognition by protein kinases. Curr. Opin. Chem. Biol. 2008 12 1 4 10 10.1016/j.cbpa.2008.01.018 18282484
    [Google Scholar]
  22. Patterson H. Nibbs R. McInnes I. Siebert S. Protein kinase inhibitors in the treatment of inflammatory and autoimmune diseases. Clin. Exp. Immunol. 2014 176 1 1 10 10.1111/cei.12248 24313320
    [Google Scholar]
  23. Burke J.E. Structural basis for regulation of phosphoinositide kinases and their involvement in human disease. Mol. Cell 2018 71 5 653 673 10.1016/j.molcel.2018.08.005 30193094
    [Google Scholar]
  24. Capra M. Nuciforo P.G. Confalonieri S. Quarto M. Bianchi M. Nebuloni M. Boldorini R. Pallotti F. Viale G. Gishizky M.L. Draetta G.F. Di Fiore P.P. Frequent alterations in the expression of serine/threonine kinases in human cancers. Cancer Res. 2006 66 16 8147 8154 10.1158/0008‑5472.CAN‑05‑3489 16912193
    [Google Scholar]
  25. La Manna S. Cugudda A. Mercurio F. Leone M. Fortuna S. Di Natale C. Lagreca E. Netti P.A. Panzetta V. Marasco D. PEGylated SOCS3 Mimetics Encapsulated into PLGA-NPs as Selective Inhibitors of JAK/STAT Pathway in TNBC Cells. Int. J. Nanomedicine 2024 19 7237 7251 10.2147/IJN.S441205 39050870
    [Google Scholar]
  26. Cugudda A. La Manna S. Marasco D. Are peptidomimetics the compounds of choice for developing new modulators of the JAK-STAT pathway? Front. Immunol. 2024 15 1406886 10.3389/fimmu.2024.1406886 38983855
    [Google Scholar]
  27. Benucci M. Bernardini P. Coccia C. De Luca R. Levani J. Economou A. Damiani A. Russo E. Amedei A. Guiducci S. Bartoloni E. Manfredi M. Grossi V. Infantino M. Perricone C. JAK inhibitors and autoimmune rheumatic diseases. Autoimmun. Rev. 2023 22 4 103276 10.1016/j.autrev.2023.103276 36649877
    [Google Scholar]
  28. Reinhardt R. Leonard T.A. A critical evaluation of protein kinase regulation by activation loop autophosphorylation. eLife 2023 12 e88210 10.7554/eLife.88210 37470698
    [Google Scholar]
  29. Dhanasekaran N. Reddy E.P. Signaling by dual specificity kinases. Oncogene 1998 17 11 1447 1455 10.1038/sj.onc.1202251 9779990
    [Google Scholar]
  30. Wayman G.A. Tokumitsu H. Davare M.A. Soderling T.R. Analysis of CaM-kinase signaling in cells. Cell Calcium 2011 50 1 1 8 10.1016/j.ceca.2011.02.007 21529938
    [Google Scholar]
  31. Knapp S. New opportunities for kinase drug repurposing and target discovery. Br. J. Cancer 2018 118 7 936 937 10.1038/s41416‑018‑0045‑6 29545596
    [Google Scholar]
  32. Bhullar K.S. Lagarón N.O. McGowan E.M. Parmar I. Jha A. Hubbard B.P. Rupasinghe H.P.V. Kinase-targeted cancer therapies: Progress, challenges and future directions. Mol. Cancer 2018 17 1 48 10.1186/s12943‑018‑0804‑2 29455673
    [Google Scholar]
  33. Roskoski R. Jr Classification of small molecule protein kinase inhibitors based upon the structures of their drug-enzyme complexes. Pharmacol. Res. 2016 103 26 48 10.1016/j.phrs.2015.10.021 26529477
    [Google Scholar]
  34. Zuccotto F. Ardini E. Casale E. Angiolini M. Through the “gatekeeper door”: Exploiting the active kinase conformation. J. Med. Chem. 2010 53 7 2681 2694 10.1021/jm901443h 20000735
