Skip to content
2000
image of Nano-cocrystals as Nanotechnology-based Approach to Modulate Solubility and Bioavailability of Poorly Soluble Drugs

Abstract

Various drugs face limitations in their solubility parameters which limits their total oral bioavailability, and such drugs are also categorized under the biopharmaceutical classification system (BCS) Class II. To modulate such limitations there were various novel drug delivery systems (DDS) designed including lipid-based DDS such as liposomes, niosomes, nanostructured lipid carriers (NLCs), nanoemulsion, self-nanoemulsifying DDS (SNEDDS) but the most effective and easily prepared DDS is nano-cocrystals (NCs). This study aims to give a clear emphasis on the NCs, their development and various advantages related to their usage as DDS. NCs are developed to modify the characteristics of dynamic drug adjustments with enhanced dissolvability, disintegration, and bioavailability compared to their naive form. Due to their high surface-to-volume ratio and co-crystal structure, easily converted in the nanosized range, they can further enhance these qualities. Even though NCs have been the subject of numerous studies, drug NC research is still in its early stages. In this review, many methods for organizing NCs have been discussed. A detailed understanding of NCs will be provided by a thorough examination of a few scientific methods and representations. The purpose of this analysis is to provide direction for the development of novel NCs with pharmaceutical industry economic value and proven as an effective approach for enhancement of drug aqueous solubility and ultimately resulted in the modulation of total oral bioavailability of the drug. NCs will be the modern DDS from the futuristic point of view due to their easy development and better physiochemical properties.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266379743250717181526
2025-07-28
2025-09-13
Loading full text...

Full text loading...

References

  1. Almeida e Sousa L. Reutzel-Edens S.M. Stephenson G.A. Taylor L.S. Supersaturation potential of salt, co-crystal, and amorphous forms of a model weak base. Cryst. Growth Des. 2016 16 2 737 748 10.1021/acs.cgd.5b01341
    [Google Scholar]
  2. Jindal A. Kumar A. Physical characterization of clove oil based self Nano-emulsifying formulations of cefpodoxime proxetil: Assessment of dissolution rate, antioxidant & antibacterial activity. OpenNano 2022 8 100087 10.1016/j.onano.2022.100087
    [Google Scholar]
  3. Jindal, A Nanotechnology driven lipid and metalloid based formulations targeting blood–brain barrier (3B) for brain tumor. Indian J. Microbiol. 2024 1 28 10.1007/s12088‑024‑01330‑6 40371021
    [Google Scholar]
  4. Saini A. Chadha R. Gupta A. Singh P. Bhandari S. Khullar S. Mandal S. Jain D.S. New conformational polymorph of hydrochlorothiazide with improved solubility. Pharm. Dev. Technol. 2016 21 5 611 618 10.3109/10837450.2015.1041040 25975587
    [Google Scholar]
  5. Basavoju S. Boström D. Velaga S.P. Pharmaceutical cocrystal and salts of norfloxacin. Cryst. Growth Des. 2006 6 12 2699 2708 10.1021/cg060327x
    [Google Scholar]
  6. Billot P. Hosek P. Perrin M.A. Efficient purification of an active pharmaceutical ingredient via cocrystallization: From thermodynamics to scale-up. Org. Process Res. Dev. 2013 17 3 505 511 10.1021/op300214p
    [Google Scholar]
  7. Schultheiss N. Newman A. Pharmaceutical cocrystals and their physicochemical properties. Cryst. Growth Des. 2009 9 6 2950 2967 10.1021/cg900129f 19503732
    [Google Scholar]
  8. Qiao N. Li M. Schlindwein W. Malek N. Davies A. Trappitt G. Pharmaceutical cocrystals: An overview. Int. J. Pharm. 2011 419 1-2 1 11 10.1016/j.ijpharm.2011.07.037 21827842
    [Google Scholar]
