Current Analytical Chemistry - Online First
Description text for Online First listing goes here...
1 - 20 of 88 results
-
-
Fluorescence Microwell and Flow Injection Platforms for Determination of Brexpiprazine
Authors: Ibrahim A. Darwish and Fai A. AlkathiriAvailable online: 27 October 2025More LessIntroductionBrexpiprazole (BXP) is a novel dopamine and serotonin partial agonist used for the treatment of schizophrenia. It has recently gained approval for the treatment of agitation associated with dementia due to Alzheimer’s disease. This study aimed to enhance the fluorescence intensity of BXP by turning “OFF” its photoinduced electron transfer and employing the enhanced fluorescence in establishing two analytical platforms for the direct quantification of BXP in commercial pharmaceutical tablets and plasma.
MethodsTwo analytical methods were developed: a microwell spectrofluorimetric assay combined with a fluorescence microplate reader (MW-SFA) and flow injection analysis coupled with a fluorescence detector (FIA-FD). Both platforms underwent optimization and validation.
ResultsThe linear ranges of the platforms were 5–500 for MW-SFA and 20–2000 ng/mL for FIA-FD. The limits of quantification were 12.9 and 25.5 ng/mL for MW-SFA and FIA-FD, respectively. Both platforms showed high precision and accuracy, with relative standard deviation (RSD) values ranging from 1.2% to 1.9% and recovery values ranging from of 98.5% to 102.4%. The proposed platforms were successfully applied to the analysis of BXP in tablets, and the recovery values ranged from 99.2% to 101.4% with RSD values ranged from 1.1% to 1.8%. The suggested platforms were also employed for analyzing plasma samples containing BXP, achieving an accuracy of at least 98.6%. The greenness levels of both platforms were confirmed using three metric tools.
DiscussionThe enhancement of native fluorescence of BXP resulted in high sensitivity of both MW-SFA and FIA-FD platforms. The employment of microwell and flow injection approaches enhanced the accuracy and precision of both platforms. Additionally, both platforms offered a high-throughput, cost-effective, and green analytical approach.
ConclusionThe proposed platforms feature simple procedures, high sensitivity, high throughput, and environmental greenness. The platforms are highly recommended as effective tools for BXP determination in pharmaceutical quality control and clinical laboratories.
-
-
-
Removal of Malachite Green from Aqueous Solutions by Using Bi4V2O11 Nanosheet
Available online: 18 August 2025More LessIntroductionTransition metal oxides are highly effective for dye removal due to their adaptable surface chemistry, availability, and robust mechanical and thermal properties. Among them, Bi4V2O11 nanosheets offer potential due to their morphology and high surface area. To synthesize Bi4V2O11 nanosheets and evaluate their performance in removing malachite green, focusing on the impact of adsorbent amount, contact time, and interfering ions on dye removal efficiency. This study aims to evaluate the performance of Bi4V2O11 nanosheets in removing malachite green dye from aqueous solutions and to examine the effects of adsorbent dosage, contact time, and the presence of coexisting ions on the sorption process.
MethodsBi4V2O11 nanosheets were synthesized and used to remove the malachite green dye. Batch experiments were conducted to study the effects of adsorbent dose, contact time, and coexisting ions (Na+, Ca2+, and tannic acid). Equilibrium data were fitted to the Langmuir isotherm model to determine the maximum sorption capacity.
ResultsMalachite green sorption using Bi4V2O11 nanosheets reached equilibrium within 240 minutes, demonstrating efficient dye removal under the tested conditions. The sorption process conformed to the Langmuir isotherm model, indicating monolayer adsorption with a maximum capacity of 47.27 mg/g. While the presence of Na+ and tannic acid had negligible effects on dye removal efficiency, the coexistence of Ca2+ significantly reduced the removal efficiency from 95% to 58%, highlighting the potential impact of divalent ions on the adsorption process.
DiscussionBi4V2O11 nanosheets are effective adsorbents for malachite green removal, demonstrating high sorption capacity and resilience to Na+ and tannic acid interference. However, the presence of Ca2+ significantly reduces removal efficiency, highlighting the need for further optimization in practical applications.
ConclusionBi4V2O11 nanosheets offer high sorption capacity and structural stability, environment friendly synthesis procedure, making them feasible for small-scale or pre-treatment applications.
-
-
-
Advancements in Mass Spectrometry Imaging for Cancer Research: From Tumor Profiling to Personalized Medicine
Authors: Erica Alves, Gurupadayya Bannimath and Prabitha PrabhakaranAvailable online: 15 August 2025More LessIntroductionMass Spectrometry Imaging (MSI) is a label-free analytical technique that enables spatially resolved molecular profiling of biomolecules in tissue sections. By simultaneously mapping proteins, lipids, and metabolites, MSI has significantly advanced cancer research by revealing tumor heterogeneity, metabolic reprogramming, and drug distribution patterns—key factors in precision oncology.
MethodsThis review is based on a comprehensive literature survey using databases such as PubMed, Scopus, and Web of Science. Studies were selected based on their relevance to recent innovations in MSI, particularly within cancer research and translational applications. Foundational landmark studies were also included to provide historical context and technological evolution.