    [Google Scholar]
  35. Kufareva I. Abagyan R. Type-II kinase inhibitor docking, screening, and profiling using modified structures of active kinase states. J. Med. Chem. 2008 51 24 7921 7932 10.1021/jm8010299 19053777
    [Google Scholar]
  36. Attwood M.M. Fabbro D. Sokolov A.V. Knapp S. Schiöth H.B. Trends in kinase drug discovery: Targets, indications and inhibitor design. Nat. Rev. Drug Discov. 2021 20 11 839 861 10.1038/s41573‑021‑00252‑y 34354255
    [Google Scholar]
  37. Liu Y. Gray N.S. Rational design of inhibitors that bind to inactive kinase conformations. Nat. Chem. Biol. 2006 2 7 358 364 10.1038/nchembio799 16783341
    [Google Scholar]
  38. Gavrin L.K. Saiah E. Approaches to discover non-ATP site kinase inhibitors. MedChemComm 2013 4 1 41 51 10.1039/C2MD20180A
    [Google Scholar]
  39. Lamba V. Ghosh I. New directions in targeting protein kinases: Focusing upon true allosteric and bivalent inhibitors. Curr. Pharm. Des. 2012 18 20 2936 2945 10.2174/138161212800672813 22571662
    [Google Scholar]
  40. Klaeger S. Heinzlmeir S. Wilhelm M. Polzer H. Vick B. Koenig P.A. Reinecke M. Ruprecht B. Petzoldt S. Meng C. Zecha J. Reiter K. Qiao H. Helm D. Koch H. Schoof M. Canevari G. Casale E. Depaolini S.R. Feuchtinger A. Wu Z. Schmidt T. Rueckert L. Becker W. Huenges J. Garz A.K. Gohlke B.O. Zolg D.P. Kayser G. Vooder T. Preissner R. Hahne H. Tõnisson N. Kramer K. Götze K. Bassermann F. Schlegl J. Ehrlich H.C. Aiche S. Walch A. Greif P.A. Schneider S. Felder E.R. Ruland J. Médard G. Jeremias I. Spiekermann K. Kuster B. The target landscape of clinical kinase drugs. Science 2017 358 6367 eaan4368 10.1126/science.aan4368 29191878
    [Google Scholar]
  41. Johnson T.K. Soellner M.B. Bivalent inhibitors of c-Src tyrosine kinase that bind a regulatory domain. Bioconjug. Chem. 2016 27 7 1745 1749 10.1021/acs.bioconjchem.6b00243 27266260
    [Google Scholar]
  42. Roskoski R. Jr Small molecule inhibitors targeting the EGFR/ErbB family of protein-tyrosine kinases in human cancers. Pharmacol. Res. 2019 139 395 411 10.1016/j.phrs.2018.11.014 30500458
    [Google Scholar]
  43. Rabindran S.K. Discafani C.M. Rosfjord E.C. Baxter M. Floyd M.B. Golas J. Hallett W.A. Johnson B.D. Nilakantan R. Overbeek E. Reich M.F. Shen R. Shi X. Tsou H.R. Wang Y.F. Wissner A. Antitumor activity of HKI-272, an orally active, irreversible inhibitor of the HER-2 tyrosine kinase. Cancer Res. 2004 64 11 3958 3965 10.1158/0008‑5472.CAN‑03‑2868 15173008
    [Google Scholar]
  44. Herbert C. Schieborr U. Saxena K. Juraszek J. De Smet F. Alcouffe C. Bianciotto M. Saladino G. Sibrac D. Kudlinzki D. Sreeramulu S. Brown A. Rigon P. Herault J.P. Lassalle G. Blundell T.L. Rousseau F. Gils A. Schymkowitz J. Tompa P. Herbert J.M. Carmeliet P. Gervasio F.L. Schwalbe H. Bono F. Molecular mechanism of SSR128129E, an extracellularly acting, small-molecule, allosteric inhibitor of FGF receptor signaling. Cancer Cell 2013 23 4 489 501 10.1016/j.ccr.2013.02.018 23597563
    [Google Scholar]