  9. Shan N. Zaworotko M.J. The role of cocrystals in pharmaceutical science. Drug Discov. Today 2008 13 9-10 440 446 10.1016/j.drudis.2008.03.004 18468562
    [Google Scholar]
  10. Kimoto K. Yamamoto M. Karashima M. Hohokabe M. Takeda J. Yamamoto K. Ikeda Y. Pharmaceutical cocrystal development of TAK-020 with enhanced oral absorption. Crystals 2020 10 3 211 10.3390/cryst10030211
    [Google Scholar]
  11. Shaikh R. Walker G.M. Croker D.M. Continuous, simultaneous cocrystallization and formulation of Theophylline and 4-Aminobenzoic acid pharmaceutical cocrystals using twin screw melt granulation. Eur. J. Pharm. Sci. 2019 137 104981 10.1016/j.ejps.2019.104981 31295548
    [Google Scholar]
  12. Good D.J. Rodríguez-Hornedo N. Solubility advantage of pharmaceutical cocrystals. Cryst. Growth Des. 2009 9 5 2252 2264 10.1021/cg801039j
    [Google Scholar]
  13. Kuminek G. Rodríguez-Hornedo N. Siedler S. Rocha H.V.A. Cuffini S.L. Cardoso S.G. How cocrystals of weakly basic drugs and acidic coformers might modulate solubility and stability. Chem. Commun. 2016 52 34 5832 5835 10.1039/C6CC00898D 27042997
    [Google Scholar]
  14. Tomar D. Kumar S. Designing novel piperine-vanillin nano-crystals for bioavailability enhancement. Inorg Nano-Met Chem. 2023 55 3 319 328 10.1080/24701556.2023.2267541
    [Google Scholar]
  15. Pi J. Wang S. Li W. A nano-cocrystal strategy to improve the dissolution rate and oral bioavailability of baicalein. Asian J. Pharm. Sci. 2019 14 2 154 164 10.1016/j.ajps.2018.04.009
    [Google Scholar]
  16. Merisko-Liversidge E. Liversidge G.G. Nanosizing for oral and parenteral drug delivery: A perspective on formulating poorly-water soluble compounds using wet media milling technology. Adv. Drug Deliv. Rev. 2011 63 6 427 440 10.1016/j.addr.2010.12.007 21223990
    [Google Scholar]
  17. Merisko-Liversidge E. Liversidge G.G. Cooper E.R. Nanosizing: A formulation approach for poorly-water-soluble compounds. Eur. J. Pharm. Sci. 2003 18 2 113 120 10.1016/S0928‑0987(02)00251‑8 12594003
    [Google Scholar]
  18. Liu M. Hong C. Li G. Ma P. Xie Y. The generation of myricetin–nicotinamide nanococrystals by top down and bottom up technologies. Nanotechnology 2016 27 39 395601 10.1088/0957‑4484/27/39/395601 27535365
    [Google Scholar]
  19. Berry D.J. Steed J.W. Pharmaceutical cocrystals, salts and multicomponent systems; intermolecular interactions and property based design. Adv. Drug Deliv. Rev. 2017 117 3 24 10.1016/j.addr.2017.03.003 28344021
    [Google Scholar]
  20. Mazzeo P.P. Carraro C. Monica A. Capucci D. Pelagatti P. Bianchi F. Agazzi S. Careri M. Raio A. Carta M. Menicucci F. Belli M. Michelozzi M. Bacchi A. Designing a palette of cocrystals based on essential oil constituents for agricultural applications. ACS Sustain. Chem.& Eng. 2019 7 21 17929 17940 10.1021/acssuschemeng.9b04576
    [Google Scholar]
  21. Capucci D. Balestri D. Mazzeo P.P. Pelagatti P. Rubini K. Bacchi A. Liquid nicotine tamed in solid forms by cocrystallization. Cryst. Growth Des. 2017 17 9 4958 4964 10.1021/acs.cgd.7b00887
    [Google Scholar]
  22. Bacchi A. Capucci D. Giannetto M. Mattarozzi M. Pelagatti P. Rodriguez-Hornedo N. Rubini K. Sala A. Turning liquid propofol into solid (without freezing it): Thermodynamic characterization of pharmaceutical cocrystals built with a liquid drug. Cryst. Growth Des. 2016 16 11 6547 6555 10.1021/acs.cgd.6b01241
    [Google Scholar]
  23. Aitipamula S. Banerjee R. Bansal A.K. Biradha K. Cheney M.L. Choudhury A.R. Desiraju G.R. Dikundwar A.G. Dubey R. Duggirala N. Ghogale P.P. Ghosh S. Goswami P.K. Goud N.R. Jetti R.R.K.R. Karpinski P. Kaushik P. Kumar D. Kumar V. Moulton B. Mukherjee A. Mukherjee G. Myerson A.S. Puri V. Ramanan A. Rajamannar T. Reddy C.M. Rodriguez-Hornedo N. Rogers R.D. Row T.N.G. Sanphui P. Shan N. Shete G. Singh A. Sun C.C. Swift J.A. Thaimattam R. Thakur T.S. Kumar Thaper R. Thomas S.P. Tothadi S. Vangala V.R. Variankaval N. Vishweshwar P. Weyna D.R. Zaworotko M.J. Polymorphs, salts, and cocrystals: What’s in a name? Cryst. Growth Des. 2012 12 5 2147 2152 10.1021/cg3002948
