Skip to content
2000
image of Naringin Supplementation Reduces Inflammatory Processes in the Cerebellum in Brain Ischemia of Rats

Abstract

Introduction

During cerebral ischemia, brain tissue is damaged in two successive stages: ischemia and reperfusion (I/R). In the ischemic phase, brain tissue undergoes energy failure due to an impaired circulatory system (cerebrovascular), resulting in oxygen and glucose deprivation and consequent brain damage.

Objective

The study aimed to determine the effect of a two-week administration of naringin on caspase-3, IL-17, and NF-κB levels in cerebellar tissue in experimental focal brain ischemia-reperfusion in rats.

Methods

The research was conducted on 10- to 12-week-old Wistar-type rats obtained from the Selcuk University Experimental Animals Research and Application Center. Experimental brain ischemia-reperfusion in rats was performed under general anesthesia (carotid arteries were exposed to ischemia for 30 minutes). Experimental groups were formed as follows. 1) Control group, 2) Sham, 3) Sham + vehicle, 4) Ischemia-reperfusion, 5) Ischemia-reperfusion + Naringin supplemented group for two weeks (100mg/kg). At the end of the experiments, the levels of IL-17, caspase-3, and NF-κB were determined in the cerebellum tissue of the animals under general anesthesia. First of all, blood was drawn from the heart, and the animals were killed by cervical dislocation.

Results

Experimental brain ischemia-reperfusion significantly increased caspase-3, IL-17, and NF-κB levels in the brain tissue of rats. In contrast, naringin supplementation for 2 weeks significantly suppressed the ischemia-reperfusion-induced inflammatory process.

Discussion

The findings obtained from our research generally showed that, as a result of focal brain ischemia-reperfusion in rats, the levels of NF-κB, a key molecule involved in inflammatory pathways, as well as the pro-inflammatory cytokine IL-17 and caspase-3, an indicator of apoptosis, increased significantly in cerebellar tissue. However, intragastric naringin supplementation for two weeks following ischemia-reperfusion led to significant improvements in the adverse effects caused by the ischemic injury.

Conclusion

The study's results demonstrate that naringin treatment effectively mitigates inflammatory activation in the cerebellum following brain ischemia-reperfusion in rats.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266394794250717115624
2025-07-28
2025-09-13
Loading full text...

Full text loading...

