Skip to content
2000
image of INHBA: A Protein-coding Gene Closely Related to Tumour Diseases

Abstract

Introduction

At present, malignant tumors are still under development with an increasing trend, and their prevention, treatment, and prognosis are also difficult. The INHBA gene, also known as inhibin β, has a wide range of roles to play in this context. Through studies, several researchers have confirmed that an abnormal expression of the INHBA gene affects the development and prognosis of several malignant tumors (cervical, colorectal, breast, gastric, ). This study aims to investigate the relationship between INHBA and the occurrence, development, treatment, and prognosis of malignant tumors.

Methods

This review, which involved scanning of pertinent literature, describes and evaluates recent research on the biological functions and mechanisms of INHBA in malignancies.

Results

An aberrant expression of INHBA can lead to a variety of tumors, including cervical, esophageal, breast, colorectal, squamous cell, bladder, nasopharyngeal, gastric, and ovarian cancers.

Discussion

INHBA, as a protein-coding gene, can affect the development of various tumors and the prognosis of tumor patients, suggesting that INHBA can be a target for tumor therapy. However, the research on targeted therapy is still immature and has certain safety risks.

Conclusion

Research findings indicate that the INHBA gene plays a role in both carcinogenesis and prognosis. As such, it may have the potential utility as a biomarker or therapeutic target in the treatment of malignant tumors.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266369991250716120928
2025-07-30
2025-09-13
Loading full text...

Full text loading...

