Skip to content
2000
Volume 25, Issue 28
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Introduction

CAs serve as crucial enzymes involved in a variety of physiological processes, including brain metabolism and cognitive function. hCA VII, a brain-associated isoform, plays an important role in modulating cerebral metabolism. Activating hCA VII may provide therapeutic benefits in Alzheimer's disease and other neurodegenerative or age-related illnesses. This study proposes to add to the growing interest in CAAs by developing innovative drugs with selective activation characteristics that target brain-associated CA isoforms.

Methods

A series of 4-arylazo-3,5-diamino-1H-pyrazoles have been produced by reacting aniline and aniline derivatives with a malononitrile solution at 0-5 °C, resulting in compounds . Then, arylazo malononitrile compounds were added with hydrazine monohydrate to obtain 4-arylazo-3,5-diamino-1H-pyrazole derivatives . The activity of the synthesized compounds was examined on human CA isoforms I, II, IV, and VII to determine activation potency and selectivity.

Results

The synthesized compounds demonstrated a wide spectrum of strong micromolar activation on human CA isoforms, with particularly encouraging results for hCA VII. The discovered activators showed a high selectivity profile for the brain-associated hCA VII isoform, indicating their potential use in neurological methods of therapy.

Discussion

Among the most compelling findings of this study is the unprecedented potency of several synthesized derivatives, particularly and in selectively activating hCA VII far beyond the benchmark histamine, positioning them as promising pharmacological candidates for addressing CA-related neurological disorders.

Conclusion

The research successfully discovered potent and selective CAAs with specific activity against hCA VII, a key enzyme in brain metabolism. These outcomes offer novel possibilities for developing medicinal products for neurological disorders and provide critical molecules for further study into CAAs. Furthermore, the study advances our understanding of enzyme activation kinetics and gives significant insights into the future of enzyme-based treatment research.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266373008250723064558
2025-07-28
2026-02-01
Loading full text...

Full text loading...