ResultsSignificant technological progress has been made in Matrix-Assisted Laser Desorption/Ionization (MALDI) and Desorption Electrospray Ionization (DESI), including the development of MALDI-2 post-ionization and improvements in ambient DESI. These advancements have enhanced spatial resolution (to sub-10 µm), sensitivity, and molecular coverage. MSI applications have enabled high-resolution mapping of tumor microenvironments, drug localization, and discovery of spatially defined biomarkers. Additionally, integrative MSI approaches support multi-omic profiling, which aids in cancer subtype classification and provides insights into drug resistance and metabolic vulnerabilities.
DiscussionMALDI and DESI offer complementary advantages. MALDI excels in proteomic and biomarker studies with high spatial fidelity, while DESI operates under ambient conditions and is ideal for lipidomics and in situ drug mapping. The integration of MSI with other spatial omics platforms and data-driven techniques has enhanced its utility in understanding tumor biology and therapeutic outcomes.
ConclusionMSI is poised to become a cornerstone of precision oncology and spatial biology. While challenges remain in standardization, data complexity, and clinical adoption, continued advances in instrumentation, ambient ionization, and artificial intelligence–assisted data analysis are accelerating its translational impact. Ongoing innovations promise to bridge the gap between experimental cancer research and routine clinical applications.
-
-
-
Analysis of Average Daily Indicators of Different Pollutants in the Composition of Atmospheric Air in Dushanbe City from 2017 to 2021
Authors: Mizhgona Sharofova, Shoista Sagdieva, Matti Ullah and Massoud MirshаhiAvailable online: 12 August 2025More LessIntroductionAir pollution is a pressing global health and environmental issue, particularly in urban areas where both natural and human-induced factors contribute to deteriorating air quality. While extensive data exists for large industrial cities, less is known about pollution dynamics in smaller, mountainous urban centers. Dushanbe, the capital of Tajikistan, represents a unique setting where seasonal weather patterns and limited industrial activity intersect. This study aims to analyze the air quality in Dushanbe, Tajikistan, by examining the presence of various pollutants over a five-year period (2017-2021).
MethodsA longitudinal observational study was conducted using automated air sampling systems at a central monitoring site. Chemical composition of aerosol for metals as well as carbon, sulfur dioxide (SO2), Nitrogen monoxide (NO), Nitrogen dioxide (NO2) and carbon monoxide – (CO) in the atmospheric air of the city of Dushanbe in the period from 2017 to 2021 was analyzed. Atmospheric aerosol samples (C µg/m3, C max, C min) for all metals were determined. Constant monitoring of gas content in the surface layer of the atmosphere was carried out on the territory of the Agency for Hydrometeorology of the Republic of Tajikistan. Descriptive statistics were used to analyze seasonal and annual trends in pollutant levels.
ResultsMetals such as Titanium (Ti), Vanadium (V), Chromium (Cr), Manganese (Mg), Iron (Fe), Cobalt (Co), Nickel (Ni) and Copper (Cu) were also detected, which we found in plant organs. These results are in favor of the weather pollution caused by titanium and iron. Average monthly levels of CO, SO2, and NO2 in the atmospheric air of the city of Dushanbe in the period from 2017 to 2021 showed that the variation of air pollution varied according to the seasons and months for each year.
DiscussionAir quality in Dushanbe is influenced more by geographic and seasonal factors rather than heavy industrial activity. Temporary exceedances in CO and NO2 levels reflect localized emissions from traffic and heating. The absence of toxic heavy metals indicates a relatively low long-term health risk from industrial pollution.
ConclusionThis study provides a comprehensive analysis of Dushanbe’s air quality, demonstrating generally good conditions with short-lived pollution events. Targeted seasonal interventions—such as improved traffic and heating emission controls—are recommended to mitigate transient exposure risks.
-
-
-
Hydrogels Doped with Inorganic Ammonium Chloride Salt for Fuel Cell Applications
Authors: Shihao Yang, Chengmao Wang, Huabing Wu, Xianbing Xiang, Xiaoyi Zeng and Pengwei LiAvailable online: 08 August 2025More LessIntroductionInorganic ammonium salts, such as ammonium chloride (NH4Cl), can form electrolytes due to their protonated ammonium ions acting as proton carriers. This study investigates the use of NH4Cl-doped polyacrylamide hydrogel as a flexible proton conductor for fuel cell applications.
MethodsA freestanding hydrogel membrane was fabricated through in situ polymerization of ethylene glycol dimethacrylate and acrylamide within aqueous NH4Cl. The hydrogel's mechanical and conductive properties were characterized, and it was assembled into a fuel cell to evaluate its performance.
ResultsThe NH4Cl-doped hydrogel exhibited a fracture tensile stress of 90 kPa at 462% elongation. The conductivity measurements, which varied with temperature, revealed that proton conduction primarily followed a vehicle mechanism, showcasing an impressive ionic conductivity of 119 mS cm−1. The fuel cell achieved a maximum power density of 31.9 mW cm-2, marking a solid performance.