    [Google Scholar]
  24. De Smet L. Saerens L. De Beer T. Carleer R. Adriaensens P. Van Bocxlaer J. Vervaet C. Remon J.P. Formulation of itraconazole nanococrystals and evaluation of their bioavailability in dogs. Eur. J. Pharm. Biopharm. 2014 87 1 107 113 10.1016/j.ejpb.2013.12.016 24388913
    [Google Scholar]
  25. Karashima M. Kimoto K. Yamamoto K. Kojima T. Ikeda Y. A novel solubilization technique for poorly soluble drugs through the integration of nanocrystal and cocrystal technologies. Eur. J. Pharm. Biopharm. 2016 107 142 150 10.1016/j.ejpb.2016.07.006 27393561
    [Google Scholar]
  26. Pawar V.K. Singh Y. Meher J.G. Gupta S. Chourasia M.K. Engineered nanocrystal technology: In-vivo fate, targeting and applications in drug delivery. J. Control. Release 2014 183 51 66 10.1016/j.jconrel.2014.03.030 24667572
    [Google Scholar]
  27. Shen L.J. Wu F.L.L. Nanomedicines in renal transplant rejection? focus on sirolimus. Int. J. Nanomedicine 2007 2 1 25 32 10.2147/nano.2007.2.1.25 17722509
    [Google Scholar]
  28. Gupta A.D. A review on recent advancement of cancer therapy using nanoparticles. Biochem. Mol. Biol. Lett 2017 3 1 104
    [Google Scholar]
  29. Ali H.S.M. York P. Ali A.M.A. Blagden N. Hydrocortisone nanosuspensions for ophthalmic delivery: A comparative study between microfluidic nanoprecipitation and wet milling. J. Control. Release 2011 149 2 175 181 10.1016/j.jconrel.2010.10.007 20946923
    [Google Scholar]
  30. George M. Ghosh I. Identifying the correlation between drug/stabilizer properties and critical quality attributes (CQAs) of nanosuspension formulation prepared by wet media milling technology. Eur. J. Pharm. Sci. 2013 48 1-2 142 152 10.1016/j.ejps.2012.10.004 23085547
    [Google Scholar]
  31. Li Y. Wang Y. Yue P.F. Hu P.Y. Wu Z.F. Yang M. Yuan H.L. A novel high-pressure precipitation tandem homogenization technology for drug nanocrystals production – a case study with ursodeoxycholic acid. Pharm. Dev. Technol. 2014 19 6 662 670 10.3109/10837450.2013.819015 23869484
    [Google Scholar]
  32. Salem A. Takácsi-Nagy A. Nagy S. Hagymási A. Gősi F. Vörös-Horváth B. Balić T. Pál S. Széchenyi A. Synthesis and characterization of nano-sized 4-aminosalicylic acid–sulfamethazine cocrystals. Pharmaceutics 2021 13 2 277 10.3390/pharmaceutics13020277 33669489
    [Google Scholar]
  33. Pinon A.C. Rossini A.J. Widdifield C.M. Gajan D. Emsley L. Polymorphs of theophylline characterized by DNP enhanced solid-state NMR. Mol. Pharm. 2015 12 11 4146 4153 10.1021/acs.molpharmaceut.5b00610 26393368
    [Google Scholar]
  34. Nugrahani I. Auli W.N. Diclofenac-proline nano-co-crystal development, characterization, in vitro dissolution and diffusion study. Heliyon 2020 6 9 04864 10.1016/j.heliyon.2020.e04864 32964159
    [Google Scholar]
  35. Mohammady M. Hadidi M. Iman Ghetmiri S. Yousefi G. Design of ultra-fine carvedilol nanococrystals: Development of a safe and stable injectable formulation. Eur. J. Pharm. Biopharm. 2021 168 139 151 10.1016/j.ejpb.2021.08.015 34481906
    [Google Scholar]
  36. Teimouri M. Homayouni T.M. Karimi E. The selective proapoptotic impact of the myricetin-loaded alginate-cellulose hybrid nanocrystals (MAC-NCs) on the human AGS gastric cancer cells. Mol. Biol. Rep. 2024 51 1 998 10.1007/s11033‑024‑09864‑0
    [Google Scholar]
  37. Li H. An C. Guo W. Geng X. Wang J. Xu W. Preparation and performance of nano HMX/TNT cocrystals. Propellants Explos. Pyrotech. 2015 40 5 652 658 10.1002/prep.201400175
    [Google Scholar]