References

  1. SupuranC.T. A simple yet multifaceted 90 years old, evergreen enzyme: Carbonic anhydrase, its inhibition and activation.Bioorg. Med. Chem. Lett.20239312941110.1016/j.bmcl.2023.129411 37507055
    [Google Scholar]
  2. KumarA. SiwachK. SupuranC.T. SharmaP.K. A decade of tail-approach based design of selective as well as potent tumor associated carbonic anhydrase inhibitors.Bioorg. Chem.202212610592010.1016/j.bioorg.2022.105920 35671645
    [Google Scholar]
  3. De SimoneG. AlterioV. SupuranC.T. Exploiting the hydrophobic and hydrophilic binding sites for designing carbonic anhydrase inhibitors.Expert Opin. Drug Discov.20138779381010.1517/17460441.2013.795145 23627619
    [Google Scholar]
  4. NeriD. SupuranC.T. Interfering with pH regulation in tumours as a therapeutic strategy.Nat. Rev. Drug Discov.2011101076777710.1038/nrd3554 21921921
    [Google Scholar]
  5. SupuranC.T. Carbonic anhydrase inhibitors.Bioorg. Med. Chem. Lett.201020123467347410.1016/j.bmcl.2010.05.009 20529676
    [Google Scholar]
  6. a MishraK.M.A. SethiK.K. Unveiling tomorrow: Carbonic anhydrase activators and inhibitors pioneering new frontiers in Alzheimer’s disease.Activation of α-, β-, γ- δ-, ζ- and η- class of carbonic anhydrases with amines and amino acids: A review. Arch. Pharm. (Weinheim).J. Enzyme Inhib. Med. Chem.20253581e240074810.1002/ardp.20240074839506506
    [Google Scholar]
  7. b AkocakS. SupuranC.T. Unveiling tomorrow: Carbonic anhydrase activators and inhibitors pioneering new frontiers in Alzheimer’s disease.Activation of α-, β-, γ- δ-, ζ- and η- class of carbonic anhydrases with amines and amino acids: A review. Arch. Pharm. (Weinheim).J. Enzyme Inhib. Med. Chem.20193411652165910.1080/14756366.2019.1664501 31530034
    [Google Scholar]
  8. SupuranC.T. Carbonic anhydrases: Novel therapeutic applications for inhibitors and activators.Nat. Rev. Drug Discov.20087216818110.1038/nrd2467 18167490
    [Google Scholar]
  9. SupuranC.T. Advances in structure-based drug discovery of carbonic anhydrase inhibitors.Expert Opin. Drug Discov.2017121618810.1080/17460441.2017.1253677 27783541
    [Google Scholar]
  10. AndringJ.T. FouchM. AkocakS. AngeliA. SupuranC.T. IliesM.A. McKennaR. Structural basis of nanomolar inhibition of tumor-associated carbonic anhydrase IX: X-ray crystallographic and inhibition study of lipophilic inhibitors with acetazolamide backbone.J. Med. Chem.20206321130641307510.1021/acs.jmedchem.0c01390 33085484
    [Google Scholar]
  11. SupuranC.T. How many carbonic anhydrase inhibition mechanisms exist?J. Enzyme Inhib. Med. Chem.201631334536010.3109/14756366.2015.1122001 26619898
    [Google Scholar]
  12. ShabanaA.M. MondalU.K. AlamM.R. SpoonT. RossC.A. MadeshM. SupuranC.T. IliesM.A. pH-Sensitive multiligand gold nanoplatform targeting carbonic anhydrase IX enhances the delivery of doxorubicin to hypoxic tumor spheroids and overcomes the hypoxia-induced chemoresistance.ACS Appl. Mater. Interfaces20181021177921780810.1021/acsami.8b05607 29733576
    [Google Scholar]
  13. AkocakS. Güzel-AkdemirÖ. Kishore Kumar SankuR. RussomS.S. IorgaB.I. SupuranC.T. IliesM.A. Pyridinium derivatives of 3-aminobenzenesulfonamide are nanomolar-potent inhibitors of tumor-expressed carbonic anhydrase isozymes CA IX and CA XII.Bioorg. Chem.2020103August10420410.1016/j.bioorg.2020.104204 32891000
    [Google Scholar]
  14. a AkocakS. LolakN. GiovannuzziS. SupuranC.T. Potent and Selective Carbonic Anhydrase Inhibition Activities of Pyrazolones Bearing Benzenesulfonamides.Bioorg. Med. Chem. Lett.202395August12947910.1016/j.bmcl.2023.129479
    [Google Scholar]