References

  1. Ling N. Ying S.Y. Ueno N. Esch F. Denoroy L. Guillemin R. Isolation and partial characterization of a Mr 32,000 protein with inhibin activity from porcine follicular fluid. Proc. Natl. Acad. Sci. USA 1985 82 21 7217 7221 10.1073/pnas.82.21.7217 3864157
    [Google Scholar]
  2. Nagaraja A.S. Dood R.L. Armaiz-Pena G. Kang Y. Wu S.Y. Allen J.K. Jennings N.B. Mangala L.S. Pradeep S. Lyons Y. Haemmerle M. Gharpure K.M. Sadaoui N.C. Rodriguez-Aguayo C. Ivan C. Wang Y. Baggerly K. Ram P. Lopez-Berestein G. Liu J. Mok S.C. Cohen L. Lutgendorf S.K. Cole S.W. Sood A.K. Adrenergic-mediated increases in INHBA drive CAF phenotype and collagens. JCI Insight 2021 6 7 e149895 10.1172/jci.insight.149895 33793425
    [Google Scholar]
  3. Wu Z. Tang Y. Niu X. Cheng Q. Expression and gene regulation network of INHBA in Head and neck squamous cell carcinoma based on data mining. Sci. Rep. 2019 9 1 14341 10.1038/s41598‑019‑50865‑y 31586103
    [Google Scholar]
  4. Qian W. Lili Y. Wentao F. Analysis of oncogene INHBA and oncogenes CLCA4 and CA4 expression in colorectal cancer based on GEO and TCGA database. Can. J. Appl. Physiol. 2019 35 03 279 282 31257813
    [Google Scholar]
  5. Namwanje M. Brown C.W. Activins and inhibins: Roles in development, physiology, and disease. Cold Spring Harb. Perspect. Biol. 2016 8 7 a021881 10.1101/cshperspect.a021881 27328872
    [Google Scholar]
  6. Shelling A.N. Mutations in inhibin and activin genes associated with human disease. Mol. Cell. Endocrinol. 2012 359 1-2 113 120 10.1016/j.mce.2011.07.031 21827823
    [Google Scholar]
  7. Stenvers K.L. Findlay J.K. Inhibins: From reproductive hormones to tumor suppressors. Trends Endocrinol. Metab. 2010 21 3 174 180 10.1016/j.tem.2009.11.009 20005735
    [Google Scholar]
  8. Ke D. Li H. Zhang Y. An Y. Fu H. Fang X. Zheng X. The combination of circulating long noncoding RNAs AK001058, INHBA-AS1, MIR4435-2HG, and CEBPA-AS1 fragments in plasma serve as diagnostic markers for gastric cancer. Oncotarget 2017 8 13 21516 21525 10.18632/oncotarget.15628 28423525
    [Google Scholar]
  9. Massagué J. TGFβ in Cancer. Cell 2008 134 2 215 230 10.1016/j.cell.2008.07.001 18662538
    [Google Scholar]
  10. Seder C.W. Hartojo W. Lin L. Silvers A.L. Wang Z. Thomas D.G. Giordano T.J. Chen G. Chang A.C. Orringer M.B. Beer D.G. Upregulated INHBA expression may promote cell proliferation and is associated with poor survival in lung adenocarcinoma. Neoplasia 2009 11 4 388 396 10.1593/neo.81582 19308293
    [Google Scholar]
  11. Howley B.V. Hussey G.S. Link L.A. Howe P.H. Translational regulation of inhibin βA by TGFβ via the RNA-binding protein hnRNP E1 enhances the invasiveness of epithelial-to-mesenchymal transitioned cells. Oncogene 2016 35 13 1725 1735 10.1038/onc.2015.238 26096938
    [Google Scholar]
  12. Si T. Lu Y. Li F. Jiang L. Pei R. Zhou J.X. High expression of INHBA is an adverse prognostic factor for de novo acute myeloid leukemia. Leuk. Lymphoma 2018 59 1 114 120 10.1080/10428194.2017.1324157 28836868
    [Google Scholar]
  13. Jiang L. Si T. Yu M. Zeng X. Morse H.C. Lu Y. Ouyang G. Zhou J.X. The tumor suppressive role of inhibin β A in diffuse large B-cell lymphoma. Leuk. Lymphoma 2018 59 5 1202 1212 10.1080/10428194.2017.1372574 28877610
    [Google Scholar]
  14. Singh P. Jenkins L.M. Horst B. Alers V. Pradhan S. Kaur P. Srivastava T. Hempel N. Győrffy B. Broude E.V. Lee N.Y. Mythreye K. Inhibin is a novel paracrine factor for tumor angiogenesis and metastasis. Cancer Res. 2018 78 11 2978 2989 10.1158/0008‑5472.CAN‑17‑2316 29535220
    [Google Scholar]
  15. Vaccarella S. Laversanne M. Ferlay J. Bray F. Cervical cancer in A frica, L atin A merica and the C aribbean and A sia: Regional inequalities and changing trends. Int. J. Cancer 2017 141 10 1997 2001 10.1002/ijc.30901 28734013
    [Google Scholar]
  16. LIU P. Evaluation of 13-year clinical epidemiological big data on cervical cancer in mainland China. Zhongguo Shiyong Fuke Yu Chanke Zazhi 2018 34 01 41 45