  45. Grither W.R. Longmore G.D. Inhibition of tumor–microenvironment interaction and tumor invasion by small-molecule allosteric inhibitor of DDR2 extracellular domain. Proc. Natl. Acad. Sci. USA 2018 115 33 E7786 E7794 10.1073/pnas.1805020115 30061414
    [Google Scholar]
  46. Hochhaus A. Saussele S. Rosti G. Mahon F.X. Janssen J.J.W.M. Hjorth-Hansen H. Richter J. Buske C. Chronic myeloid leukaemia: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2017 28 iv41 iv51 (Suppl. 4) 10.1093/annonc/mdx219 28881915
    [Google Scholar]
  47. Amin Mir M. Sustainable healing: Natural compounds facilitating the future cancer treatment. World Dev Sustain 2025 6 100215 10.1016/j.wds.2025.100215
    [Google Scholar]
  48. O’Hare T. Shakespeare W.C. Zhu X. Eide C.A. Rivera V.M. Wang F. Adrian L.T. Zhou T. Huang W.S. Xu Q. Metcalf C.A. III Tyner J.W. Loriaux M.M. Corbin A.S. Wardwell S. Ning Y. Keats J.A. Wang Y. Sundaramoorthi R. Thomas M. Zhou D. Snodgrass J. Commodore L. Sawyer T.K. Dalgarno D.C. Deininger M.W.N. Druker B.J. Clackson T. AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell 2009 16 5 401 412 10.1016/j.ccr.2009.09.028 19878872
    [Google Scholar]
  49. Roskoski R. Jr The ErbB/HER family of protein-tyrosine kinases and cancer. Pharmacol. Res. 2014 79 34 74 10.1016/j.phrs.2013.11.002 24269963
    [Google Scholar]
  50. Mir M.A. Ahmad W. Andrews K. Kukretee N. Chemical synthesis, experimental, molecular docking and drug-likeness studies of salidroside. Arab. J. Sci. Eng. 2024 49 7 9451 9466 10.1007/s13369‑024‑08721‑3
    [Google Scholar]
  51. Hirsh V. Next-generation covalent irreversible kinase inhibitors in NSCLC: Focus on afatinib. BioDrugs 2015 29 3 167 183 10.1007/s40259‑015‑0130‑9 26123538
    [Google Scholar]
  52. Finlay M.R.V. Anderton M. Ashton S. Ballard P. Bethel P.A. Box M.R. Bradbury R.H. Brown S.J. Butterworth S. Campbell A. Chorley C. Colclough N. Cross D.A.E. Currie G.S. Grist M. Hassall L. Hill G.B. James D. James M. Kemmitt P. Klinowska T. Lamont G. Lamont S.G. Martin N. McFarland H.L. Mellor M.J. Orme J.P. Perkins D. Perkins P. Richmond G. Smith P. Ward R.A. Waring M.J. Whittaker D. Wells S. Wrigley G.L. Discovery of a potent and selective EGFR inhibitor (AZD9291) of both sensitizing and T790M resistance mutations that spares the wild type form of the receptor. J. Med. Chem. 2014 57 20 8249 8267 10.1021/jm500973a 25271963
    [Google Scholar]
  53. Burotto M. Chiou V.L. Lee J.M. Kohn E.C. The MAPK pathway across different malignancies: A new perspective. Cancer 2014 120 22 3446 3456 10.1002/cncr.28864 24948110
    [Google Scholar]
  54. Savoia P. Fava P. Casoni F. Cremona O. Targeting the ERK signaling pathway in melanoma. Int. J. Mol. Sci. 2019 20 6 1483 10.3390/ijms20061483 30934534
    [Google Scholar]
  55. Koelblinger P. Thuerigen O. Dummer R. Development of encorafenib for BRAF-mutated advanced melanoma. Curr. Opin. Oncol. 2018 30 2 125 133 10.1097/CCO.0000000000000426 29356698
    [Google Scholar]
  56. Daud A. Tsai K. Management of treatment-related adverse events with agents targeting the MAPK pathway in patients with metastatic melanoma. Oncologist 2017 22 7 823 833 10.1634/theoncologist.2016‑0456 28526719