  38. Spitzer D. Risse B. Schnell F. Pichot V. Klaumünzer M. Schaefer M.R. Continuous engineering of nano-cocrystals for medical and energetic applications. Sci. Rep. 2014 4 1 6575 10.1038/srep06575 25300652
    [Google Scholar]
  39. Sander J.R.G. Bučar D.K. Henry R.F. Zhang G.G.Z. MacGillivray L.R. Pharmaceutical nano-cocrystals: Sonochemical synthesis by solvent selection and use of a surfactant. Angew. Chem. Int. Ed. 2010 49 40 7284 7288 10.1002/anie.201002588 20814994
    [Google Scholar]
  40. Bhandari J. Kanswami N. Lakshmi P.K.L. Nano co-crystal engineering technique to enhance the solubility of Ezetimibe. J. Young Pharm. 2020 12 2s s10 s15 10.5530/jyp.2020.12s.40
    [Google Scholar]
  41. Huang Y. Li J.M. Lai Z.H. Wu J. Lu T.B. Chen J.M. Phenazopyridine-phthalimide nano-cocrystal: Release rate and oral bioavailability enhancement. Eur. J. Pharm. Sci. 2017 109 581 586 10.1016/j.ejps.2017.09.020 28917964
    [Google Scholar]
  42. Witika B.A. Smith V.J. Walker R.B. Top-down synthesis of a lamivudine-zidovudine nano co-crystal. Crystals 2020 11 1 33 10.3390/cryst11010033
    [Google Scholar]
  43. Shojaei A.H. Buccal mucosa as a route for systemic drug delivery: A review. J. Pharm. Pharm. Sci. 1998 1 1 15 30 10942969
    [Google Scholar]
  44. Kesisoglou F. Panmai S. Wu Y. Nanosizing — Oral formulation development and biopharmaceutical evaluation. Adv. Drug Deliv. Rev. 2007 59 7 631 644 10.1016/j.addr.2007.05.003 17601629
    [Google Scholar]
  45. Müller RH Junghanns, JU Drug nanocrystals/nanosuspensions for the delivery of poorly soluble drugs. Nanopart Drug Carr 2006 1 307 328 Sep 29; 10.1142/9781860949074_0014
    [Google Scholar]
  46. Rabinow B. Kipp J. Papadopoulos P. Wong J. Glosson J. Gass J. Sun C.S. Wielgos T. White R. Cook C. Barker K. Wood K. Itraconazole IV nanosuspension enhances efficacy through altered pharmacokinetics in the rat. Int. J. Pharm. 2007 339 1-2 251 260 10.1016/j.ijpharm.2007.02.030 17398045
    [Google Scholar]
  47. Li X. Wang; Wang, L.; Xu, Y.; Cheng, X.; Wei, P. Formulation and pharmacokinetic evaluation of a paclitaxel nanosuspension for intravenous delivery. Int. J. Nanomedicine 2011 6 1497 1507 10.2147/IJN.S21097 21796250
    [Google Scholar]
  48. Ganta S. Paxton J.W. Baguley B.C. Garg S. Formulation and pharmacokinetic evaluation of an asulacrine nanocrystalline suspension for intravenous delivery. Int. J. Pharm. 2009 367 1-2 179 186 10.1016/j.ijpharm.2008.09.022 18848873
    [Google Scholar]
  49. Ben Zirar S. Astier A. Muchow M. Gibaud S. Comparison of nanosuspensions and hydroxypropyl-β-cyclodextrin complex of melarsoprol: Pharmacokinetics and tissue distribution in mice. Eur. J. Pharm. Biopharm. 2008 70 2 649 656 10.1016/j.ejpb.2008.05.012 18582565
    [Google Scholar]
  50. Gao L. Zhang D. Chen M. Zheng T. Wang S. Preparation and characterization of an oridonin nanosuspension for solubility and dissolution velocity enhancement. Drug Dev. Ind. Pharm. 2007 33 12 1332 1339 10.1080/03639040701741810 18097807
    [Google Scholar]
  51. Gao Y. Li Z. Sun M. Guo C. Yu A. Xi Y. Cui J. Lou H. Zhai G. Preparation and characterization of intravenously injectable curcumin nanosuspension. Drug Deliv. 2011 18 2 131 142 10.3109/10717544.2010.520353 20939679
    [Google Scholar]
  52. Edelhauser H.F. Rowe-Rendleman C.L. Robinson M.R. Dawson D.G. Chader G.J. Grossniklaus H.E. Rittenhouse K.D. Wilson C.G. Weber D.A. Kuppermann B.D. Csaky K.G. Olsen T.W. Kompella U.B. Holers V.M. Hageman G.S. Gilger B.C. Campochiaro P.A. Whitcup S.M. Wong W.T. Ophthalmic drug delivery systems for the treatment of retinal diseases: Basic research to clinical applications. Invest. Ophthalmol. Vis. Sci. 2010 51 11 5403 5420 10.1167/iovs.10‑5392 20980702
    [Google Scholar]