    [Google Scholar]
  17. LIU Y.L. Progress of INHBA gene in malignant tumours. Medical Recapitulate 2021 27 06 1124 1129
    [Google Scholar]
  18. SHENG C.L. Comprehensive analysis of HPV integration target gene INHBA and prognosis of patients with cervical cancer. Label Immunoassay Clin. Med. 2023 30 06 1017 1023
    [Google Scholar]
  19. YUAN W.Q. Exploring the expression and clinical significance of INHBA in cervical cancer based on public database. J. Med. Theory Pract 2023 36 15 2535 2537
    [Google Scholar]
  20. LUO F. Screening and prognostic value analysis of cervical cancer-related differentially expressed genes. Chin J. Clin. Lab. Sci. 2019 37 08 633 637
    [Google Scholar]
  21. Martínez-Reyes I. Chandel N.S. Cancer metabolism: Looking forward. Nat. Rev. Cancer 2021 21 10 669 680 10.1038/s41568‑021‑00378‑6 34272515
    [Google Scholar]
  22. Chen X. Chen S. Yu D. Metabolic reprogramming of chemoresistant cancer cells and the potential significance of metabolic regulation in the reversal of cancer chemoresistance. Metabolites 2020 10 7 289 10.3390/metabo10070289 32708822
    [Google Scholar]
  23. Han W. Shi J. Cao J. Dong B. Guan W. Emerging roles and therapeutic interventions of aerobic glycolysis in glioma. OncoTargets Ther. 2020 13 6937 6955 10.2147/OTT.S260376 32764985
    [Google Scholar]
  24. Kikuchi K. Tsukamoto H. Stearoyl-CoA desaturase and tumorigenesis. Chem. Biol. Interact. 2020 316 108917 10.1016/j.cbi.2019.108917 31838050
    [Google Scholar]
  25. Jiang W.G. Ablin R.J. Cancer metastasis challenges progress and the opportunities. Front. Biosci. 2011 E3 1 391 394 10.2741/e254 21196319
    [Google Scholar]
  26. Lu Z. Jia J. Di L. Song G. Yuan Y. Ma B. Yu J. Zhu Y. Wang X. Zhou X. Ren J. DNA methyltransferase inhibitor CDA-2 synergizes with high-dose thiotepa and paclitaxel in killing breast cancer stem cells. Front. Biosci. 2011 3 1 240 249 10.2741/e239 21196304
    [Google Scholar]
  27. Sheng W. Shi X. Lin Y. Tang J. Jia C. Cao R. Sun J. Wang G. Zhou L. Dong M. Correction to: Musashi2 promotes EGF-induced EMT in pancreatic cancer via ZEB1-ERK/MAPK signaling. J. Exp. Clin. Cancer Res. 2020 39 1 167 10.1186/s13046‑020‑01663‑2 32838790
    [Google Scholar]
  28. Feldker N. Ferrazzi F. Schuhwerk H. Widholz S.A. Guenther K. Frisch I. Jakob K. Kleemann J. Riegel D. Bönisch U. Lukassen S. Eccles R.L. Schmidl C. Stemmler M.P. Brabletz T. Brabletz S. Genome‐wide cooperation of EMT transcription factor ZEB 1 with YAP and AP ‐1 in breast cancer. EMBO J. 2020 39 17 e103209 10.15252/embj.2019103209 32692442
    [Google Scholar]
  29. Hao Y. Baker D. ten Dijke P. TGF-β-mediated epithelial-mesenchymal transition and cancer metastasis. Int. J. Mol. Sci. 2019 20 11 2767 10.3390/ijms20112767 31195692
    [Google Scholar]
  30. Hassn Mesrati M. Syafruddin S.E. Mohtar M.A. Syahir A. CD44: A multifunctional mediator of cancer progression. Biomolecules 2021 11 12 1850 10.3390/biom11121850 34944493
    [Google Scholar]
  31. Cano A. Pérez-Moreno M.A. Rodrigo I. Locascio A. Blanco M.J. del Barrio M.G. Portillo F. Nieto M.A. The transcription factor Snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nat. Cell Biol. 2000 2 2 76 83 10.1038/35000025 10655586
    [Google Scholar]
  32. Huan H. Li C. Song Y. Xu Y. INHBA-AS1 regulates the ornithine metabolism and EMT process in cervical cancer HeLa cells through the c-Myc/SCD pathway. Zhongguo Zhongliu Shengwu Zhiliao Zazhi 2023 30 06 497 504
    [Google Scholar]
  33. Sobrado V.R. Moreno-Bueno G. Cubillo E. Holt L.J. Nieto M.A. Portillo F. Cano A. The class I bHLH factors E2-2A and E2-2B regulate EMT. J. Cell Sci. 2009 122 7 1014 1024 10.1242/jcs.028241 19295128
    [Google Scholar]
  34. Peinado H. Olmeda D. Cano A. Snail, Zeb and bHLH factors in tumour progression: An alliance against the epithelial phenotype? Nat. Rev. Cancer 2007 7 6 415 428 10.1038/nrc2131 17508028