DiscussionThe “structure-performance” relationship of inorganic ammonium salt-doped hydrogels is clarified through multi-scale characterization. The dual influence mechanism of NH4+ concentration on proton conduction has been revealed. The developed HGA-n material combines excellent mechanical strength and proton conductivity, and its power density provides a new option for gel electrolytes used in fuel cells.
ConclusionA flexible proton conductor is prepared by doping ammonium chloride (NH4Cl) into polyacrylamide hydrogel for the first time and is successfully assembled into a fuel cell. This work demonstrates a novel approach for utilizing inorganic ammonium salts in electrochemical applications, offering a promising route for developing flexible proton-conducting materials for fuel cells.
-
-
-
Persistent Organic Pollutants in Smoked Meat: A Review of their Levels, Mechanisms of Formation, and Analytical Methods
Available online: 08 August 2025More LessIntroductionPolycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) are persistent organic pollutants (POPs) with known toxicity and bioaccumulation potential. Smoked meat, a widely consumed food, has been identified as a major dietary source of these contaminants as they are generated due to the incomplete combustion of fuels used in the smoking process. This review examines existing studies on the occurrence of PAHs, PCBs, and PCDD/Fs in smoked meat, with particular attention to the influence of smoking conditions. Factors such as smoking methods, temperature, fuel type, and co-combustion materials, including plastics and chlorine-containing compounds, are analyzed for their role in the formation and accumulation of these pollutants.
MethodsA literature search across databases including PubMed, Scopus, ScienceDirect, and Google Scholar for studies published (2010 – 2024) identified relevant studies based on predefined inclusion criteria emphasizing POP levels, formation mechanisms, and analytical methods in smoked meat and related products. Key data were synthesized thematically to identify research trends and gaps.
ResultsPAHs have been the most extensively studied in smoked meat, whereas research on PCBs and PCDD/Fs remains limited despite their toxicological significance. The smoking process, particularly the type of fuel and additional materials used, plays a crucial role in the generation of these contaminants. Enhanced analytical techniques have improved detection capabilities, supporting more accurate risk assessments.
DiscussionTraditional smoking methods are linked to higher POP contamination, especially with chlorine-rich or plastic-containing fuels. Despite advances in analytical techniques, gaps remain in standardizing methods and understanding halogenated POP formation, underscoring the need for harmonized protocols and targeted research on PCBs and PCDD/Fs under practical conditions.
ConclusionSignificant knowledge gaps remain, emphasizing the need for further research to refine smoking practices and enhance food safety standards while preserving the cultural and culinary value of smoked foods.
-
-
-
Cost-effective Paper-microfluidics Technology for the Assessment of Diverse Milk Adulterations
Authors: Sonal Jaiswal, Pradyumn Chowdhury, Priyanka Kumari, Deepti Verma and Amit PrabhakarAvailable online: 06 August 2025More LessIntroductionIn developing countries, food adulteration is a significant issue that can lead to potentially fatal diseases. This work introduces approaches to this problem—the lab-on-a-chip concept—that use paper-fluidics systems to yield a viable solution that provides a more straightforward, reasonably priced, and portable platform capable of carrying out a wide range of analytical tests.
MethodsThe device used for assessment was first fabricated by 3D printing of wax on Whatman filter paper of the desired pattern, and the quantities of heavy metals, starch, urea, soap, sodium hydroxide, hydrogen peroxide, lead, cadmium, and zinc in milk samples were assessed via colorimetric detection. The images were processed using the Python application OpenCV
ResultThe colored product is developed based on the presence of the analyte; once the colored product is produced, the image captured RGB values are extracted, and one may determine the image's overall color distribution, color dominance, and color fluctuations and, hence, coloured reaction products and evaluate the analyte concentration by comparing the relative brightness of the red, green, and blue values. The simple procedure allowed us to detect ~1ppm of milk impurities.
DiscussionThis study endeavor can facilitate the expansion and advancement of quality confirmation and food safety testing. The results show how reliable and effective the paper-based microfluidic device is for quantitatively assessing adulterants in milk through Python image processing. Future applications of this created paper-based microfluidics device and image processing methods may include the separation of various contaminants in various kinds of samples.
ConclusionThis study creates a number of opportunities for further investigation and advancement in the quantitative analysis of paper-based microfluidic devices, as it detected the seven analytes that might offer thorough analytical and diagnostic methods. In order to ensure the paper-based microfluidic device's consistent quality, robustness, and accuracy in practical scenarios, extensive field testing and approval evaluation should be conducted.
-
-
-
Discrimination of Ophiopogonis Radix from Different Planting Districts by using Infrared Spectroscopy Combined with One-dimensional Convolutional Neural Network
Authors: Long Jiao, Yuanyuan Liu, Bijia Chen and Tianlong ZhangAvailable online: 06 August 2025More LessIntroductionThe chemical composition of Ophiopogonis Radix originating from different districts is somewhat different due to the different planting environment. This difference affects the pharmaceutical efficacy of Ophiopogonis Radix, and therefore poses a challenge to the quality assessment and control of Ophiopogonis Radix. This study aims to develop a method to discriminate Ophiopogonis Radix from various planting districts by using infrared (IR) spectroscopy in combination with a one-dimensional convolutional neural network.