  53. Kassem M. Abdelrahman A. Ghorab M. Ahmed M. Khalil R. Nanosuspension as an ophthalmic delivery system for certain glucocorticoid drugs. Int. J. Pharm. 2007 340 1-2 126 133 10.1016/j.ijpharm.2007.03.011 17600645
    [Google Scholar]
  54. Baba K. Nishida K. Steroid nanocrystals prepared using the nano spray dryer B-90. Pharmaceutics 2013 5 1 107 114 10.3390/pharmaceutics5010107 24300400
    [Google Scholar]
  55. Gupta S. Samanta M.K. Raichur A.M. Dual-drug delivery system based on in situ gel-forming nanosuspension of forskolin to enhance antiglaucoma efficacy. AAPS PharmSciTech 2010 11 1 322 335 10.1208/s12249‑010‑9388‑x 20182824
    [Google Scholar]
  56. Parkin D.M. Bray F.I. Devesa S.S. Cancer burden in the year 2000. The global picture. Eur. J. Cancer 2001 37 Suppl. 8 4 66 10.1016/S0959‑8049(01)00267‑2 11602373
    [Google Scholar]
  57. Talekar M. Kendall J. Denny W. Jamieson S. Garg S. Development and evaluation of PIK75 nanosuspension, a phosphatidylinositol-3-kinase inhibitor. Eur. J. Pharm. Sci. 2012 47 5 824 833 10.1016/j.ejps.2012.09.015 23069617
    [Google Scholar]
  58. Zheng D. Wang Y. Zhang D. Liu Z. Duan C. Jia L. Wang F. Liu Y. Liu G. Hao L. Zhang Q. In vitro antitumor activity of silybin nanosuspension in PC-3 cells. Cancer Lett. 2011 307 2 158 164 10.1016/j.canlet.2011.03.028 21507570
    [Google Scholar]
  59. Zulfiqar H.F. Javed A. Sumbal A.B. Afroze B. Ali Q. Akbar K. Nadeem T. Rana M.A. Nazar Z.A. Nasir I.A. Husnain T. HIV diagnosis and treatment through advanced technologies. Front. Public Health 2017 5 32 10.3389/fpubh.2017.00032 28326304
    [Google Scholar]
  60. Sailaja I. Baghel M.K. Shaker I.A. Nanotechnology based drug delivery for hiv-aids treatment. AIDS Updates - Recent Advances and New Perspectives IntechOpen London, UK, 2021 97736 May; 10.5772/intechopen.97736
    [Google Scholar]
  61. Hanna GJ Hirsch MS Antiretroviral therapy for human immunodeficiency virus infection. Princip Pract Infect. Dis. 2000 1 1655
    [Google Scholar]
  62. Cohen M.S. Smith M.K. Muessig K.E. Hallett T.B. Powers K.A. Kashuba A.D. Antiretroviral treatment of HIV-1 prevents transmission of HIV-1: Where do we go from here? Lancet 2013 382 9903 1515 1524 10.1016/S0140‑6736(13)61998‑4 24152938
    [Google Scholar]
  63. Åsjö B. Human immunodeficiency virus (HIV). Pract Guide Clin. Virol. 2002 212 218 Aug 15;
    [Google Scholar]
  64. Yang L.L. Li Q. Zhou L.B. Chen S.Q. Meta-analysis and systematic review of the efficacy and resistance for human immunodeficiency virus type 1 integrase strand transfer inhibitors. Int. J. Antimicrob. Agents 2019 54 5 547 555 10.1016/j.ijantimicag.2019.08.008 31398480
    [Google Scholar]
  65. Shegokar R. Singh K.K. Surface modified nevirapine nanosuspensions for viral reservoir targeting: In vitro and in vivo evaluation. Int. J. Pharm. 2011 421 2 341 352 10.1016/j.ijpharm.2011.09.041 21986114
    [Google Scholar]
  66. Babaei J. Hosseini F. Shadab A. Amouei A. Babaei R. Nanocrystallization strategies for enhanced HIV drug performance from solubility to sustained action. Discov. Med. 2024 1 1 43 10.1007/s44337‑024‑00049‑z
    [Google Scholar]
  67. Gonzalez M.A. Ramírez Rigo M.V. Gonzalez Vidal N.L. Praziquantel systems with improved dissolution rate obtained by high pressure homogenization. Mater. Sci. Eng. C 2018 93 28 35 10.1016/j.msec.2018.07.050 30274060
    [Google Scholar]
  68. Trask A.V. Jones W. Crystal engineering of organic cocrystals by the solid-state grinding approach. In: Organic Solid State Reactions. Toda F. Berlin, Heidelberg Springer 2021 254 10.1007/b100995
    [Google Scholar]
  69. Xiao Y. Wu C. Hu X. Chen K. Qi L. Cui P. Zhou L. Yin Q. Mechanochemical synthesis of cocrystal: From mechanism to application. Cryst. Growth Des. 2023 23 6 4680 4700 10.1021/acs.cgd.3c00183
    [Google Scholar]