  15. b YaparG. LolakN. BonardiA. AkocakS. SupuranC.T. Exploring the potency of diazo-coumarin containing hybrid molecules: Selective inhibition of tumor-associated carbonic anhydrase isoforms IX and XII.ChemMedChem2024194e20230062610.1002/cmdc.202300626
    [Google Scholar]
  16. c DoganA. YanilmazE.M.B. KarakocG. ParlarA. AnnacE. LolakN. AkocakS. Investigating the Anti-Inflammatory Potential of SLC-0111: A Carbonic Anhydrase Inhibitor Targeting Cyclooxygenase-Mediated Inflammatory Pathways in a Carrageenan-Induced Rat Model.J. Biochem. Mol. Toxicol.2025393e7021710.1002/jbt.70217
    [Google Scholar]
  17. TekeliT. AkocakS. PetreniA. LolakN. ÇeteS. SupuranC.T. Potent carbonic anhydrase I, II, IX and XII inhibition activity of novel primary benzenesulfonamides incorporating bis-ureido moieties.J. Enzyme Inhib. Med. Chem.2023381218576210.1080/14756366.2023.2185762 36880350
    [Google Scholar]
  18. CartaF. SupuranC.T. ScozzafavaA. Novel therapies for glaucoma: A patent review 2007 - 2011.Expert Opin. Ther. Pat.2012221798810.1517/13543776.2012.649006 22191414
    [Google Scholar]
  19. MincioneF. NocentiniA. SupuranC.T. Advances in the discovery of novel agents for the treatment of glaucoma.Expert Opin. Drug Discov.202116101209122510.1080/17460441.2021.1922384 33914670
    [Google Scholar]
  20. SupuranC.T. Latest advances in specific inhibition of tumor-associated carbonic anhydrases.Future Med. Chem.20231515710.4155/fmc‑2022‑0249 36636980
    [Google Scholar]
  21. SupuranC.T. Exploring the multiple binding modes of inhibitors to carbonic anhydrases for novel drug discovery.Expert Opin. Drug Discov.202015667168610.1080/17460441.2020.1743676 32208982
    [Google Scholar]
  22. OguzM. KalayE. AkocakS. NocentiniA. LolakN. BogaM. YilmazM. SupuranC.T. Synthesis of calix[4]azacrown substituted sulphonamides with antioxidant, acetylcholinesterase, butyrylcholinesterase, tyrosinase and carbonic anhydrase inhibitory action.J. Enzyme Inhib. Med. Chem.20203511215122310.1080/14756366.2020.1765166 32401067
    [Google Scholar]
  23. MishraC.B. TiwariM. SupuranC.T. Progress in the development of human carbonic anhydrase inhibitors and their pharmacological applications: Where are we today?Med. Res. Rev.20204062485256510.1002/med.21713 32691504
    [Google Scholar]
  24. ZamanovaS. ShabanaA.M. MondalU.K. IliesM.A. Carbonic anhydrases as disease markers.Expert Opin. Ther. Pat.201929750953310.1080/13543776.2019.1629419 31172829
    [Google Scholar]
  25. PoggettiV. SalernoS. BagliniE. BarresiE. Da SettimoF. TalianiS. Carbonic anhydrase activators for neurodegeneration: An overview.Molecules2022278254410.3390/molecules27082544 35458743
    [Google Scholar]
  26. SupuranC.T. Applications of carbonic anhydrases inhibitors in renal and central nervous system diseases.Expert Opin. Ther. Pat.2018281071372110.1080/13543776.2018.1519023 30175635
    [Google Scholar]
  27. GuglielmiP. CarradoriS. CampestreC. PoceG. Novel therapies for glaucoma: A patent review (2013-2019).Expert Opin. Ther. Pat.2019291076978010.1080/13543776.2019.1653279 31385719
    [Google Scholar]
  28. a SunM.K. AlkonD.L. Carbonic anhydrase gating of attention: Memory therapy and enhancement.Carbonic anhydrase activators. 3: structure-activity correlations for a series of isozyme II activators. Trends Pharmacol. Sci.J. Pharm. Sci.2002232838910.1016/S0165‑6147(02)01899‑011830265
    [Google Scholar]
  29. b ClareB.W. SupuranC.T. Carbonic anhydrase gating of attention: Memory therapy and enhancement.Carbonic anhydrase activators. 3: structure-activity correlations for a series of isozyme II activators. Trends Pharmacol. Sci.J. Pharm. Sci.199483676877310.1002/jps.2600830603 9120804