MethodsThe spectral data of Ophiopogonis Radix samples from five planting districts were collected and preprocessed with Savizkg-Golag (SG) smoothing and the Standard Normal Variate (SNV) algorithm. Back propagation (BP) artificial neural network (ANN) and one-dimensional convolutional neural network (1D-CNN) were employed to build the pattern recognition model for discriminating the investigated Ophiopogonis Radix samples.
ResultsThe discriminant accuracy of the ANN model after SG and SNV preprocessing reached 94.42% and 96.98% respectively. The discrimination accuracy of the 1D-CNN model after SG and SNV preprocessing reached 98.67% and 99.33%, respectively. It is demonstrated that both the ANN model and the 1D-CNN model are able to discriminate Ophiopogonis Radix samples from different planting districts. Moreover, the developed 1D-CNN model shows higher discrimination accuracy than the ANN model, and SNV preprocessing is better than SG preprocessing for improving the accuracy of the discrimination model.
DiscussionIn this study, the classification performance differences between the SNV-ANN and SNV-CNN models were further compared and analyzed through confusion matrices. The SNV-CNN model exhibited superior classification performance compared to the SNV-ANN model.
ConclusionIR coupled with 1D-CNN is a practicable and promising approach to discriminate Ophiopogonis Radix from different planting districts. Besides Ophiopogonis Radix, this approach could be used for the planting districts discrimination of other kinds of Traditional Chinese Medicines (TCM). As a high-throughput and data-driven spectroscopic analysis approach, it can be applied to the standardized quality assessment of TCM.
-
-
-
GC-MS Profiling and In vitro Assessment of the Antimicrobial and Anticancer Potential of the Methanolic Extract of Strychnos chromatoxylon L. Leaves
Available online: 28 July 2025More LessIntroductionMedicinal plants have long served as a foundation for therapeutic development, offering a vast repository of bioactive compounds. This study examines the phytochemical composition and potential pharmacological properties of Strychnos chromatoxylon L. leaves, aiming to identify natural compounds that may contribute to sustainable and effective healthcare solutions.
MethodsMethanolic extraction was performed using maceration followed by evaporation to optimize the yield of phytochemicals. The extract was then subjected to qualitative phytochemical screening, Thin-Layer Chromatography (TLC), Gas Chromatography-Mass Spectrometry (GC-MS) analysis, and in vitro assays, including the MTT assay, to evaluate its antioxidant, antimicrobial, and anticancer activities.
ResultsThe methanolic extract of Strychnos chromatoxylon revealed a diverse array of phytochemicals, including alkaloids, carbohydrates, glycosides, phenolics, flavonoids, and phytosterols. GC-MS profiling identified several bioactive compounds. The extract exhibited promising antimicrobial activity and demonstrated cytotoxic effects in MTT assays, indicating its potential anticancer properties.
DiscussionThe presence of a broad spectrum of phytochemicals supports the traditional use of Strychnos chromatoxylon in herbal medicine. The observed bioactivities, particularly antimicrobial and anticancer effects, are likely attributed to the synergistic actions of its constituents. While the findings are promising, further investigation, including in vivo studies and compound isolation, is needed to validate therapeutic potential and ensure safety.
ConclusionThis study highlights Strychnos chromatoxylon as a promising source of natural bioactive agents with antimicrobial and anticancer potential. By integrating traditional medicinal knowledge with contemporary scientific approaches, we can advance the search for novel and sustainable therapeutic agents.
-
-
-
Identification of Key lncRNAs and ceRNA Regulatory Networks in Diabetes-Associated Cognitive Dysfunction
Authors: Yingying Deng, Juan Hu, Lan Yang, Shiqiu Jiang, Hailiang Du, Yansong Li and Yaomin ZhuAvailable online: 28 July 2025More LessIntroductionDiabetes clinical guidelines have begun to emphasize the management of cognitive dysfunction in diabetes. Moreover, several studies have shown that long non-coding RNAs (lncRNAs) play critical roles in human diseases. However, no studies have elucidated whether lncRNAs are involved in the pathogenesis of diabetes-associated cognitive dysfunction (DACD).
MethodsThe hippocampi of male mice with homozygous leptin receptor-deficient T2DM and their littermates were analyzed via high-throughput sequencing. RNA and protein sequencing data were utilized to identify differentially expressed (DE) mRNAs, lncRNAs, and proteins between diabetes mellitus and control groups. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed for DE-mRNAs-DE-proteins. Subsequently, lncRNA-mRNA-pathway and lncRNA-miRNA-mRNA networks were constructed. Quantitative real-time PCR (qRT-PCR) was conducted to verify the expression trends of key lncRNAs in DACD.