  70. Jones W. Motherwell W.D.S. Trask A.V. Pharmaceutical cocrystals: An emerging approach to physical property enhancement. MRS Bull. 2006 31 11 875 879 10.1557/mrs2006.206
    [Google Scholar]
  71. Shan N. Toda F. Jones W. Mechanochemistry and co-crystal formation: Effect of solvent on reaction kineticsElectronic supplementary information (ESI) available for PXRD profiles showing the grinding results for CTA + Bipy with and without solvent as well as CTA + 2fPh with different solvents. http://www.rsc.org/suppdata/cc/b2/b207369m/. Chem. Commun 2002 20 2372 2373 10.1039/b207369m 12430446
  72. Lien Nguyen K. Friščić T. Day G.M. Gladden L.F. Jones W. Terahertz time-domain spectroscopy and the quantitative monitoring of mechanochemical cocrystal formation. Nat. Mater. 2007 6 3 206 209 10.1038/nmat1848 17322867
    [Google Scholar]
  73. Zhou Z. Li W. Sun W.J. Lu T. Tong H.H.Y. Sun C.C. Zheng Y. Resveratrol cocrystals with enhanced solubility and tabletability. Int. J. Pharm. 2016 509 1-2 391 399 10.1016/j.ijpharm.2016.06.006 27282539
    [Google Scholar]
  74. Emami S. Siahi-Shadbad M. Adibkia K. Barzegar-Jalali M. Recent advances in improving oral drug bioavailability by cocrystals. Bioimpacts 2018 8 4 305 320 10.15171/bi.2018.33 30397585
    [Google Scholar]
  75. Chung H.R. Kwon E. Oikawa H. Kasai H. Nakanishi H. Effect of solvent on organic nanocrystal growth using the reprecipitation method. J. Cryst. Growth 2006 294 2 459 463 10.1016/j.jcrysgro.2006.07.010
    [Google Scholar]
  76. Thakor P. Yadav B. Modani S. Shastri N.R. Preparation and optimization of nano-sized cocrystals using a quality by design approach. CrystEngComm 2020 22 13 2304 2314 10.1039/C9CE01930H
    [Google Scholar]
  77. Sverdlov Arzi R. Sosnik A. Electrohydrodynamic atomization and spray-drying for the production of pure drug nanocrystals and co-crystals. Adv. Drug Deliv. Rev. 2018 131 79 100 10.1016/j.addr.2018.07.012 30031740
    [Google Scholar]
  78. Peltonen L. Valo H. Kolakovic R. Laaksonen T. Hirvonen J. Electrospraying, spray drying and related techniques for production and formulation of drug nanoparticles. Expert Opin. Drug Deliv. 2010 7 6 705 719 10.1517/17425241003716802 20345326
    [Google Scholar]
  79. Nguyen D.N. Clasen C. Van den Mooter G. Pharmaceutical applications of electrospraying. J. Pharm. Sci. 2016 105 9 2601 2620 10.1016/j.xphs.2016.04.024 27287515
    [Google Scholar]
  80. Patil S. Kulkarni J. Mahadik K. Exploring the potential of electrospray technology in cocrystal synthesis. Ind. Eng. Chem. Res. 2016 55 30 8409 8414 10.1021/acs.iecr.6b01938
    [Google Scholar]
  81. Wang M. Rutledge G.C. Myerson A.S. Trout B.L. Production and characterization of carbamazepine nanocrystals by electrospraying for continuous pharmaceutical manufacturing. J. Pharm. Sci. 2012 101 3 1178 1188 10.1002/jps.23024 22189503
    [Google Scholar]
  82. Gañán-Calvo A.M. Dávila J. Barrero A. Current and droplet size in the electrospraying of liquids. Scaling laws. J. Aerosol Sci. 1997 28 2 249 275 10.1016/S0021‑8502(96)00433‑8
    [Google Scholar]
  83. Vega-Mercado H. Marcela Góngora-Nieto M. Barbosa-Cánovas G.V. Advances in dehydration of foods. J. Food Eng. 2001 49 4 271 289 10.1016/S0260‑8774(00)00224‑7
    [Google Scholar]
  84. Sosnik A. Seremeta K.P. Advantages and challenges of the spray-drying technology for the production of pure drug particles and drug-loaded polymeric carriers. Adv. Colloid Interface Sci. 2015 223 40 54 10.1016/j.cis.2015.05.003 26043877
    [Google Scholar]
  85. Alhalaweh A. Velaga S.P. Formation of cocrystals from stoichiometric solutions of incongruently saturating systems by spray drying. Cryst. Growth Des. 2010 10 8 3302 3305 10.1021/cg100451q
    [Google Scholar]