References

  1. Singla S. Brilakis E.S. “bad things happen in threes”: A story of saphenous vein graft failure, stent fracture, and stent loss. Catheter. Cardiovasc. Interv. 2013 81 1 66 67 10.1002/ccd.24744 23281086
    [Google Scholar]
  2. Berger C. Fiorelli M. Steiner T. Schäbitz W.R. Bozzao L. Bluhmki E. Hacke W. von Kummer R. Hemorrhagic transformation of ischemic brain tissue: Asymptomatic or symptomatic? Stroke 2001 32 6 1330 1335 10.1161/01.STR.32.6.1330 11387495
    [Google Scholar]
  3. Bréchot N. Rutault A. Marangon I. Germain S. Blood endothelium transition and phenotypic plasticity: A key regulator of integrity/permeability in response to ischemia. Semin. Cell Dev. Biol. 2024 155 Pt C 16 22 10.1016/j.semcdb.2023.07.004 37479554
    [Google Scholar]
  4. Marcus A.J. Aspirin as an antithrombotic medication. N. Engl. J. Med. 1983 309 24 1515 1517 10.1056/NEJM198312153092410 6358887
    [Google Scholar]
  5. Hakim A.M. Ischemic penumbra: The therapeutic window. Neurology 1998 51 3 S44 S46 [PMID: 9744833
    [Google Scholar]
  6. Chen H.D. Jiang M.Z. Zhao Y.Y. Li X. Lan H. Yang W.Q. Lai Y. Effects of breviscapine on cerebral ischemia-reperfusion injury and intestinal flora imbalance by regulating the TLR4/MyD88/NF-κB signaling pathway in rats. J. Ethnopharmacol. 2023 300 115691 10.1016/j.jep.2022.115691 36087844
    [Google Scholar]
  7. Li Y. Li S. Li D. Breviscapine alleviates cognitive impairments induced by transient cerebral ischemia/reperfusion through its anti-inflammatory and anti-oxidant properties in a rat model. ACS Chem. Neurosci. 2020 11 24 4489 4498 10.1021/acschemneuro.0c00697 33270442
    [Google Scholar]
  8. Akaishi T. Yamamoto S. Abe K. 3′,4′-Dihydroxyflavonol attenuates lipopolysaccharide-induced neuroinflammatory responses of microglial cells by suppressing AKT–mTOR and NF-κB pathways. Biol. Pharm. Bull. 2023 46 7 914 920 10.1248/bpb.b23‑00033 37394643
    [Google Scholar]
  9. Li L. Pan G. Fan R. Li D. Guo L. Ma L. Liang H. Qiu J. Luteolin alleviates inflammation and autophagy of hippocampus induced by cerebral ischemia/reperfusion by activating PPAR gamma in rats. BMC Complement Med. Ther. 2022 22 1 176 10.1186/s12906‑022‑03652‑8 35778706
    [Google Scholar]
  10. Cordaro M. D’Amico R. Fusco R. Peritore A.F. Genovese T. Interdonato L. Franco G. Arangia A. Gugliandolo E. Crupi R. Siracusa R. Di Paola R. Cuzzocrea S. Impellizzeri D. Discovering the effects of Fisetin on NF-κB/NLRP-3/NRF-2 molecular pathways in a mouse model of vascular dementia induced by repeated bilateral carotid occlusion. Biomedicines 2022 10 6 1448 10.3390/biomedicines10061448 35740470
    [Google Scholar]
  11. Moskowitz M.A. Lo E.H. Iadecola C. The science of stroke: Mechanisms in search of treatments. Neuron 2010 67 2 181 198 10.1016/j.neuron.2010.07.002 20670828
    [Google Scholar]
  12. Stonesifer C. Corey S. Ghanekar S. Diamandis Z. Acosta S.A. Borlongan C.V. Stem cell therapy for abrogating stroke-induced neuroinflammation and relevant secondary cell death mechanisms. Prog. Neurobiol. 2017 158 94 131 10.1016/j.pneurobio.2017.07.004 28743464
    [Google Scholar]