    [Google Scholar]
  30. SunM.K. AlkonD.L. Pharmacological enhancement of synaptic efficacy, spatial learning, and memory through carbonic anhydrase activation in rats.J. Pharmacol. Exp. Ther.2001297396196710.1016/S0022‑3565(24)29621‑X 11356917
    [Google Scholar]
  31. a SupuranC.T. Carbonic Anhydrase Activators.Future Medicinal Chemistry20186157310.4155/fmc‑2017‑0223
    [Google Scholar]
  32. b NocentiniA. CostaA. BonardiA. AmmaraA. GiovannuzziS. PetreniA. BartolucciG. RaniB. LeriM. BucciantiniM. Fernandez-BolanosJ.G. PassaniM.B. ProvensiG. GratteriP. SupuranC.T. Enhanced Recognition Memory through Dual Modulation of Brain Carbonic Anhydrases and Cholinesterases.J. Med. Chem.20246718168731689810.1021/acs.jmedchem.4c01866
    [Google Scholar]
  33. SupuranC.T. Carbonic anhydrase inhibitors and their potential in a range of therapeutic areas.Expert Opin. Ther. Pat.2018281070971210.1080/13543776.2018.1523897 30217119
    [Google Scholar]
  34. RamiM. WinumJ.Y. SupuranC.T. MelnykP. YousS. (Hetero)aryl substituted thiazol-2,4-yl scaffold as human carbonic anhydrase I, II, VII and XIV activators.J. Enzyme Inhib. Med. Chem.201934122422910.1080/14756366.2018.1543292 30734616
    [Google Scholar]
  35. AkocakS. LolakN. BuaS. NocentiniA. SupuranC.T. Activation of human α-carbonic anhydrase isoforms I, II, IV and VII with bis-histamine schiff bases and bis-spinaceamine substituted derivatives.J. Enzyme Inhib. Med. Chem.20193411193119810.1080/14756366.2019.1630616 31237157
    [Google Scholar]
  36. VistoliG. AldiniG. FumagalliL. DallanoceC. AngeliA. SupuranC.T. Activation effects of Carnosine- and histidine-containing dipeptides on human carbonic anhydrases: A comprehensive study.Int. J. Mol. Sci.2020215176110.3390/ijms21051761 32143488
    [Google Scholar]
  37. AkocakS. LolakN. BuaS. NocentiniA. KarakocG. SupuranC.T. α-Carbonic anhydrases are strongly activated by spinaceamine derivatives.Bioorg. Med. Chem.201927580080410.1016/j.bmc.2019.01.017 30683554
    [Google Scholar]
  38. DraghiciB. VulloD. AkocakS. WalkerE.A. SupuranC.T. IliesM.A. Ethylene bis-imidazoles are highly potent and selective activators for isozymes VA and VII of carbonic anhydrase, with a potential nootropic effect.Chem. Commun. (Camb.)201450455980598310.1039/C4CC02346C 24763985
    [Google Scholar]
  39. AkocakS. LolakN. VulloD. DurgunM. SupuranC.T. Synthesis and biological evaluation of histamine Schiff bases as carbonic anhydrase I, II, IV, VII, and IX activators.J. Enzyme Inhib. Med. Chem.20173211305131210.1080/14756366.2017.1386660 29072105
    [Google Scholar]
  40. KarrouchiK. RadiS. RamliY. TaoufikJ. MabkhotY.N. Al-aizariF.A. AnsarM. Synthesis and pharmacological activities of pyrazole derivatives: A review.Molecules201823113410.3390/molecules23010134 29329257
    [Google Scholar]
  41. FariaJ.V. VegiP.F. MiguitaA.G.C. dos SantosM.S. BoechatN. BernardinoA.M.R. Recently reported biological activities of pyrazole compounds.Bioorg. Med. Chem.20172521589110.1016/j.bmc.2017.09.035
    [Google Scholar]
  42. SribalanR. BanuppriyaG. KirubavathiM. JayachitraA. PadminiV. Multiple biological activities and molecular docking studies of newly synthesized 3-(pyridin-4-yl)-1H-pyrazole-5-carboxamide chalcone hybrids.Bioorg. Med. Chem. Lett.201626235624563010.1016/j.bmcl.2016.10.075 27825544
    [Google Scholar]
  43. StaufferS.R. ColettaC.J. TedescoR. NishiguchiG. CarlsonK. SunJ. KatzenellenbogenB.S. KatzenellenbogenJ.A. Pyrazole ligands: structure-affinity/activity relationships and estrogen receptor-α-selective agonists.J. Med. Chem.200043264934494710.1021/jm000170m 11150164