    [Google Scholar]
  57. Pal Singh S. Dammeijer F. Hendriks R.W. Role of Bruton’s tyrosine kinase in B cells and malignancies. Mol. Cancer 2018 17 1 57 10.1186/s12943‑018‑0779‑z 29455639
    [Google Scholar]
  58. Hameed M.S. Cao H. Guo L. Zeng L. Ren Y. Advancements, challenges, and future frontiers in covalent inhibitors and covalent drugs: A review. Eur J Med Chem Rep. 2024 12 100217 10.1016/j.ejmcr.2024.100217
    [Google Scholar]
  59. Amin Mir M. Heterocyclic phytochemicals as anticancer agents. Curr Top Med Chem 2025 25 5 533 553 10.2174/0115680266314693240914070250 39350414
    [Google Scholar]
  60. Wu J. Zhang M. Liu D. Acalabrutinib (ACP-196): A selective second-generation BTK inhibitor. J. Hematol. Oncol. 2016 9 1 21 10.1186/s13045‑016‑0250‑9 26957112
    [Google Scholar]
  61. Gehringer M. Laufer S.A. Emerging and re-emerging warheads for targeted covalent inhibitors: Applications in medicinal chemistry and chemical biology. J. Med. Chem. 2019 62 12 5673 5724 10.1021/acs.jmedchem.8b01153 30565923
    [Google Scholar]
  62. Cescon D.W. Bratman S.V. Chan S.M. Siu L.L. Circulating tumor DNA and liquid biopsy in oncology. Nat. Can. 2020 1 3 276 290 10.1038/s43018‑020‑0043‑5 35122035
    [Google Scholar]
  63. Li J.W. Cao S.H. Xu J.L. Zhong H. De novo MET amplification promotes intrinsic resistance to first-generation EGFR tyrosine kinase inhibitors. Cancer Biol. Ther. 2019 20 9 1183 1186 10.1080/15384047.2019.1617568 31131689
    [Google Scholar]
  64. Yu H.A. Arcila M.E. Hellmann M.D. Kris M.G. Ladanyi M. Riely G.J. Poor response to erlotinib in patients with tumors containing baseline EGFR T790M mutations found by routine clinical molecular testing. Ann. Oncol. 2014 25 2 423 428 10.1093/annonc/mdt573 24478319
    [Google Scholar]
  65. Wander S.A. Cohen O. Gong X. Johnson G.N. Buendia-Buendia J.E. Lloyd M.R. Kim D. Luo F. Mao P. Helvie K. Kowalski K.J. Nayar U. Waks A.G. Parsons S.H. Martinez R. Litchfield L.M. Ye X.S. Yu C. Jansen V.M. Stille J.R. Smith P.S. Oakley G.J. Chu Q.S. Batist G. Hughes M.E. Kremer J.D. Garraway L.A. Winer E.P. Tolaney S.M. Lin N.U. Buchanan S.G. Wagle N. The genomic landscape of intrinsic and acquired resistance to cyclin- dependent kinase 4/6 inhibitors in patients with hormone receptor positive metastatic breast cancer. Cancer Discov. 2020 10 8 1174 1193 10.1158/2159‑8290.CD‑19‑1390 32404308
    [Google Scholar]
  66. Lovly C.M. Shaw A.T. Molecular pathways: Resistance to kinase inhibitors and implications for therapeutic strategies. Clin. Cancer Res. 2014 20 9 2249 2256 10.1158/1078‑0432.CCR‑13‑1610 24789032
    [Google Scholar]
  67. Robey R.W. Pluchino K.M. Hall M.D. Fojo A.T. Bates S.E. Gottesman M.M. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat. Rev. Cancer 2018 18 7 452 464 10.1038/s41568‑018‑0005‑8 29643473
    [Google Scholar]
  68. Clark K. MacKenzie K.F. Petkevicius K. Kristariyanto Y. Zhang J. Choi H.G. Peggie M. Plater L. Pedrioli P.G.A. McIver E. Gray N.S. Arthur J.S.C. Cohen P. Phosphorylation of CRTC3 by the salt-inducible kinases controls the interconversion of classically activated and regulatory macrophages. Proc. Natl. Acad. Sci. USA 2012 109 42 16986 16991 10.1073/pnas.1215450109 23033494