  13. Prakash R. Carmichael S.T. Blood−brain barrier breakdown and neovascularization processes after stroke and traumatic brain injury. Curr. Opin. Neurol. 2015 28 6 556 564 10.1097/WCO.0000000000000248 26402408
    [Google Scholar]
  14. Jia J. Yang L. Chen Y. Zheng L. Chen Y. Xu Y. Zhang M. The role of microglial phagocytosis in ischemic stroke. Front. Immunol. 2022 12 790201 10.3389/fimmu.2021.790201 35082781
    [Google Scholar]
  15. Li X. Chen G. CNS-peripheral immune interactions in hemorrhagic stroke. J. Cereb. Blood Flow Metab. 2023 43 2 185 197 10.1177/0271678X221145089 36476130
    [Google Scholar]
  16. Su D. Cheng Y. Li S. Dai D. Zhang W. Lv M. Sphk1 mediates neuroinflammation and neuronal injury via TRAF2/NF-κB pathways in activated microglia in cerebral ischemia reperfusion. J. Neuroimmunol. 2017 305 35 41 10.1016/j.jneuroim.2017.01.015 28284343
    [Google Scholar]
  17. Pan L. Sze Y.H. Yang M. Tang J. Zhao S. Yi I. To C.H. Lam C. Chen D.F. Cho K.S. Do C.W. Baicalein: A Potent pro-homeostatic regulator of microglia in retinal ischemic injury. Front. Immunol. 2022 13 837497 10.3389/fimmu.2022.837497 35265083
    [Google Scholar]
  18. Endo K. Sawa T. Tanaka Y. Saiki T. Haga H. Rizeq L. Aso H. Isono M. Niitsuma F. Masaki A. Makabe H. Tanaka S. Oral administration of procyanidin B2 3,3”-di-O-gallate ameliorates experimental autoimmune encephalomyelitis through immunosuppressive effects on CD4+ T cells by regulating glycolysis. Eur. J. Pharmacol. 2023 954 175879 10.1016/j.ejphar.2023.175879 37406847
    [Google Scholar]
  19. Ren J. Ding Y. Li S. Lei M. Predicting the anti-inflammatory mechanism of Radix Astragali using network pharmacology and molecular docking. Medicine (Baltimore) 2023 102 35 e34945 10.1097/MD.0000000000034945 37657026
    [Google Scholar]
  20. Singh V.K. Sahoo D. Agrahari K. Khan A. Mukhopadhyay P. Chanda D. Yadav N.P. Anti-inflammatory, anti-proliferative and anti-psoriatic potential of apigenin in RAW 264.7 cells, HaCaT cells and psoriasis like dermatitis in BALB/c mice. Life Sci. 2023 328 121909 10.1016/j.lfs.2023.121909 37414141
    [Google Scholar]
  21. Yu H. Huang X. Xie C. Song J. Zhou Y. Shi H. Chen M. Wu Y. Ruan Z. Deng L. Deng X. Lv Y. Luo Q. Dong J. Transcriptomics reveals apigenin alleviates airway inflammation and epithelial cell apoptosis in allergic asthma via MAPK pathway. Phytother. Res. 2023 37 9 4002 4017 10.1002/ptr.7859 37128812
    [Google Scholar]
  22. Zhu J. Chen H. Cui J. Zhang X. Liu G. Oroxylin A inhibited autoimmune hepatitis-induced liver injury and shifted Treg/Th17 balance to Treg differentiation. Exp. Anim. 2023 72 3 367 378 10.1538/expanim.22‑0171 36927981
    [Google Scholar]
  23. Adeoluwa O.A. Olayinka J.N. Adeoluwa G.O. Akinluyi E.T. Adeniyi F.R. Fafure A. Nebo K. Edem E.E. Eduviere A.T. Abubakar B. Quercetin abrogates lipopolysaccharide-induced depressive-like symptoms by inhibiting neuroinflammation via microglial NLRP3/NFκB/iNOS signaling pathway. Behav. Brain Res. 2023 450 114503 10.1016/j.bbr.2023.114503 37209878
    [Google Scholar]