    [Google Scholar]
  44. SayedG.H. AzabM.E. AnwerK.E. RaoufM.A. NegmN.A. Pyrazole, pyrazolone and enaminonitrile pyrazole derivatives: Synthesis, characterization and potential in corrosion inhibition and antimicrobial applications.J. Mol. Liq.201825232933810.1016/j.molliq.2017.12.156
    [Google Scholar]
  45. Abdel-AalM.T. Abdel-AleemA.A.H. IbahimL.I. ZeinA.L. Synthesis and antimicrobial activity of novel 5-amino-4-cyano-1H-pyrazole and quinazolin-4(3H)-one derivatives.Arch. Pharm. Res.201033121891190010.1007/s12272‑010‑1202‑5 21191752
    [Google Scholar]
  46. QiaoL. ZhaiZ.W. CaiP.P. TanC.X. WengJ.Q. HanL. LiuX.H. ZhangY.G. Synthesis, crystal structure, antifungal activity, and docking study of difluoromethyl pyrazole derivatives.J. Heterocycl. Chem.20195692536254110.1002/jhet.3648
    [Google Scholar]
  47. JordaR. SchütznerováE. CankařP. BrychtováV. NavrátilováJ. KryštofV. Novel arylazopyrazole inhibitors of cyclin-dependent kinases.Bioorg. Med. Chem.20152391975198110.1016/j.bmc.2015.03.025 25835357
    [Google Scholar]
  48. IsmailM.M.F. SolimanD.H. SabourR. FarragA.M. Synthesis of new arylazopyrazoles as apoptosis inducers: Candidates to inhibit proliferation of MCF‐7 cells.Arch. Pharm. (Weinheim)20213541200021410.1002/ardp.202000214 32924168
    [Google Scholar]
  49. KasiotisK.M. TzanetouE.N. HaroutounianS.A. Pyrazoles as potential anti-angiogenesis agents: A contemporary overview.Front Chem.20142SEP7810.3389/fchem.2014.00078 25250310
    [Google Scholar]
  50. WuZ. YangW. HouS. XieD. YangJ. LiuL. YangS. In vivo antiviral activity and disassembly mechanism of novel 1-phenyl-5-amine-4-pyrazole thioether derivatives against Tobacco mosaic virus.Pestic. Biochem. Physiol.202117310477110.1016/j.pestbp.2021.104771 33771249
    [Google Scholar]
  51. PadminiT. BhikshapathiD. SureshK. KulkarniR. KamalB.R. Novel aminopyrazole tagged hydrazones as anti-tubercular agents: Synthesis and molecular docking studies.Med. Chem.202117434435110.2174/1573406416666200514084747 32407282
    [Google Scholar]
  52. IslamM.S. Al-MajidA.M. SholkamyE.N. YousufS. AyazM. NawazA. WadoodA. RehmanA.U. VermaV.P. BariA. HaukkaM. SolimanS.M. BarakatA. Synthesis, molecular docking and enzyme inhibitory approaches of some new chalcones engrafted pyrazole as potential antialzheimer, antidiabetic and antioxidant agents.J. Mol. Struct.2022126913384310.1016/j.molstruc.2022.133843
    [Google Scholar]
  53. KryštofV. CankařP. FryšováI. SloukaJ. KontopidisG. DžubákP. HajdúchM. SrovnalJ. de AzevedoW.F. OrságM. PaprskářováM. RolčíkJ. LátrA. FischerP.M. StrnadM. EffectsC. PaprskaM. 4-arylazo-3,5-diamino-1H-pyrazole CDK inhibitors: SAR study, crystal structure in complex with CDK2, selectivity, and cellular effects.J. Med. Chem.200649226500650910.1021/jm0605740 17064068
    [Google Scholar]
  54. JordaR. NavrátilováJ. HuškováZ. SchütznerováE. CankařP. StrnadM. KryštofV. Arylazopyrazole AAP1742 inhibits CDKs and induces apoptosis in multiple myeloma cells via Mcl-1 downregulation.Chem. Biol. Drug Des.201484440240810.1111/cbdd.12330 24803299
    [Google Scholar]
  55. LusardiM. SpallarossaA. BrulloC. Amino-pyrazoles in medicinal chemistry: A review.Int. J. Mol. Sci.2023249783410.3390/ijms24097834
    [Google Scholar]
  56. IliesM. BanciuM.D. IliesM.A. ScozzafavaA. CaproiuM.T. SupuranC.T. Carbonic anhydrase activators: Design of high affinity isozymes I, II, and IV activators, incorporating tri-/tetrasubstituted-pyridinium-azole moieties.J. Med. Chem.200245250451010.1021/jm011031n 11784154
    [Google Scholar]