  86. Alhalaweh A. Kaialy W. Buckton G. Gill H. Nokhodchi A. Velaga S.P. Theophylline cocrystals prepared by spray drying: Physicochemical properties and aerosolization performance. AAPS PharmSciTech 2013 14 1 265 276 10.1208/s12249‑012‑9883‑3 23297166
    [Google Scholar]
  87. Baba K. Nishida K. Calpain inhibitor nanocrystals prepared using Nano Spray Dryer B-90. Nanoscale Res. Lett. 2012 7 1 436 10.1186/1556‑276X‑7‑436 22863139
    [Google Scholar]
  88. Prinn K.B. Costantino H.R. Tracy M. Statistical modeling of protein spray drying at the lab scale. AAPS PharmSciTech 2002 3 1 32 39 10.1208/pt030104 12916957
    [Google Scholar]
  89. Pawar Jaywant N. Amin Purnima D. Development of efavirenz cocrystals from stoichiometric solutions by spray drying technology. Mater. Today Proc. 2016 3 6 1742 1751 10.1016/j.matpr.2016.04.069
    [Google Scholar]
  90. Harris K.D.M. Tremayne M. Kariuki B.M. Contemporary advances in the use of powder X‐ray diffraction for structure determination. Angew. Chem. Int. Ed. 2001 40 9 1626 1651 10.1002/1521‑3773(20010504)40:9<1626:AID‑ANIE16260>3.0.CO;2‑7 11353468
    [Google Scholar]
  91. Tremayne M. The impact of powder diffraction on the structural characterization of organic crystalline materials. Philos. Trans.A Math. Phys. Eng. Sci. 2004 362 1825 2691 2707 10.1098/rsta.2004.1457
    [Google Scholar]
  92. Nugrahani I. Kumalasari R.A. Auli W.N. Horikawa A. Uekusa H. Salt cocrystal of diclofenac sodium-l-proline: Structural, pseudopolymorphism, and pharmaceutics performance study. Pharmaceutics 2020 12 7 690 10.3390/pharmaceutics12070690 32708314
    [Google Scholar]
  93. Buol X. Robeyns K. Caro Garrido C. Tumanov N. Collard L. Wouters J. Leyssens T. Improving nefiracetam dissolution and solubility behavior using a cocrystallization approach. Pharmaceutics 2020 12 7 653 10.3390/pharmaceutics12070653 32660115
    [Google Scholar]
  94. Wróblewska A. Śniechowska J. Kaźmierski S. Wielgus E. Bujacz G.D. Mlostoń G. Chworos A. Suwara J. Potrzebowski M.J. Application of 1-hydroxy-4, 5-dimethyl-imidazole 3-oxide as Coformer in Formation of Pharmaceutical Cocrystals. Pharmaceutics 2020 12 4 359 10.3390/pharmaceutics12040359 32326428
    [Google Scholar]
  95. Gabbott P. Principles and Applications of Thermal Analysis. Hoboken, NJ, USA John Wiley Sons 2008 10.1002/9780470697702
    [Google Scholar]
  96. Höhne G.W. Hemminger W.F. Flammersheim H.J. Theoretical fundamentals of differential scanning calorimeters. In: Differential Scanning Calorimetry. Berlin, Heidelberg Springer 2003 10.1007/978‑3‑662‑06710‑9_3
    [Google Scholar]
  97. Lu J. Rohani S. Preparation and characterization of theophylline− nicotinamide cocrystal. Org. Process Res. Dev. 2009 13 6 1269 1275 10.1021/op900047r
    [Google Scholar]
  98. Stuart B. Infrared spectroscopy. In: Kirk‐Othmer Encyclopedia of Chemical Technology. Hoboken, New Jersey Wiley Online Library 2015 10.1002/0471238961.0914061810151405.a01.pub3
    [Google Scholar]
  99. Guo M. Fu Q. Wu C. Guo Z. Li M. Sun J. He Z. Yang L. Rod shaped nanocrystals exhibit superior in vitro dissolution and in vivo bioavailability over spherical like nanocrystals: A case study of lovastatin. Colloids Surf. B Biointerfaces 2015 128 410 418 10.1016/j.colsurfb.2015.02.039 25766921
    [Google Scholar]
  100. Wijayasinghe R. Vasiljevic T. Chandrapala J. Water-lactose behavior as a function of concentration and presence of lactic acid in lactose model systems. J. Dairy Sci. 2015 98 12 8505 8514 10.3168/jds.2015‑9959 26476948
    [Google Scholar]
  101. Colthup, NB Introduction to Infrared and Raman Spectroscopy. Amsterdam, The Netherlands Elsevier 1990
    [Google Scholar]
  102. Chen D. Singh D. Sirkar K.K. Pfeffer R. Continuous preparation of polymer coated drug crystals by solid hollow fiber membrane-based cooling crystallization. Int. J. Pharm. 2016 499 1-2 395 402 10.1016/j.ijpharm.2016.01.008 26772536