  24. Ling J. Zhang L. Wang Y. Chang A. Huang Y. Zhao H. Zhuo X. Fisetin, a dietary flavonoid, increases the sensitivity of chemoresistant head and neck carcinoma cells to cisplatin possibly through HSP90AA1 / IL ‐17 pathway. Phytother. Res. 2023 37 5 1997 2011 10.1002/ptr.7723 36631292
    [Google Scholar]
  25. Li W. Zhang Z. Li J. Mu J. Sun M. Wu X. Niu X. Yang Y. Yan H. Xu X. Xue C. Qian L. Tian Y. Silibinin exerts neuroprotective effects against cerebral hypoxia/reoxygenation injury by activating the GAS6/Axl pathway. Toxicology 2023 495 153598 10.1016/j.tox.2023.153598 37544575
    [Google Scholar]
  26. Hu X. Mola Y. Su W. Wang Y. Zheng R. Xing J. A network pharmacology approach to decipher the total flavonoid extract of Dracocephalum Moldavica L. in the treatment of cerebral ischemia- reperfusion injury. PLoS One 2023 18 7 e0289118 10.1371/journal.pone.0289118 37494353
    [Google Scholar]
  27. Huang D. Qin J. Lu N. Fu Z. Zhang B. Tian S. Liu Q. Neuroprotective effects of nobiletin on cerebral ischemia/reperfusion injury rats by inhibiting Rho/ROCK signaling pathway. Ann. Transl. Med. 2022 10 24 1385 10.21037/atm‑22‑6119 36660614
    [Google Scholar]
  28. Zhang Y. Zhang Z. Wang J. Zhang X. Zhao J. Bai N. Vijayalakshmi A. Huo Q. Scutellarin alleviates cerebral ischemia/reperfusion by suppressing oxidative stress and inflammatory responses via MAPK / NF‐κB pathways in rats. Environ. Toxicol. 2022 37 12 2889 2896 10.1002/tox.23645 36036213
    [Google Scholar]
  29. Mokhtari Sangdehi S.R. Hajizadeh Moghaddam A. Ranjbar M. Anti-apoptotic effect of silymarin-loaded chitosan nanoparticles on hippocampal caspase-3 and Bcl-2 expression following cerebral ischemia/reperfusion injury. Int. J. Neurosci. 2022 132 11 1102 1109 10.1080/00207454.2020.1860971 33287594
    [Google Scholar]
  30. Wu C.T. Yang T.H. Chen M.C. Guan S.S. Chen C.M. Liu S.H. Therapeutic effect of icaritin on cerebral ischemia-reperfusion-induced senescence and apoptosis in an acute ischemic stroke mouse model. Molecules 2022 27 18 5783 10.3390/molecules27185783 36144517
    [Google Scholar]
  31. Yuan Y. Xia F. Gao R. Chen Y. Zhang Y. Cheng Z. Zhao H. Xu L. Kaempferol mediated AMPK/mTOR signal pathway has a protective effect on cerebral ischemic-reperfusion injury in rats by inducing autophagy. Neurochem. Res. 2022 47 8 2187 2197 10.1007/s11064‑022‑03604‑1 35524892
    [Google Scholar]
  32. Feng J. Chen X. Lu S. Li W. Yang D. Su W. Wang X. Shen J. Naringin attenuates cerebral ischemia-reperfusion injury through inhibiting peroxynitrite-mediated mitophagy activation. Mol. Neurobiol. 2018 55 12 9029 9042 10.1007/s12035‑018‑1027‑7 29627876
    [Google Scholar]
  33. Oluwafeyisetan A. Olubunmi A. Peter O. Naringin ameliorates HIV-1 nucleoside reverse transcriptase inhibitors- induced mitochondrial toxicity. Curr. HIV Res. 2016 14 6 506 516 10.2174/1570162X14666160520114639 27197616
    [Google Scholar]
  34. Gaur V. Aggarwal A. Kumar A. Protective effect of naringin against ischemic reperfusion cerebral injury: Possible neurobehavioral, biochemical and cellular alterations in rat brain. Eur. J. Pharmacol. 2009 616 1-3 147 154 10.1016/j.ejphar.2009.06.056 19577560
    [Google Scholar]