ResultsWe identified upregulated and downregulated mRNAs, lncRNAs, and proteins in the diabetes group. Eleven DE-mRNAs-DE-proteins were associated with inflammatory response, lipid/steroid metabolism, and cell growth. The lncRNA-mRNA-pathway network contained 36 lncRNA-mRNA pairs linked to 8 KEGG pathways. Twenty-five lncRNAs corresponding to Apoa1 were identified as key candidates. Subcellular localization and ceRNA network analyses suggested that lncRNA 3110039I08Rik and lncRNA Gm36445 may regulate DACD. qRT-PCR confirmed their increased expression in diabetic mice.
DiscussionOur findings reveal that lncRNA 3110039108Rik and Gm36445 may act as critical regulators in DACD pathogenesis through competing endogenous RNA (ceRNA) networks. These lncRNAs represent potential biomarkers for early diagnosis and therapeutic targets, offering new insights into the management of cognitive dysfunction in diabetes.
ConclusionOur results identified two novel lncRNAs that may play critical roles in DACD.
-
-
-
Disease Biomarkers and their Utility in LC-MS and NMR Studies: An Overview
Available online: 18 July 2025More LessIntroductionTo evaluate early disease diagnosis, disease progression, medication response, disease prevention, and therapeutic target selection, biomarker discovery is a crucial tool. It is of paramount clinical importance to identify biomarkers using various detection techniques and to characterize these biomarkers. The combination of proteomics, metabolomics, LC-MS, and NMR holds great promise for the easy identification of biomarkers by mapping the early biochemical alterations in illnesses. Analyzing a complex biological system calls for a robust and intelligent method. As a result of its adaptability, clarity, accuracy, speed, and increased productivity, LC-MS has become the gold standard approach for biomarker research. Proteins and nucleic acids are examples of big molecules that have been studied using the same approach. NMR spectroscopy enables the nondestructive detection and measurement of a vast array of novel metabolite biomarkers in biological fluids and tissues. Thus, NMR & LC-MS-based metabolomics are a huge help in illness diagnosis and biomarker identification.
ObjectivesThis article discusses the present function of LC-MS and NMR in developing biomarkers for disease diagnosis and strategies for identifying biomarkers in various diseases.
MethodsThe methodology employed is based on the extraction of data (2002-2024) from various databases such as PubMed, Google Scholar, Web of Science, and Google with strict inclusion and exclusion criteria.
ResultsDrug discovery, early disease diagnosis, and the identification of impaired metabolic reactions have all been made more efficient by merging mass spectrometry and 1H NMR spectroscopic studies with comprehensive statistical data analysis.
ConclusionEmerging high-throughput technologies for biomarker detection in disease diagnostics are the subject of this review. To improve therapy and illness prevention, personalization will be essential.
-
-
-
Network Pharmacology Analysis on the Anticoagulant Effect of the Chemical Constituents of Paeoniae Radix Rubra on Blood Stasis Syndrome in Rats
Authors: Siwen Pan, Chunlei Yu and Haixue KuangAvailable online: 01 July 2025More LessIntroductionIn Traditional Chinese Medicine (TCM), BSS refers to impaired circulation or stagnation of blood flow and formation of bruises. The primary therapeutic strategy to treat BSS involves invigorating blood circulation. PRR is a widely used TCM herb for treating acute and critical diseases caused by BSS. However, the anticoagulant effects of different compounds of PRR on BSS remain elusive. The aim of the study was to investigate the pharmacological role of different chemical constituents of Paeoniae Radix Rubra (PRR) in the modulation of anticoagulation in Blood Stasis Syndrome (BSS). This study aimed to analyze the therapeutic effect of PRR on BSS and to assess the ameliorative effect of different chemical constituents of PRR on blood circulation, clotting time, and platelet aggregation in rats with acute BSS.
MethodsTraditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) was used to screen the targets of PRR, and genes causing BSS were predicted using PharmGKB, OMIM, and TTD databases. Intersected genes between PRR and BSS targets were visualized in Venn diagrams. Core target networks of Protein-Protein Interaction (PPI) and cross-targets were constructed using Cytoscape 3.7.1, and the cross-targets were enriched using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) database. Furthermore, the effects of PRR on platelet aggregation, plasma viscosity, and whole blood viscosity in the rats with BSS were examined by blood rheology and other methods. The serum levels of Endothelin-1 (ET-1), Nitric Oxide (NO), Thromboxaneb2 (TXB2), and 6-keto-Prostaglandin F1 α (6-keto-PGF1α) in the rats were measured by the Enzyme-Linked Immunosorbent Assay (ELISA) method.
ResultsThe main active compounds of PRR, including total glycosides, flavonoids, and polysaccharides, were identified using the TCMSP database. A total of 31 cross-targets were obtained from the intersection between 129 active targets of PRR and 345 causative genes of BSS. PPI network identified genes such as Albumin (ALB), SRC Proto-Oncogene, Non-Receptor Tyrosine Kinase (SRC), and AKT Serine/Threonine Kinase 1 (AKT1) as the core targets of PRR in alleviating BSS. Enrichment analysis showed that the common targets were mainly associated with several biological processes, including lipid and atherosclerosis, adherens junction, and focal adhesion. Following the intervention with PRR extract, the whole blood viscosity and plasma viscosity were reduced, and platelet aggregation was inhibited in the model rats in comparison to the model group. Moreover, PRR treatment also promoted thrombin time (TT), prothrombin time (PT), and Activated Partial Thromboplastin Time (APTT), increased the level of NO and 6-keto-PGF1α, but reduced the level of Fibrinogen content (FIB) and ET-1 and TXB2 in the serum of the model rats.