    [Google Scholar]
  69. Gorre M.E. Mohammed M. Ellwood K. Hsu N. Paquette R. Rao P.N. Sawyers C.L. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 2001 293 5531 876 880 10.1126/science.1062538 11423618
    [Google Scholar]
  70. Nguyen K.S.H. Kobayashi S. Costa D.B. Acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancers dependent on the epidermal growth factor receptor pathway. Clin. Lung Cancer 2009 10 4 281 289 10.3816/CLC.2009.n.039 19632948
    [Google Scholar]
  71. Yun C.H. Mengwasser K.E. Toms A.V. Woo M.S. Greulich H. Wong K.K. Meyerson M. Eck M.J. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc. Natl. Acad. Sci. USA 2008 105 6 2070 2075 10.1073/pnas.0709662105 18227510
    [Google Scholar]
  72. Cocco E. Lee J.E. Kannan S. Schram A.M. Won H.H. Shifman S. Kulick A. Baldino L. Toska E. Arruabarrena-Aristorena A. Kittane S. Wu F. Cai Y. Arena S. Mussolin B. Kannan R. Vasan N. Gorelick A.N. Berger M.F. Novoplansky O. Jagadeeshan S. Liao Y. Rix U. Misale S. Taylor B.S. Bardelli A. Hechtman J.F. Hyman D.M. Elkabets M. de Stanchina E. Verma C.S. Ventura A. Drilon A. Scaltriti M. TRK xDFG mutations trigger a sensitivity switch from type I to II kinase inhibitors. Cancer Discov. 2021 11 1 126 141 10.1158/2159‑8290.CD‑20‑0571 33004339
    [Google Scholar]
  73. Volm M. Efferth T. Prediction of cancer drug resistance and implications for personalized medicine. Front. Oncol. 2015 5 282 10.3389/fonc.2015.00282 26734568
    [Google Scholar]
  74. Husain H. Scur M. Murtuza A. Bui N. Woodward B. Kurzrock R. Strategies to overcome bypass mechanisms mediating clinical resistance to EGFR tyrosine kinase inhibition in lung cancer. Mol. Cancer Ther. 2017 16 2 265 272 10.1158/1535‑7163.MCT‑16‑0105 28159915
    [Google Scholar]
  75. Lin J.J. Liu S.V. McCoach C.E. Zhu V.W. Tan A.C. Yoda S. Peterson J. Do A. Prutisto-Chang K. Dagogo-Jack I. Sequist L.V. Wirth L.J. Lennerz J.K. Hata A.N. Mino-Kenudson M. Nardi V. Ou S.H.I. Tan D.S.W. Gainor J.F. Mechanisms of resistance to selective RET tyrosine kinase inhibitors in RET fusion-positive non-small-cell lung cancer. Ann. Oncol. 2020 31 12 1725 1733 10.1016/j.annonc.2020.09.015 33007380
    [Google Scholar]
  76. D’Amato V. Raimondo L. Formisano L. Giuliano M. De Placido S. Rosa R. Bianco R. Mechanisms of lapatinib resistance in HER2-driven breast cancer. Cancer Treat. Rev. 2015 41 10 877 883 10.1016/j.ctrv.2015.08.001 26276735
    [Google Scholar]
  77. Min A. Kim J.E. Kim Y.J. Lim J.M. Kim S. Kim J.W. Lee K.H. Kim T.Y. Oh D.Y. Bang Y.J. Im S.A. Cyclin E overexpression confers resistance to the CDK4/6 specific inhibitor palbociclib in gastric cancer cells. Cancer Lett. 2018 430 123 132 10.1016/j.canlet.2018.04.037 29729292
    [Google Scholar]
  78. Pandey K. Park N. Park K.S. Hur J. Cho Y.B. Kang M. An H.J. Kim S. Hwang S. Moon Y.W. Combined CDK2 and CDK4/6 inhibition overcomes palbociclib resistance in breast cancer by enhancing senescence. Cancers 2020 12 12 3566 10.3390/cancers12123566 33260316
