Skip to content
2000
image of Efficient Extraction Coupled with Liquid Chromatography for the
Analysis of Toxic Alkaloids in Wudang Taoist ink

Abstract

Introduction

The alkaloids present in Wudang Taoist ink are both potent and toxic. Thus, it is essential to assess their concentrations. In this study, mesaconitine, aconitine, and strychnine were used as indicators of safety.

Methods

The extraction and quantification of these alkaloids were accomplished through ethanol heating reflux extraction and high-performance liquid chromatography (HPLC), utilizing , , and Processed as raw materials. Guided by single-factor experiments, we employed response surface methodology to optimize the extraction process. The primary objective of this optimization was to maximize the extraction efficiency of total aconitine (which includes mesaconitine and aconitine) and strychnine, while considering key factors such as ethanol concentration, material-to-liquid ratio, and extraction time. Using the optimized extraction protocol, we successfully extracted and quantified mesaconitine, aconitine, and strychnine content in Wudang Taoist ink.

Results

The optimal conditions included an ethanol concentration of 77.9%, a liquid-to-material ratio of 8.85:1 (mL/g), and an extraction time of 135 minutes. This approach demonstrated high accuracy and precision.

Discussion

Validation and Regulatory Compliance: The optimized protocol ensures reliable quantification of toxic alkaloids, complying with Chinese Pharmacopoeia safety thresholds. This methodology supports scalable toxin control in Radix Aconiti preparations.

Conclusion

The alkaloid content in the ink meets the requirements specified in the Chinese Pharmacopoeia. The established response surface methodology is both reliable and reproducible, making it applicable for controlling toxic components in Radix Aconiti as well as in Wudang Taoist ink.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110367259250610033446
2025-06-18
2025-09-05
Loading full text...

Full text loading...