DiscussionThe present research systematically explored the anticoagulant effect of the chemical constituents of PRR on BSS in rats, applying network pharmacology analysis.
ConclusionThe current findings provided a theoretical foundation for the pharmacological basis of using PRR in the management of BSS.
-
-
-
Establishment of a RiskScore Model Based on Oxidative Stress-related Features to Guide the Treatment of Liver Hepatocellular Carcinoma
Authors: Juanjuan Cui, Xinwei Zhang and Zhiyong YuanAvailable online: 23 June 2025More LessIntroductionOxidative stress (OS) is a crucial factor promoting the progression of liver hepatocellular carcinoma (LIHC). This study was designed to develop an OS-based RiskScore model.
MethodsPublicly available RNA-seq data and clinical data of LIHC patients, as well as an OS-related gene set, were collected. The differentially expressed genes (DEGs) were calculated, and functional enrichment analysis was performed. Then, a RiskScore model was established, and Kaplan-Meier survival and receiver operating characteristic analyses were performed. Immune infiltration was analyzed, and tumor cell migration and invasion were detected.
Results4,118 DEGs were identified in the TCGA-LIHC cohort, while 1,632 DEGs were recognized in the ICGC cohort. The upregulated DEGs were closely related to the cell cycle pathway, while the downregulated DEGs were linked to the metabolic pathway. A 4-gene RiskScore model accurately divided patients into high- and low-risk groups, showing strong classification effectiveness. Patients in the high-risk group exhibited worse prognosis, elevated TIDE scores, frequent p53 mutations, and higher immune cell infiltration. In vitro experiments confirmed that these model genes were overexpressed in tumor cells as risk factors, with SPP1 notably influencing tumor cell migration and invasion. Furthermore, by combining the RiskScore with other clinical features, we developed a nomogram that precisely guides survival assessment in LIHC. Finally, the association of RiskScore with OS and multiple metabolic pathways was noticed.
DiscussionThis study proposes a novel RiskScore model for LIHC based on the OS feature, which still requires further verification.
ConclusionWe establish an OS-related risk model to guide the treatment of LIHC.
-
-
-
From Synthesis and Structural Characterization to Anti-inflammatory Activity Evaluation and Network Pharmacology Analysis: Revealing the Potential Anti-inflammatory Mechanisms of Andrographolide Sulfonated Derivative Mixture
Authors: Difa Liu, Bingfeng Huang, Renqing Zhong, Fangfang Liu, Wenbei Chen, Zhuyuan Liao and Wencai YeAvailable online: 19 June 2025More LessIntroductionInflammatory disorders profoundly affect quality of life, with existing treatments often limited by resistance, adverse effects, and administration challenges. Andrographis paniculata, highly esteemed for its potent anti-inflammatory efficacy, harbors andrographolide, a pharmacologically active compound whose clinical utilization is impeded by its limited aqueous solubility and reduced oral bioavailability.
MethodsTo address these limitations, we synthesized a mixture of andrographolide sulfonated derivatives to improve solubility. The major derivatives were isolated and analyzed qualitatively by NMR and UHPLC-Q/TOF-MS. Their anti-inflammatory effects were evaluated using a zebrafish inflammation model, and the most active derivatives were further analyzed through network pharmacological analysis to uncover the underlying anti-inflammatory mechanisms.
ResultsThe synthesis of andrographolide sulfonate derivatives enhanced andrographolide’s solubility. Structural characterization of the seven predominant derivatives was performed. Testing in a zebrafish model revealed that andrographolide and three sulfonated derivatives substantially reduced inflammation. Network pharmacology analysis identified significant connections in the “active compounds-inflammation targets-pathways-therapeutic effects” network, highlighting important biological processes and six key molecular targets (PRKCA, PRKCB, MAPK14, IL6, CASP3, and CDK4) associated with the anti-inflammatory actions of these derivatives.
DiscussionThis integrative chemical–bioinformatic workflow significantly enhances the solubility of andrographolide while preserving its anti-inflammatory potency and identifying six key inflammatory targets. It therefore provides a transferable blueprint for optimising hydrophobic natural products and accelerating anti-inflammatory drug discovery.
ConclusionOverall, this study not only improves the solubility and maintains the anti-inflammatory efficacy of andrographolide through sulfonation but also elucidates the underlying potential mechanisms of action of its sulfonated derivative mixture.