    [Google Scholar]
  79. Suzawa K. Offin M. Lu D. Kurzatkowski C. Vojnic M. Smith R.S. Sabari J.K. Tai H. Mattar M. Khodos I. de Stanchina E. Rudin C.M. Kris M.G. Arcila M.E. Lockwood W.W. Drilon A. Ladanyi M. Somwar R. Activation of KRAS mediates resistance to targeted therapy in MET exon 14-mutant non- small cell lung cancer. Clin. Cancer Res. 2019 25 4 1248 1260 10.1158/1078‑0432.CCR‑18‑1640 30352902
    [Google Scholar]
  80. Jamme P. Fernandes M. Copin M.C. Descarpentries C. Escande F. Morabito A. Grégoire V. Jamme M. Baldacci S. Tulasne D. Kherrouche Z. Cortot A.B. Alterations in the PI3K pathway drive resistance to MET inhibitors in NSCLC harboring MET exon 14 skipping mutations. J. Thorac. Oncol. 2020 15 5 741 751 10.1016/j.jtho.2020.01.027 32169477
    [Google Scholar]
  81. Thress K.S. Paweletz C.P. Felip E. Cho B.C. Stetson D. Dougherty B. Lai Z. Markovets A. Vivancos A. Kuang Y. Ercan D. Matthews S.E. Cantarini M. Barrett J.C. Jänne P.A. Oxnard G.R. Acquired EGFR C797S mutation mediates resistance to AZD9291 in non–small cell lung cancer harboring EGFR T790M. Nat. Med. 2015 21 6 560 562 10.1038/nm.3854 25939061
    [Google Scholar]
  82. Mir M.A. Kumar A. Bisht A. Andrews K. Alam M.W. Healing with Nano: Transformative Applications in Biomedicine. Breaking Boundaries: Pioneering Sustainable Solutions Through Materials and Technology. Springer Singapore 2025 10.1007/978‑981‑97‑9827‑8_15
    [Google Scholar]
  83. Gettinger S.N. Bazhenova L.A. Langer C.J. Salgia R. Gold K.A. Rosell R. Shaw A.T. Weiss G.J. Tugnait M. Narasimhan N.I. Dorer D.J. Kerstein D. Rivera V.M. Clackson T. Haluska F.G. Camidge D.R. Activity and safety of brigatinib in ALK-rearranged non-small-cell lung cancer and other malignancies: A single-arm, open-label, phase 1/2 trial. Lancet Oncol. 2016 17 12 1683 1696 10.1016/S1470‑2045(16)30392‑8 27836716
    [Google Scholar]
  84. Gainor J.F. Dardaei L. Yoda S. Friboulet L. Leshchiner I. Katayama R. Dagogo-Jack I. Gadgeel S. Schultz K. Singh M. Chin E. Parks M. Lee D. DiCecca R.H. Lockerman E. Huynh T. Logan J. Ritterhouse L.L. Le L.P. Muniappan A. Digumarthy S. Channick C. Keyes C. Getz G. Dias-Santagata D. Heist R.S. Lennerz J. Sequist L.V. Benes C.H. Iafrate A.J. Mino-Kenudson M. Engelman J.A. Shaw A.T. Molecular mechanisms of resistance to first- and second- generation ALK inhibitors in ALKrearranged lung cancer. Cancer Discov. 2016 6 10 1118 1133 10.1158/2159‑8290.CD‑16‑0596 27432227
    [Google Scholar]
  85. Recondo G. Mezquita L. Facchinetti F. Planchard D. Gazzah A. Bigot L. Rizvi A.Z. Frias R.L. Thiery J.P. Scoazec J.Y. Sourisseau T. Howarth K. Deas O. Samofalova D. Galissant J. Tesson P. Braye F. Naltet C. Lavaud P. Mahjoubi L. Abou Lovergne A. Vassal G. Bahleda R. Hollebecque A. Nicotra C. Ngo-Camus M. Michiels S. Lacroix L. Richon C. Auger N. De Baere T. Tselikas L. Solary E. Angevin E. Eggermont A.M. Andre F. Massard C. Olaussen K.A. Soria J.C. Besse B. Friboulet L. Diverse resistance mechanisms to the third- generation ALK inhibitor lorlatinib in ALK- rearranged lung cancer. Clin. Cancer Res. 2020 26 1 242 255 10.1158/1078‑0432.CCR‑19‑1104 31585938