    [Google Scholar]
  35. Nieto M.A. The snail superfamily of zinc-finger transcription factors. Nat. Rev. Mol. Cell Biol. 2002 3 3 155 166 10.1038/nrm757 11994736
    [Google Scholar]
  36. Mittal V. Epithelial mesenchymal transition in tumor metastasis. Annu. Rev. Pathol. 2018 13 1 395 412 10.1146/annurev‑pathol‑020117‑043854 29414248
    [Google Scholar]
  37. Mohamed M.M. Sloane B.F. multifunctional enzymes in cancer. Nat. Rev. Cancer 2006 6 10 764 775 10.1038/nrc1949 16990854
    [Google Scholar]
  38. Przybylo J.A. Radisky D.C. Matrix metalloproteinase-induced epithelial–mesenchymal transition: Tumor progression at Snail’s pace. Int. J. Biochem. Cell Biol. 2007 39 6 1082 1088 10.1016/j.biocel.2007.03.002 17416542
    [Google Scholar]
  39. ZHANG, Q.Y. Molecular mechanisms of epithelial mesenchymal transition mediating tumour metastasis. Life. Sci. Res. 2018 22 06 503 510
    [Google Scholar]
  40. TAN, Y. Expression levels and prognostic significance of TIMP1 and EFEMP1 in rectal cancer. Lingnan Mod Clin. Surg. 2020 20 02 161 166
    [Google Scholar]
  41. Su Y.N. Yang M.Y. He C.J. Lei X. Chang Y. Hu Y.F. Biomolecules affecting prognosis and infiltration of immune cells in cervical cancer. J. Hebei Med. Univ 2022 43 05 564 569
    [Google Scholar]
  42. Feng R.M. Zong Y.N. Cao S.M. Xu R.H. Current cancer situation in China: good or bad news from the 2018 global cancer statistics? Cancer Commun. 2019 39 1 1 12 10.1186/s40880‑019‑0368‑6 31030667
    [Google Scholar]
  43. Dai G.P. Wang L.P. Wen Y.Q. Ren X.Q. Zuo S.G. Identification of key genes for predicting colorectal cancer prognosis by integrated bioinformatics analysis. Oncol. Lett. 2020 19 1 388 398 10.3892/ol.2019.11068 31897151
    [Google Scholar]
  44. Qin L. Zeng J. Shi N. Chen L. Wang L. Application of weighted gene co expression network analysis to explore the potential diagnostic biomarkers for colorectal cancer. Mol. Med. Rep. 2020 21 6 2533 2543 10.3892/mmr.2020.11047 32323816
    [Google Scholar]
  45. Pellatt A.J. Mullany L.E. Herrick J.S. Sakoda L.C. Wolff R.K. Samowitz W.S. Slattery M.L. The TGFβ-signaling pathway and colorectal cancer: Associations between dysregulated genes and miRNAs. J. Transl. Med. 2018 16 1 191 10.1186/s12967‑018‑1566‑8 29986714
    [Google Scholar]
  46. ZHOU C.Z. Microsatellite instability in colorectal cancer. Medicine Abroad 2001 02 149 151
    [Google Scholar]
  47. ZHOU W. Correlation between up-regulation of INHBA gene expression and clinicopathological features and prognosis of left and right hemi-colon cancer. Chin J. Clin. Exp. Pathol. 2018 34 09 953 957
    [Google Scholar]
  48. LI R. Analysis of breast cancer gene networks based on random matrix theory. J. Jiangxi Norm Univ 2020 44 05 495 500
    [Google Scholar]
  49. Liu Y. Pandey P.R. Sharma S. Xing F. Wu K. Chittiboyina A. Wu S.Y. Tyagi A. Watabe K. ID2 and GJB2 promote early-stage breast cancer progression by regulating cancer stemness. Breast Cancer Res. Treat. 2019 175 1 77 90 10.1007/s10549‑018‑05126‑3 30725231
    [Google Scholar]
  50. MAO Y.L. INHBA expression in breast cancer and its association with clinical prognosis. Chin J. Clin. Exp. Pathol. 2018 34 03 331 333
    [Google Scholar]
  51. ZHANG N.X. MiR-10b-3p inhibits breast cancer cell proliferation, migration and invasion through targeted binding to INHBA. Guangdong Yaoxueyuan Xuebao 2021 37 05 27 34
    [Google Scholar]
  52. Kalli M. Mpekris F. Wong C.K. Panagi M. Ozturk S. Thiagalingam S. Stylianopoulos T. Papageorgis P. Activin A. Activin A signaling regulates IL13Rα2 expression to promote breast cancer metastasis. Front. Oncol. 2019 9 32 10.3389/fonc.2019.00032 30805303
    [Google Scholar]
  53. Burkhardt N. Jückstock J. Kuhn C. Rack B. Janni W. Schindlbeck C. Sommer H. Friese K. Mylonas I. Inhibin A is down-regulated during chemotherapy in patients with breast cancer. Anticancer Res. 2010 30 11 4563 4566 21115906