-
-
-
Efficient Extraction Coupled with Liquid Chromatography for the Analysis of Toxic Alkaloids in Wudang Taoist ink
Authors: Yongheng Zhao, Mei Zeng, Yongchang Jin, Zhixiong Jin and Xu LingAvailable online: 18 June 2025More LessIntroductionThe alkaloids present in Wudang Taoist ink are both potent and toxic. Thus, it is essential to assess their concentrations. In this study, mesaconitine, aconitine, and strychnine were used as indicators of safety.
MethodsThe extraction and quantification of these alkaloids were accomplished through ethanol heating reflux extraction and high-performance liquid chromatography (HPLC), utilizing Radix Aconiti Preparata, Radic Aconiti Kusnezoffii Preparata, and Processed Semen Strychni as raw materials. Guided by single-factor experiments, we employed response surface methodology to optimize the extraction process. The primary objective of this optimization was to maximize the extraction efficiency of total aconitine (which includes mesaconitine and aconitine) and strychnine, while considering key factors such as ethanol concentration, material-to-liquid ratio, and extraction time. Using the optimized extraction protocol, we successfully extracted and quantified mesaconitine, aconitine, and strychnine content in Wudang Taoist ink.
ResultsThe optimal conditions included an ethanol concentration of 77.9%, a liquid-to-material ratio of 8.85:1 (mL/g), and an extraction time of 135 minutes. This approach demonstrated high accuracy and precision.
DiscussionValidation and Regulatory Compliance: The optimized protocol ensures reliable quantification of toxic alkaloids, complying with Chinese Pharmacopoeia safety thresholds. This methodology supports scalable toxin control in Radix Aconiti preparations.
ConclusionThe alkaloid content in the ink meets the requirements specified in the Chinese Pharmacopoeia. The established response surface methodology is both reliable and reproducible, making it applicable for controlling toxic components in Radix Aconiti as well as in Wudang Taoist ink.
-
-
-
Biodiversification of Phytocompound in Hydrocotyle rotundifolia Originating from Selected Biogeographical Regions of the Indian Subcontinent
Available online: 03 June 2025More LessIntroductionGeographical location plays a critical role in the distribution and potency of medicinal plants. Climate, soil composition, and other factors significantly affect the chemical composition of plants and their medicinal properties. This study aims to investigate how the expression of biodiversity manifests in the phytocompound of Hydrocotyle rotundifolia from different biogeographical locations across the Indian subcontinent.
MethodsThe study analyzed the amount of genistein in the aerial part of H. rotundifolia across three different biogeographical zones using a precise, simple, and highly reproducible validated HPTLC method and adopted different standard spectroscopic methods for soil characterization.
ResultsThe quantity of genistein was found to be highest (0.74%) in the plants growing in the soil of the northeast region, where the available nitrogen (23.45 Kgha-1) and potassium (267.354 Kgha-1) were also highest among the three regions.
DiscussionCorrelating the soil characters and climatic factors, it may be concluded that the Northeast region, with its favorable soil conditions and climatic support, is the ideal location for growing this plant and producing genistein.
ConclusionThis information is invaluable for applications in agriculture, pharmaceuticals, and environmental studies because understanding the distribution and concentration of phytocompounds across different locations can have numerous applications in these fields.
-
-
-
AI-Enhanced Prediction Tools and Sensor Integration in Advanced Analytical Chemistry Techniques
Authors: Mukesh Kumar, Aniket Nandi, Ramji Lal Yadav, Ghanshyam Das Gupta and Kalicharan SharmaAvailable online: 23 May 2025More LessArtificial intelligence is “a technical and scientific field devoted to the engineered system that generates outputs such as content, forecasts, recommendations or decisions for a given set of human-defined objectives”. Combination of AI and analytical techniques will have huge potential to transform decision-making processes and promote innovation across sectors. AI enhances data detection, segmentation, and image resolution with convolutional neural networks (CNNs) excelling in analyzing complex image datasets for material characterization. Machine learning integrates with different methods like gas chromatography (GC), high-performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS), ultraviolet (UV), and infrared (IR) spectroscopy, mass spectrometry (MS), colorimetry, and biosensing techniques. This review provides an overview of AI-based models and sensors of analytical techniques and highlighting chemometric tools in UV and IR spectroscopy for improved accuracy and data interpretation. Real-time AI analysis of sensor data enables immediately useful conclusions, which is a revolution in a variety of fields, including environmental research and pharmaceuticals. Advanced techniques like spectroscopy, chromatography, and mass spectrometry are given an updated aspect by the use of AI and sensors. This may improve these steps, increasing accuracy and efficiency and enabling quicker and more precise analysis of complex compounds. Multi-dimensional sensor data, which is frequently too complicated for conventional techniques, may be analyzed and processed using AI. This improves the study by enabling further understanding and more thorough analysis. Overall, this paper explores AI-based tools and sensors in analytical techniques and highlights their role in error reduction and process automation.