    [Google Scholar]
  103. Ricarte R.G. Lodge T.P. Hillmyer M.A. Detection of pharmaceutical drug crystallites in solid dispersions by transmission electron microscopy. Mol. Pharm. 2015 12 3 983 990 10.1021/mp500682x 25699402
    [Google Scholar]
  104. Hübner J. Deckert-Gaudig T. Glorian J. Deckert V. Spitzer D. Surface characterization of nanoscale co-crystals enabled through tip enhanced Raman spectroscopy. Nanoscale 2020 12 18 10306 10319 10.1039/D0NR00397B 32363362
    [Google Scholar]
  105. Kumar A. Jindal A. Cytotoxicity and bioavailability assessment from micellar system based Thiamine-Phospholipid complexes. J. Mol. Liq. 2024 407 125177 10.1016/j.molliq.2024.125177
    [Google Scholar]
  106. Kumar A. Jindal A. Singh Arya P.K. Cytotoxicity and bioavailability assessment from thiamin-phospholipid complexation loaded Ajwain oil based self nanoemulsifying system. J. Dispers. Sci. Technol. 2024 45 13 2420 2436 10.1080/01932691.2023.2266010
    [Google Scholar]
  107. Kumar A. Singh Arya P.K. Jindal A. Modulation of intestinal permeability of 5-fluorouracil via phospholipid interaction based lipophilic complex designing and pharmacokinetic assessment. J. Dispers. Sci. Technol. 2024 1-3 1 13 10.1080/01932691.2024.2325398
    [Google Scholar]
  108. Tan J. Liu J. Ran L. A review of pharmaceutical nano-cocrystals: A novel strategy to improve the chemical and physical properties for poorly soluble drugs. Crystals 2021 11 5 463 10.3390/cryst11050463
    [Google Scholar]
  109. Fontana F. Figueiredo P. Zhang P. Hirvonen J.T. Liu D. Santos H.A. Production of pure drug nanocrystals and nano co-crystals by confinement methods. Adv. Drug Deliv. Rev. 2018 131 3 21 10.1016/j.addr.2018.05.002 29738786
    [Google Scholar]
  110. Mainuddin K.A. Kumar A. Ratnesh R.K. Singh J. Dumoga S. Sharma N. Jindal A. Physical characterization and bioavailability assessment of 5-fluorouracil-based nanostructured lipid carrier (NLC): In vitro drug release, Hemolysis, and permeability modulation. Med. Oncol. 2024 41 5 95 10.1007/s12032‑024‑02319‑3 38526657
    [Google Scholar]
  111. Kumar A. Shipam K. Kumar S. Raspberry ketone loaded self nanoemulsifying system of cardamom oil: Assessment of phase behavior, dissolution rate and anti-hyperlipidemic activity. J. Drug Deliv. Sci. Technol. 2024 99 105937 10.1016/j.jddst.2024.105937
    [Google Scholar]
  112. Kushwaha A.K. John M. Misra M. Menezes P.L. Nanocrystalline materials: Synthesis, characterization, properties, and applications. Crystals 2021 11 11 1317 10.3390/cryst11111317
    [Google Scholar]
  113. Raheem Thayyil A. Juturu T. Nayak S. Kamath S. Pharmaceutical co-crystallization: Regulatory aspects, design, characterization, and applications. Adv. Pharm. Bull. 2020 10 2 203 212 10.34172/apb.2020.024 32373488
    [Google Scholar]
  114. Lemli B. Pál S. Salem A. Széchenyi A. Prioritizing computational cocrystal prediction methods for experimental researchers: A review to find efficient, cost-effective, and user-friendly approaches. Int. J. Mol. Sci. 2024 25 22 12045 10.3390/ijms252212045 39596114
    [Google Scholar]
  115. Witika B.A. Choonara Y.E. Demana P.H. A SWOT analysis of nano co-crystals in drug delivery: Present outlook and future perspectives. RSC Advances 2023 13 11 7339 7351 10.1039/D3RA00161J 36895773
    [Google Scholar]
  116. Jindal A. Kumar Sharma P. Kumar A. Self-nanoemulsifying drug delivery system (SNEDDS) as nano-carrier framework for permeability modulating approaches of BCS class III drug. J. Drug Target. 2025 1 21 10.1080/1061186X.2025.2469751 40013328
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266379743250717181526
Loading
/content/journals/ctmc/10.2174/0115680266379743250717181526
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test