  35. Çelebi̇ F. Cengi̇z İ. Cinar A. Şengül E. Protective effects of Naringin on free radicals and antioxidants in cyclophosphamide-induced rats. Atatürk University J. Veterin Sci. 2020 15 3 231 236 10.17094/ataunivbd.700017
    [Google Scholar]
  36. Yi L.T. Li C.F. Zhan X. Cui C.C. Xiao F. Zhou L.P. Xie Y. Involvement of monoaminergic system in the antidepressant-like effect of the flavonoid naringenin in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 2010 34 7 1223 1228 10.1016/j.pnpbp.2010.06.024 20603175
    [Google Scholar]
  37. Zhang P. Cui J. Neuroprotective Effect of Fisetin Against the Cerebral Ischemia-Reperfusion Damage via Suppression of Oxidative Stress and Inflammatory Parameters. Inflammation 2021 44 4 1490 1506 10.1007/s10753‑021‑01434‑x 33616827
    [Google Scholar]
  38. Yang B. Sun Y. Lv C. Zhang W. Chen Y. Procyanidins exhibits neuroprotective activities against cerebral ischemia reperfusion injury by inhibiting TLR4-NLRP3 inflammasome signal pathway. Psychopharmacology (Berl.) 2020 237 11 3283 3293 10.1007/s00213‑020‑05610‑z 32729095
    [Google Scholar]
  39. Li J. Gu Z. Liu Y. Wang Y. Zhao M. Astilbin attenuates cerebral ischemia/reperfusion injury by inhibiting the TLR4/MyD88/NF-κB pathway. Toxicol. Res. (Camb.) 2019 8 6 1002 1008 10.1039/c9tx00222g 34055311
    [Google Scholar]
  40. Li W.H. Cheng X. Yang Y.L. Liu M. Zhang S.S. Wang Y.H. Du G.H. Kaempferol attenuates neuroinflammation and blood brain barrier dysfunction to improve neurological deficits in cerebral ischemia/reperfusion rats. Brain Res. 2019 1722 146361 10.1016/j.brainres.2019.146361 31377105
    [Google Scholar]
  41. Pan J. Li X. Guo F. Yang Z. Zhang L. Yang C. Ginkgetin attenuates cerebral ischemia–reperfusion induced autophagy and cell death via modulation of the NF-κB/p53 signaling pathway. Biosci. Rep. 2019 39 9 BSR20191452 10.1042/BSR20191452 31420372
    [Google Scholar]
  42. Li Q. Ye T. Long T. Peng X. Ginkgetin exerts anti-inflammatory effects on cerebral ischemia/reperfusion-induced injury in a rat model via the TLR4/NF-κB signaling pathway. Biosci. Biotechnol. Biochem. 2019 83 4 675 683 10.1080/09168451.2018.1553608 30570395
    [Google Scholar]
  43. Manna K. Das U. Das D. Kesh S.B. Khan A. Chakraborty A. Dey S. Naringin inhibits gamma radiation-induced oxidative DNA damage and inflammation, by modulating p53 and NF-κB signaling pathways in murine splenocytes. Free Radic. Res. 2015 49 4 422 439 10.3109/10715762.2015.1016018 25812588
    [Google Scholar]
  44. Bai X. Zhang X. Chen L. Zhang J. Zhang L. Zhao X. Zhao T. Zhao Y. Protective effect of naringenin in experimental ischemic stroke: down-regulated NOD2, RIP2, NF-κB, MMP-9 and up-regulated claudin-5 expression. Neurochem. Res. 2014 39 8 1405 1415 10.1007/s11064‑014‑1326‑y 24842554
    [Google Scholar]
  45. Yang J. Yuan L. Wen Y. Zhou H. Jiang W. Xu D. Wang M. Protective Effects of Naringin in Cerebral Infarction and Its Molecular Mechanism. Med. Sci. Monit. 2020 26 e918772 10.12659/MSM.918772 31901198
    [Google Scholar]
  46. Wang L. Zhang Z. Wang H. Naringin attenuates cerebral ischemia-reperfusion injury in rats by inhibiting endoplasmic reticulum stress. Transl. Neurosci. 2021 12 1 190 197 10.1515/tnsci‑2020‑0170 34046215
    [Google Scholar]