  57. MaccalliniC. Di MatteoM. VulloD. AmmazzalorsoA. CarradoriS. De FilippisB. FantacuzziM. GiampietroL. PandolfiA. SupuranC.T. AmorosoR. Indazole, pyrazole, and oxazole derivatives targeting nitric oxide synthases and carbonic anhydrases.ChemMedChem201611161695169910.1002/cmdc.201600204 27377568
    [Google Scholar]
  58. ChiaramonteN. MaachS. BiliottiC. AngeliA. BartolucciG. BraconiL. DeiS. TeodoriE. SupuranC.T. RomanelliM.N. Synthesis and carbonic anhydrase activating properties of a series of 2-amino-imidazolines structurally related to clonidine.J. Enzyme Inhib. Med. Chem.20203511003101010.1080/14756366.2020.1749602 32336172
    [Google Scholar]
  59. KhalifahR.G. The carbon dioxide hydration activity of carbonic anhydrase. I. Stop-flow kinetic studies on the native human isoenzymes B and C.J. Biol. Chem.197124682561257310.1016/S0021‑9258(18)62326‑9 4994926
    [Google Scholar]
  60. YusufZ.S. UysalT.K. SimsekE. NocentiniA. OsmanS.M. SupuranC.T. Özensoy GülerÖ. The inhibitory effect of boric acid on hypoxia-regulated tumour-associated carbonic anhydrase IX.J. Enzyme Inhib. Med. Chem.20223711340134510.1080/14756366.2022.2072837 35535546
    [Google Scholar]
  61. PetrouA. GeronikakiA. TerziE. GulerO.O. TuccinardiT. SupuranC.T. Inhibition of carbonic anhydrase isoforms I, II, IX and XII with secondary sulfonamides incorporating benzothiazole scaffolds.J. Enzyme Inhib. Med. Chem.20163161306131110.3109/14756366.2015.1128427 26745009
    [Google Scholar]
  62. KüçükbayH. GönülZ. KüçükbayF.Z. TekinZ. AngeliA. BartolucciG. SupuranC.T. TatlıcıE. ApohanE. YeşiladaÖ. Synthesis of new 7‐amino‐3,4‐dihydroquinolin‐2(1 H)‐one‐peptide derivatives and their carbonic anhydrase enzyme inhibition, antioxidant, and cytotoxic activities.Arch. Pharm. (Weinheim)202135411210012210.1002/ardp.202100122 34313324
    [Google Scholar]
  63. MondalU.K. DorobaK. ShabanaA.M. AdelbergR. AlamM.R. SupuranC.T. IliesM.A. PEG linker length strongly affects tumor cell killing by pegylated carbonic anhydrase inhibitors in hypoxic carcinomas expressing carbonic anhydrase IX.Int. J. Mol. Sci.2021223112010.3390/ijms22031120 33498779
    [Google Scholar]
  64. EldehnaW.M. Abo-AshourM.F. BerrinoE. VulloD. GhabbourH.A. Al-RashoodS.T. HassanG.S. AlkahtaniH.M. AlmehiziaA.A. AlharbiA. Abdel-AzizH.A. SupuranC.T. SLC-0111 enaminone analogs, 3/4-(3-aryl-3-oxopropenyl) aminobenzenesulfonamides, as novel selective subnanomolar inhibitors of the tumor-associated carbonic anhydrase isoform IX.Bioorg. Chem.20198354955810.1016/j.bioorg.2018.11.014 30471577
    [Google Scholar]
  65. MoiD. VittorioS. AngeliA. BalboniG. SupuranC.T. OnnisV. Investigation on Hydrazonobenzenesulfonamides as Human Carbonic Anhydrase I, II, IX and XII Inhibitors.Molecules20222819110.3390/molecules28010091 36615285
    [Google Scholar]
  66. AkocakS. Innovative design, synthesis, and in silico evaluation of bis-ureido substituted antipyrine derivatives: Molecular modeling and ADME insights.Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi202515126427810.21597/jist.1591716
    [Google Scholar]
  67. DemirY. TokalıF.S. KalayE. TürkeşC. TokalıP. AslanO.N. ŞendilK. BeydemirŞ. Synthesis and characterization of novel acyl hydrazones derived from vanillin as potential aldose reductase inhibitors.Mol. Divers.20232741713173310.1007/s11030‑022‑10526‑1 36103032
    [Google Scholar]
  68. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.201774271710.1038/srep42717
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266373008250723064558
Loading
/content/journals/ctmc/10.2174/0115680266373008250723064558
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test