References

  1. Lau A.J. Toh D.F. Chua T.K. Pang Y.K. Woo S.O. Koh H.L. Antiplatelet and anticoagulant effects of Panax notoginseng: Comparison of raw and steamed Panax notoginseng with Panax ginseng and Panax quinquefolium. J. Ethnopharmacol. 2009 125 3 380 386 10.1016/j.jep.2009.07.038 19665534
    [Google Scholar]
  2. Zhu H. Wang X. Wang X. Pan G. Zhu Y. Feng Y. The toxicity and safety of Chinese medicine from the bench to the bedside. J. Herb. Med. 2021 28 100450 10.1016/j.hermed.2021.100450
    [Google Scholar]
  3. Xia X. Wang F. Zheng X. Liu Y. Zhang J. Zhang Y. Cheng Z. Han X. Ma Y. Cui J. Shi B. Li H. Liu R. Effects of extracts from Chuanwu (Aconitum Carmichaelii) and Banxia (Rhizoma Pinelliae) on excisional wound healing in a rat’s model. J. Tradit. Chin. Med. 2019 39 1 65 73 32186025
    [Google Scholar]
  4. Liu S. Li F. Li Y. Li W. Xu J. Du H. A review of traditional and current methods used to potentially reduce toxicity of Aconitum roots in Traditional Chinese Medicine. J. Ethnopharmacol. 2017 207 237 250 10.1016/j.jep.2017.06.038 28666834
    [Google Scholar]
  5. Gu X. Li H. Zhu R. Zou H. Determination of strychnine and brucine in Strychnos nux-vomica L. by nonaqueous capillary electrophoresis. Chromatographia 2006 63 5-6 289 292 10.1365/s10337‑006‑0734‑9
    [Google Scholar]
  6. Guo R. Wang T. Zhou G. Xu M. Yu X. Zhang X. Sui F. Li C. Tang L. Wang Z. Botany, phytochemistry, pharmacology and toxicity of Strychnos nux-vomica L.: A review. Am. J. Chin. Med. 2018 46 1 1 23 10.1142/S0192415X18500015 29298518
    [Google Scholar]
  7. Chan T.Y.K. Tomlinson B. Tse L.K.K. Chan J.C.N. Chan W.W. Critchley J.A. Aconitine poisoning due to Chinese herbal medicines: A review. Vet. Hum. Toxicol. 1994 36 5 452 455 7839574
    [Google Scholar]
  8. Yin W. Wang T.S. Yin F.Z. Cai B.C. Analgesic and anti-inflammatory properties of brucine and brucine N-oxide extracted from seeds of Strychnos nux-vomica. J. Ethnopharmacol. 2003 88 2-3 205 214 10.1016/S0378‑8741(03)00224‑1 12963144
    [Google Scholar]
  9. Xiao K. Wang L. Liu Y. Peng C. Yan G. Zhang J. Zhuo Y. Li H. Study of Aconitine toxicity in rat embryos in vitro. Birth Defects Res. B Dev. Reprod. Toxicol. 2007 80 3 208 212 10.1002/bdrb.20116 17570135
    [Google Scholar]
  10. Dong H. Zhang A. Sun H. Wang H. Lu X. Wang M. Ni B. Wang X. Ingenuity pathways analysis of urine metabolomics phenotypes toxicity of Chuanwu in Wistar rats by UPLC-Q-TOF-HDMS coupled with pattern recognition methods. Mol. Biosyst. 2012 8 4 1206 1221 10.1039/c1mb05366c 22282765
    [Google Scholar]
  11. Paradis C. Dondia D. Nardon A. Blanc-Brisset I. Courtois A. Vaucel J.A. Labadie M. Grp F.P.R. Strychnine, old still actual poison: description of poisoning cases reported to French Poison Control Centers over the past thirteen years. Toxin Rev. 2022 41 4 1172 1178 10.1080/15569543.2021.1983843
    [Google Scholar]
  12. Feng H.T. Li S.F.Y. Determination of five toxic alkaloids in two common herbal medicines with capillary electrophoresis. J. Chromatogr. A 2002 973 1-2 243 247 10.1016/S0021‑9673(02)01191‑3 12437185
    [Google Scholar]
  13. Cho Y.S. Choi H.W. Chun B.J. Moon J.M. Na J.Y. Quantitative analysis of aconitine in body fluids in a case of aconitine poisoning. Forensic Sci. Med. Pathol. 2020 16 2 330 334 10.1007/s12024‑019‑00211‑5 31802365
    [Google Scholar]
  14. Gao Y. Fan H. Nie A. Yang K. Xing H. Gao Z. Yang L. Wang Z. Zhang L. Aconitine: A review of its pharmacokinetics, pharmacology, toxicology and detoxification. J. Ethnopharmacol. 2022 293 115270 115278 10.1016/j.jep.2022.115270 35405250
    [Google Scholar]
  15. Guo N. Liu M. Yang D. Huang Y. Niu X. Wu R. Liu Y. Ma G. Dou D. Quantitative LC-MS/MS analysis of seven ginsenosides and three aconitumalkaloids in Shen-Fu decoction. Chem. Cent. J. 2013 7 1 165 10.1186/1752‑153X‑7‑165 24107599
    [Google Scholar]
  16. Commission C.P. Pharmacopoeia of the People’s Republic of China; China Medical Science Press, 2020
    [Google Scholar]
  17. Leong F. Hua X. Wang M. Chen T. Song Y. Tu P. Chen X.J. Quality standard of traditional Chinese medicines: comparison between European Pharmacopoeia and Chinese Pharmacopoeia and recent advances. Chin. Med. 2020 15 1 76 10.1186/s13020‑020‑00357‑3 32742301
    [Google Scholar]
  18. Stalikas C.D. Extraction, separation, and detection methods for phenolic acids and flavonoids. J. Sep. Sci. 2007 30 18 3268 3295 10.1002/jssc.200700261 18069740
    [Google Scholar]
  19. Jing Z. Xuanfeng Y. Pingping L. Preparation of molecular imprinted monolithic extraction column and its application to strychnine analysis in wan tong jin gu troche by HPLC. J. Liq. Chromatogr. Relat. Technol. 2010 33 6 770 777 10.1080/10826071003684133
    [Google Scholar]
  20. Chen R. Ning Z. Zheng C. Yang Y. Zhang C. Ou X. Chen K. Yu H. Wei X. Zhao Q. He J. Simultaneous determination of 16 alkaloids in blood by ultrahigh-performance liquid chromatography-tandem mass spectrometry coupled with supported liquid extraction. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2019 1128 121789 121794 10.1016/j.jchromb.2019.121789 31525720
    [Google Scholar]