    [Google Scholar]
  54. Huang T.X. Fu L. The immune landscape of esophageal cancer. Cancer Commun. 2019 39 1 79 10.1186/s40880‑019‑0427‑z 31771653
    [Google Scholar]
  55. Fang P. Zhou J. Liang Z. Yang Y. Luan S. Xiao X. Li X. Zhang H. Shang Q. Zeng X. Yuan Y. Immunotherapy resistance in esophageal cancer: Possible mechanisms and clinical implications. Front. Immunol. 2022 13 975986 10.3389/fimmu.2022.975986 36119033
    [Google Scholar]
  56. Zhang B.H. Yue H.Y. Starting Point of Tumors. Med. J. Natl Defend Forces Northwest China 2016 37 01 50 52
    [Google Scholar]
  57. Seder C.W. Hartojo W. Lin L. Silvers A.L. Wang Z. Thomas D.G. Giordano T.J. Chen G. Chang A.C. Orringer M.B. Beer D.G. INHBA overexpression promotes cell proliferation and may be epigenetically regulated in esophageal adenocarcinoma. J. Thorac. Oncol. 2009 4 4 455 462 10.1097/JTO.0b013e31819c791a 19240652
    [Google Scholar]
  58. Wang J.J. Chen D.X. Zhang Y. Xu X. Cai Y. Wei W.Q. Hao J.J. Wang M.R. Elevated expression of the RNA-binding protein IGF2BP1 enhances the mRNA stability of INHBA to promote the invasion and migration of esophageal squamous cancer cells. Exp. Hematol. Oncol. 2023 12 1 75 10.1186/s40164‑023‑00429‑8 37644505
    [Google Scholar]
  59. Lyu S. Jiang C. Xu R. Huang Y. Yan S. INHBA upregulation correlates with poorer prognosis in patients with esophageal squamous cell carcinoma. Cancer Manag. Res. 2018 10 1585 1596 10.2147/CMAR.S160186 29950896
    [Google Scholar]
  60. WANG Y.M. Correlation analysis of PDK-1 protein expression with clinicopathological features and prognosis in gastric cancer tissues. Hebei Med. J. 2020 42 20 3072 3076
    [Google Scholar]
  61. LIU X.P. Advances in the study of tsRNA and its role in the pathogenesis and diagnosis of gastric cancer. Chemistry of Life. 2024 44 06 1082 1089
    [Google Scholar]
  62. Gu X. Ma S. Liang B. Ju S. Serum hsa_tsr016141 as a Kind of tRNA-Derived Fragments Is a Novel Biomarker in Gastric Cancer. Front. Oncol. 2021 11 679366 10.3389/fonc.2021.679366 34055648
    [Google Scholar]
  63. HU Y.X. Expression of INHBA and Flot2 in gastric cancer and relationship with clinicopathological parameters. Heilongjiang Pharmaceutical Sciences 2022 45 01 8 11
    [Google Scholar]
  64. Wang Q. Wen Y.G. Li D.P. Xia J. Zhou C.Z. Yan D.W. Tang H.M. Peng Z.H. Upregulated INHBA expression is associated with poor survival in gastric cancer. Med. Oncol. 2012 29 1 77 83 10.1007/s12032‑010‑9766‑y 21132402
    [Google Scholar]
  65. Chen Z.L. Qin L. Peng X.B. Hu Y. Liu B. INHBA gene silencing inhibits gastric cancer cell migration and invasion by impeding activation of the TGF‐β signaling pathway. J. Cell. Physiol. 2019 234 10 18065 18074 10.1002/jcp.28439 30963572
    [Google Scholar]
  66. Katayama Y. Oshima T. Sakamaki K. Aoyama T. Sato T. Masudo K. Shiozawa M. Yoshikawa T. Rino Y. Imada T. Masuda M. Clinical significance of INHBA gene expression in patients with gastric cancer who receive curative resection followed by adjuvant S-1 chemotherapy. In Vivo 2017 31 4 565 571 10.21873/invivo.11095 28652421
    [Google Scholar]
  67. Seeruttun S.R. Cheung W.Y. Wang W. Fang C. Liu Z.M. Li J.Q. Wu T. Wang J. Liang C. Zhou Z.W. Identification of molecular biomarkers for the diagnosis of gastric cancer and lymph-node metastasis. Gastroenterol. Rep. 2019 7 1 57 66 10.1093/gastro/goy023 30792867
    [Google Scholar]
  68. JIANG S.F. Expression of JAG2, INHBA, and PD-L1 proteins in aged colorectal cancer tissues and relationship with prognosis. China Medical Herald 2023 20 35 31 36
    [Google Scholar]
  69. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  70. Chang W.M. Lin Y.F. Su C.Y. Peng H.Y. Chang Y.C. Lai T.C. Wu G.H. Hsu Y.M. Chi L.H. Hsiao J.R. Chen C.L. Chang J.Y. Shieh Y.S. Hsiao M. Shiah S.G. Dysregulation of RUNX2/Activin-A Axis upon miR-376c downregulation promotes lymph node metastasis in head and neck squamous cell carcinoma. Cancer Res. 2016 76 24 7140 7150 10.1158/0008‑5472.CAN‑16‑1188 27760788