    [Google Scholar]
  86. Mok T.S. Wu Y.L. Ahn M.J. Garassino M.C. Kim H.R. Ramalingam S.S. Shepherd F.A. He Y. Akamatsu H. Theelen W.S.M.E. Lee C.K. Sebastian M. Templeton A. Mann H. Marotti M. Ghiorghiu S. Papadimitrakopoulou V.A. Osimertinib or platinum–pemetrexed in EGFR T790M–Positive lung cancer. N. Engl. J. Med. 2017 376 7 629 640 10.1056/NEJMoa1612674 27959700
    [Google Scholar]
  87. Zhou T. Commodore L. Huang W.S. Wang Y. Thomas M. Keats J. Xu Q. Rivera V.M. Shakespeare W.C. Clackson T. Dalgarno D.C. Zhu X. Structural mechanism of the Pan-BCR-ABL inhibitor ponatinib (AP24534): Lessons for overcoming kinase inhibitor resistance. Chem. Biol. Drug Des. 2011 77 1 1 11 10.1111/j.1747‑0285.2010.01054.x 21118377
    [Google Scholar]
  88. Flaherty K.T. Robert C. Hersey P. Nathan P. Garbe C. Milhem M. Demidov L.V. Hassel J.C. Rutkowski P. Mohr P. Dummer R. Trefzer U. Larkin J.M.G. Utikal J. Dreno B. Nyakas M. Middleton M.R. Becker J.C. Casey M. Sherman L.J. Wu F.S. Ouellet D. Martin A.M. Patel K. Schadendorf D. METRIC Study Group Improved survival with MEK inhibition in BRAF-mutated melanoma. N. Engl. J. Med. 2012 367 2 107 114 10.1056/NEJMoa1203421 22663011
    [Google Scholar]
  89. Valent P. Hadzijusufovic E. Hoermann G. Füreder W. Schernthaner G.H. Sperr W.R. Kirchmair R. Wolf D. Risk factors and mechanisms contributing to TKI-induced vascular events in patients with CML. Leuk. Res. 2017 59 47 54 10.1016/j.leukres.2017.05.008 28549238
    [Google Scholar]
  90. Kong J.H. Khoury H.J. Kim A.S. Hill B.G. Kota V. The safety of Bosutinib for the treatment of chronic myeloid leukemia. Expert Opin. Drug Saf. 2017 16 10 1203 1209 10.1080/14740338.2017.1363176 28774214
    [Google Scholar]
  91. Solit D.B. Rosen N. Resistance to BRAF inhibition in melanomas. N. Engl. J. Med. 2011 364 8 772 774 10.1056/NEJMcibr1013704 21345109
    [Google Scholar]
  92. Buchdunger E. Zimmermann J. Mett H. Meyer T. Müller M. Druker B.J. Lydon N.B. Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative. Cancer Res. 1996 56 1 100 104 8548747
    [Google Scholar]
  93. Wilhelm S.M. Carter C. Tang L. Wilkie D. McNabola A. Rong H. Chen C. Zhang X. Vincent P. McHugh M. Cao Y. Shujath J. Gawlak S. Eveleigh D. Rowley B. Liu L. Adnane L. Lynch M. Auclair D. Taylor I. Gedrich R. Voznesensky A. Riedl B. Post L.E. Bollag G. Trail P.A. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 2004 64 19 7099 7109 10.1158/0008‑5472.CAN‑04‑1443 15466206
    [Google Scholar]
  94. Zhang J. Yang P.L. Gray N.S. Targeting cancer with small molecule kinase inhibitors. Nat. Rev. Cancer 2009 9 1 28 39 10.1038/nrc2559 19104514
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266382257250721051440
Loading
/content/journals/ctmc/10.2174/0115680266382257250721051440
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: inhibitors ; drugs ; cancer ; enzymes ; Kinases
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test