  47. Okuyama S. Katoh M. Kanzaki T. Kotani Y. Amakura Y. Yoshimura M. Fukuda N. Tamai T. Sawamoto A. Nakajima M. Furukawa Y. Auraptene/Naringin-Rich Fruit Juice of Citrus kawachiensis (Kawachi Bankan) Prevents Ischemia-Induced Neuronal Cell Death in Mouse Brain through Anti-Inflammatory Responses. J. Nutr. Sci. Vitaminol. (Tokyo) 2019 65 1 66 71 10.3177/jnsv.65.66 30814414
    [Google Scholar]
  48. Okuyama S. Yamamoto K. Mori H. Sawamoto A. Amakura Y. Yoshimura M. Tamanaha A. Ohkubo Y. Sugawara K. Sudo M. Nakajima M. Furukawa Y. Neuroprotective effect of Citrus kawachiensis (Kawachi Bankan) peels, a rich source of naringin, against global cerebral ischemia/reperfusion injury in mice. Biosci. Biotechnol. Biochem. 2018 82 7 1216 1224 10.1080/09168451.2018.1456320 29618282
    [Google Scholar]
  49. Zheng Y. Song T. Zhang L. Wei N. Immunomodulatory effects of T helper 17 cells and regulatory T cells on cerebral ischemia. J. Biol. Regul. Homeost. Agents 2018 32 1 29 35 [PMID: 29504362
    [Google Scholar]
  50. Yu X. Zhang P. Tang K. Shen G. Chen H. Zhang Z. Zhao W. Shang Q. Zhu G. Tan R. Gan Y. Zhang Y. Liang D. Ren H. Jiang X. Zhou B. Network Pharmacology Integrated with Molecular Docking Explores the Mechanisms of Naringin against Osteoporotic Fracture by Regulating Oxidative Stress. Evid. Based Complement. Alternat. Med. 2021 2021 1 12 10.1155/2021/6421122 34589132
    [Google Scholar]
  51. Dasgupta A. Nomura M. Shuck R. Yustein J. Cancer’s Achilles’ Heel: Apoptosis and Necroptosis to the Rescue. Int. J. Mol. Sci. 2016 18 1 23 10.3390/ijms18010023 28025559
    [Google Scholar]
  52. Johnston M.V. Fatemi A. Wilson M.A. Northington F. Treatment advances in neonatal neuroprotection and neurointensive care. Lancet Neurol. 2011 10 4 372 382 10.1016/S1474‑4422(11)70016‑3 21435600
    [Google Scholar]
  53. Doyle K.P. Simon R.P. Stenzel-Poore M.P. Mechanisms of ischemic brain damage. Neuropharmacology 2008 55 3 310 318 10.1016/j.neuropharm.2008.01.005 18308346
    [Google Scholar]
  54. Benchoua A. Guégan C. Couriaud C. Hosseini H. Sampaïo N. Morin D. Onténiente B. Specific caspase pathways are activated in the two stages of cerebral infarction. J. Neurosci. 2001 21 18 7127 7134 10.1523/JNEUROSCI.21‑18‑07127.2001 11549723
    [Google Scholar]
  55. Namura S. Zhu J. Fink K. Endres M. Srinivasan A. Tomaselli K.J. Yuan J. Moskowitz M.A. Activation and cleavage of caspase-3 in apoptosis induced by experimental cerebral ischemia. J. Neurosci. 1998 18 10 3659 3668 10.1523/JNEUROSCI.18‑10‑03659.1998 9570797
    [Google Scholar]
  56. Le D.A. Wu Y. Huang Z. Matsushita K. Plesnila N. Augustinack J.C. Hyman B.T. Yuan J. Kuida K. Flavell R.A. Moskowitz M.A. Caspase activation and neuroprotection in caspase-3- deficient mice after in vivo cerebral ischemia and in vitro oxygen glucose deprivation. Proc. Natl. Acad. Sci. USA 2002 99 23 15188 15193 10.1073/pnas.232473399 12415117
    [Google Scholar]
  57. Guégan C. Sola B. Early and sequential recruitment of apoptotic effectors after focal permanent ischemia in mice. Brain Res. 2000 856 1-2 93 100 10.1016/S0006‑8993(99)02347‑1 10677615
    [Google Scholar]