    [Google Scholar]
  71. DAI Y.X. miR-195 targets MYB to activate thePI3K-Akt pathway to regulate cellproliferation and malignant metastasis in squamous skin cancer cells. J. Diagn. Ther. Dermato-Venereol 2020 27 06 379 386
    [Google Scholar]
  72. Farberg A.S. Fitzgerald A.L. Ibrahim S.F. Tolkachjov S.N. Soleymani T. Douglas L.M. Kurley S.J. Arron S.T. Current methods and caveats to risk factor assessment in cutaneous squamous cell carcinoma (cSCC): A narrative review. Dermatol. Ther. 2022 12 2 267 284 10.1007/s13555‑021‑00673‑y 34994967
    [Google Scholar]
  73. CAO X. INHBA is highly expressed in squamous cell carcinoma of the skin. J. Diagn. Ther. Dermato-Venereol 2023 30 02 95 99
    [Google Scholar]
  74. Wohlmuth C. Wohlmuth-Wieser I. Vulvar malignancies: An interdisciplinary perspective. J. Dtsch. Dermatol. Ges. 2019 17 12 1257 1276 10.1111/ddg.13995 31829526
    [Google Scholar]
  75. Chen J. Ln H. A review of prognostic factors in squamous cell carcinoma of the vulva: Evidence from the last decade. Semin. Diagn. Pathol. 2024 41 3 140 153 10.1053/j.semdp.2020.09.009 32988675
    [Google Scholar]
  76. ZHOU L.Y. Silencing INHBA-AS1 targets miR-335-3p to inhibit proliferation and migration of vulvar squamous cell carcinoma cells. J. Mod Oncol. 2022 30 20 3648 3654
    [Google Scholar]
  77. LING X.T. Phase I clinical trial study of intraperitoneal chemotherapy combined with intravenous chemotherapy for neoadjuvant chemotherapy in advanced ovarian cancer. Zhongguo Shiyong Fuke Yu Chanke Zazhi 2019 35 12 1345 1349
    [Google Scholar]
  78. Li X. Yang Z. Xu S. Wang Z. Jin P. Yang X. Zhang Z. Wang Y. Wei X. Fang T. Gao Q. Targeting INHBA in ovarian cancer cells suppresses cancer xenograft growth by attenuating stromal fibroblast activation. Dis. Markers 2019 2019 1 13 10.1155/2019/7275289 31827640
    [Google Scholar]
  79. Yi Y. Cheng J.C. Klausen C. Leung P.C.K. Activin A promotes ovarian cancer cell migration by suppressing E-cadherin expression. Exp. Cell Res. 2019 382 2 111471 10.1016/j.yexcr.2019.06.016 31229504
    [Google Scholar]
  80. Huang Y. A case of EBV-positive inflammatory follicle dendritic cell sarcoma with nasopharyngeal carcinoma in the neck. Chin Youjiang Med. J. 2024 52 06 573 576
    [Google Scholar]
  81. Peng S. Wang J. Hu P. Zhang W. Li H. Xu L. INHBA knockdown inhibits proliferation and invasion of nasopharyngeal carcinoma SUNE1 cells in vitro. Int. J. Clin. Exp. Pathol. 2020 13 5 854 868 32509056
    [Google Scholar]
  82. Zou Y. Yu C. Huang Q. Tan X. Tan X. Zhu X. Yi D. Mao J. Investigating the active chemical constituents and pharmacology of Nanocnide lobata in the treatment of burn and scald injuries. PLoS One 2023 18 6 e0287147 10.1371/journal.pone.0287147 37310979
    [Google Scholar]
  83. XIANG W. Linc01419 regulates miR-34a-5p/E2F3 axis to promote bladder cancer cell proliferation and invasion. J. Mod Oncol. 2024 32 16 2921 2929
    [Google Scholar]
  84. Lee H.Y. Li C.C. Huang C.N. Li W.M. Yeh H.C. Ke H.L. Yang K.F. Liang P.I. Li C.F. Wu W.J. INHBA overexpression indicates poor prognosis in urothelial carcinoma of urinary bladder and upper tract. J. Surg. Oncol. 2015 111 4 414 422 10.1002/jso.23836 25488476
    [Google Scholar]
  85. Kao C.C. Chang Y.L. Liu H.Y. Wu S.T. Meng E. Cha T.L. Sun G.H. Yu D.S. Luo H.L. DNA Hypomethylation is associated with the overexpression of INHBA in upper tract urothelial carcinoma. Int. J. Mol. Sci. 2022 23 4 2072 10.3390/ijms23042072 35216189
    [Google Scholar]
  86. CHEN B.R. Expression and clinical significance of INHBA in hepatocellular carcinoma. Chin J. Hepat Surg. 2022 11 05 519 523
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266369991250716120928
Loading
/content/journals/ctmc/10.2174/0115680266369991250716120928
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test