-
-
-
Characterization of Tragacanth Gum as Biomedical and Food Adjuvant: Determination of Temperature-Dependent Coefficients of Viscosity and Surface Tension
Available online: 15 May 2025More LessIntroductionGum tragacanth is used as a substance to increase viscosity, stabilize, emulsify, and suspend other substances. In recent years, it has emerged as a promising therapeutic agent for tissue engineering, regenerative medicine, cosmetics, and food adjuvants. Therefore, characterizing its temperature-dependent viscosity is crucial for its pilot-scale applications. Therefore, the main objective of the present work is the characterization of the temperature dependent coefficient of viscosity and surface tension of gum tragacanth to establish it as an alternative source of natural gums for commercial applications.
MethodThe effect of temperature on the rheological behaviours of the polymeric solution was studied. Furthermore, the Arrhenius, Gibbs–Helmholtz, Frenkel–Eyring, and Eotvos equations were utilized to compute the temperature coefficient, viscosity, surface tension, activation energy, Gibbs free energy, Reynolds number, and entropy of fusion, respectively.
ResultsIt was determined that the activation energy of gum tragacanth was 1559.70 kJ/mol. Changes in entropy and enthalpy were found to be 56.34 and 1122.80 kJ/mol, respectively. The Reynold number's computed value was 0.0053.
Discussion: As the temperature increased, there was a noticeable decrease in both surface tension as well as apparent viscosity. In contrast to Albizia lebbac gum, the current study found that solutions made from Gum Tragacanth seed polymers had a smaller impact by changes in temperature.
ConclusionGum tragacanth polymer's exceptional physicochemical qualities make it a promising excipient for drug formulation in the years to come, paving the way for its widespread use in food, cosmetics, and pharmaceutical industries.
-
-
-
Development of an Adhesive Solution for a Modified ISFET with a Traditional Ion-selective PVC Membrane
Available online: 12 May 2025More LessIntroductionIon-sensitive field-effect transistors (ISFETs) can measure the concentration of specific ions in solutions, by attaching ion-sensing membranes proposed for ion-selective electrodes (ISEs) to their gate surfaces. Numerous organic ion-sensing membranes for ISEs have been developed. However, the adhesion between the ion-sensing membranes and the gate surfaces is poor, therefore, adversely affecting the potential responses of ISFETs.
MethodsNew adhesive solutions to attach the ion-sensing polyvinyl chloride (PVC) membranes to the gate surfaces of ISFETs have been developed. The proposed adhesive solutions were made in tetrahydrofuran (THF) from polymer blends containing PVC and paraloid B-72 in different ratios.
ResultsIt was found that the adhesive solution with a composition ratio of PVC: Paraloid B-72 = 10:90 provided particularly good adhesion and the best slope of the potential response to Na+-activity change. The best ion selectivity for the Na+ ion was exhibited by ISFET with the adhesive solution having a composition ratio of PVC: Paraloid B-72 = 20:80.
DiscussionThe results of the tensile test indicated that the PVC components in the adhesive solutions may not be directly involved in adhesion to the gate surface of the ISEFTs. The adhesive solution consisting of only PVC content provided the worst slope of the potential response to Na+-activity change.
ConclusionThe ion-sensing PVC membranes were stably attached using the proposed adhesive solutions on the gate surfaces of the ISFETs. By using the proposed adhesive solution, the ISFETs with the ion-sensing PVC membranes showed good potential responses.
-
-
-
Application of UPLC-Q-Exactive-MS Technology Combined With Network Pharmacology to Investigate the Mechanism of Action of Aster Tataricus L. Extract in the Treatment of Drug-induced Liver Injury
Authors: Tong Zhou, Yi-Fan Zhang, Jian-Cheng Li, Le-Yan Hu, Chao-Yuan Li and Li-Hong WangAvailable online: 05 May 2025More LessObjective/IntroductionTo investigate the pharmacodynamic material basis and potential mechanism of Aster tataricus L. total flavonoids (ATF) in treating isoniazid (INH) and rifampicin (RIF)-induced drug-induced liver injury (DILI) in C57BL/6 mice
MethodsATF was extracted using ultrasonic extraction and purified with AB-8 macroporous adsorbent resin. A DILI model was established in male C57BL/6 mice using INH and RIF. Histopathological changes were assessed by HE staining, and serum levels of ALT and AST, as well as liver levels of SOD, MDA, GSH-Px, and T-AOC, were measured. UPLC-Q-Exactive-MS was used to analyze ATF and serum components in DILI mice, followed by network pharmacology analysis and molecular docking validation.
ResultsTThe extraction rate of ATF was 31.9%, and the purification rate was 83.1%. ATF treatment alleviated cell necrosis and inflammation, reduced organ index, and normalized biochemical indices, with the best effects observed at low doses. UPLC-Q-Exactive-MS identified 15 blood-entry components, 9 prototype components, and 4 core targets with high binding energies.
DiscussionEfficient extraction and purification methods for total flavonoids from Aster tataricus L. were developed. Their pharmacological basis and potential targets for treating DILI were identified, providing a theoretical basis for DILI treatment.
ConclusionThis study provides a theoretical basis for the treatment of DILI using ATF. The developed extraction and purification methods efficiently obtained ATF, and its pharmacological basis and potential targets were identified. This research offers a new direction for exploring natural products from Traditional Chinese Medicine for DILI treatment.
-