  58. Love S. Apoptosis and brain ischaemia. Prog. Neuropsychopharmacol. Biol. Psychiatry 2003 27 2 267 282 10.1016/S0278‑5846(03)00022‑8 12657366
    [Google Scholar]
  59. Love S. Barber R. Srinivasan A. Wilcock G.K. Activation of caspase-3 in permanent and transient brain ischaemia in man. Neuroreport 2000 11 11 2495 2499 10.1097/00001756‑200008030‑00030 10943710
    [Google Scholar]
  60. Wasan H. Singh D. Joshi B. Upadhyay D. Sharma U. Dinda A.K. Reeta K.H. Dihydromyricetin alleviates cerebral ischemia-reperfusion injury by attenuating apoptosis and astrogliosis in peri-infarct cortex. Neurol. Res. 2022 44 5 403 414 10.1080/01616412.2021.1997010 34882069
    [Google Scholar]
  61. Wu C.T. Chen M.C. Liu S.H. Yang T.H. Long L.H. Guan S.S. Chen C.M. Bioactive Flavonoids Icaritin and Icariin Protect against Cerebral Ischemia–Reperfusion-Associated Apoptosis and Extracellular Matrix Accumulation in an Ischemic Stroke Mouse Model. Biomedicines 2021 9 11 1719 10.3390/biomedicines9111719 34829948
    [Google Scholar]
  62. Liu D. Gu Y. Wang W. Chen W. Astragalin alleviates ischemia/reperfusion induced brain injury via suppression of endoplasmic reticulum stress. Mol. Med. Rep. 2020 22 5 4070 4078 10.3892/mmr.2020.11448 33000226
    [Google Scholar]
  63. Hassan R.A. Hozayen W.G. Abo Sree H.T. Al-Muzafar H.M. Amin K.A. Ahmed O.M. Naringin and Hesperidin Counteract Diclofenac‐Induced Hepatotoxicity in Male Wistar Rats via Their Antioxidant, Anti‐Inflammatory, and Antiapoptotic Activities. Oxid. Med. Cell. Longev. 2021 2021 1 9990091 10.1155/2021/9990091 34422219
    [Google Scholar]
  64. Gu L. Wang F. Wang Y. Sun D. Sun Y. Tian T. Meng Q. Yin L. Xu L. Lu X. Peng J. Lin Y. Sun P. Naringin protects against inflammation and apoptosis induced by intestinal ischemia–reperfusion injury through deactivation of cGAS‐STING signaling pathway. Phytother. Res. 2023 37 8 3495 3507 10.1002/ptr.7824 37125528
    [Google Scholar]
  65. Li S. Jiang J. Fang J. Li X. Huang C. Liang W. Wu K. Naringin protects H9C2 cardiomyocytes from chemical hypoxia induced injury by promoting the autophagic flux via the activation of the HIF 1α/BNIP3 signaling pathway. Int. J. Mol. Med. 2021 47 6 102 10.3892/ijmm.2021.4935 33907819
    [Google Scholar]
  66. Amini N. Sarkaki A. Dianat M. Mard S.A. Ahangarpour A. Badavi M. The renoprotective effects of naringin and trimetazidine on renal ischemia/reperfusion injury in rats through inhibition of apoptosis and downregulation of micoRNA-10a. Biomed. Pharmacother. 2019 112 108568 10.1016/j.biopha.2019.01.029 30780111
    [Google Scholar]
  67. Cerkezkayabekir A. Sanal F. Bakar E. Ulucam E. Inan M. Naringin protects viscera from ischemia/reperfusion injury by regulating the nitric oxide level in a rat model. Biotech. Histochem. 2017 92 4 252 263 10.1080/10520295.2017.1305499 28426254
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266394794250717115624
Loading
/content/journals/ctmc/10.2174/0115680266394794250717115624
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: caspase-3 ; inflammation ; rat ; apoptosis ; Experimental brain ıschemia-reperfusion ; naringin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test