  21. Guo J. Meng H. Li H.H. Wang Q.F. Determination of strychnine, brucine, strychnine N ‐oxide, and brucine N ‐oxide in plasma samples after the oral administration of processed semen strychni extract by high‐performance liquid chromatography with ultrasound‐assisted mixed cloud point extraction. J. Sep. Sci. 2016 39 13 2553 2561 10.1002/jssc.201501379 27125604
    [Google Scholar]
  22. Yao T. Song J. Zhou C. Shi X. Recent progress of the applications of functionalized magnetic ionic liquids in sample pretreatment. Sep Purif Technol 2024 341 126979 10.1016/j.seppur.2024.126979
    [Google Scholar]
  23. Yao T. Feng C. Yan H. Current developments and applications of smart polymers based aqueous two-phase systems. Microchem. J. 2024 204 111170 10.1016/j.microc.2024.111170
    [Google Scholar]
  24. Yao T. Feng C. Shi X. Song J. Temperature-sensitive homogeneous magnetic fluid based aqueous two-phase system for the purification of polyphenols from crude extract of green tea leaves. Separ. Purif. Tech. 2025 360 131001 10.1016/j.seppur.2024.131001
    [Google Scholar]
  25. Yao T. Gan Y. Li Q. Tan M. Shi X. Removal and recovery of triphenylmethane dyes from wastewater with temperature-sensitive magnetic ionic liquid aqueous two-phase system. J. Clean. Prod. 2021 328 129648 10.1016/j.jclepro.2021.129648
    [Google Scholar]
  26. Yao T. Li Q. Li H. Peng L. Liu Y. Du K. Extractive resolution of racemic phenylalanine and preparation of optically pure product by chiral magnetic ionic liquid aqueous two-phase system. Separ. Purif. Tech. 2021 274 119024 10.1016/j.seppur.2021.119024
    [Google Scholar]
  27. Fan J. Cai Y. Yan Z. Li Y. Yao X. Determination of polycyclic aromatic hydrocarbons in Chinese herbal medicines by gas chromatography-mass spectrometry with graphene-functionalized nickel foam. J. Chromatogr. A 2023 1694 463904 10.1016/j.chroma.2023.463904 36870253
    [Google Scholar]
  28. Zhou J. Tang Q. Wu T. Cheng Z. Improved TLC bioautographic assay for qualitative and quantitative estimation of tyrosinase inhibitors in natural products. Phytochem. Anal. 2017 28 2 115 124 10.1002/pca.2666 28028844
    [Google Scholar]
  29. Lu G. Qiao J. Wang L. Liu H. Wu G. Zhu Y. Zhao Y. Xie G. Qin M. An integrated study of Violae Herba (Viola philippica) and five adulterants by morphology, chemical compositions and chloroplast genomes: insights into its certified plant origin. Chin. Med. 2022 17 1 32 10.1186/s13020‑022‑00585‑9 35241112
    [Google Scholar]
  30. Hikmawanti N.P.E. Saputri F.C. Yanuar A. Ningrum R.A. Mun’im A. Hayati H. Microscopical Evaluation and TLC Analysis of Pluchea indica (L.) Less: Leaf, Stem, and Root. Hayati J. Biosci. 2023 31 1 71 81 10.4308/hjb.31.1.71‑81
    [Google Scholar]
  31. Do T.K.T. Reich E. Insights into the evolution and future of high-performance thin-layer chromatography in routine quality control: A review. J. Planar Chromatogr. Mod. TLC 2023 36 5 317 325 10.1007/s00764‑023‑00265‑w
    [Google Scholar]
  32. Sun X. Wang H. Han X. Chen S. Zhu S. Dai J. Fingerprint analysis of polysaccharides from different Ganoderma by HPLC combined with chemometrics methods. Carbohydr. Polym. 2014 114 432 439 10.1016/j.carbpol.2014.08.048 25263911
    [Google Scholar]
  33. Hattori H. Hirata Y. Hamajima M. Kaneko R. Ito K. Ishii A. Suzuki O. Seno H. Simultaneous analysis of aconitine, mesaconitine, hypaconitine, and jesaconitine in whole blood by LC-MS-MS using a new polymer column. Forensic Toxicol. 2009 27 1 7 11 10.1007/s11419‑008‑0060‑z
    [Google Scholar]
  34. Ng S.W. Ching C.K. Chan A.Y.W. Mak T.W.L. Simultaneous detection of 22 toxic plant alkaloids (aconitum alkaloids, solanaceous tropane alkaloids, sophora alkaloids, strychnos alkaloids and colchicine) in human urine and herbal samples using liquid chromatography–tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2013 942-943 63 69 10.1016/j.jchromb.2013.10.020 24216273
    [Google Scholar]
  35. Duzan A. Reinken D. Basti M.M. Quality control of 11 cannabinoids by ultraperformance liquid chromatography coupled with mass spectrometry (UPLC-MS/MS). J. Anal. Methods Chem. 2023 2023 1 8 10.1155/2023/3753083 37600560
    [Google Scholar]
  36. Li F. Chen S. Studzińska S. Lmmerhofer M. Polybutylene terephthalate-based stationary phase for ion-pair-free reversed-phase liquid chromatography-mass spectrometry of small interfering RNA. J. Chromatogr. A 1694 2023 463898
    [Google Scholar]
  37. Lin L. Huang L. Ke Y. Xu X. Huang L. Study on quality control of tenofovir disoproxil fumarate enantiomers by high-performance liquid chromatography–mass spectrometry. Chromatographia 2023 86 3 213 222 10.1007/s10337‑023‑04240‑9
    [Google Scholar]
  38. Liang Y.Z. Xie P.S. Kelvin C. Chromatographic fingerprinting and metabolomics for quality control of TCM. Comb. Chem. High Throughput Screen. 2010 13 10 943 953 10.2174/138620710793360310
    [Google Scholar]
  39. Liang Y. Xie P. Chan K. Perspective of chemical fingerprinting of Chinese herbs. Planta Med. 2010 76 17 1997 2003 10.1055/s‑0030‑1250541 21064007
    [Google Scholar]
  40. Zhou J. Qi L. Li P. Quality control of Chinese herbal medicines with chromatographic fingerprint. Se Pu 2008 26 2 153 159 10.1016/S1872‑2059(08)60011‑5 18581845
    [Google Scholar]
  41. Shen Z. Zhang W.T. Huang Y-F. Zhao W-L. Fingerprinting Analysis of Four Variants of Chrysanthemi Morifoli Flos by RP-HPLC. Chin. Herb. Med. 2010 2 153 156
    [Google Scholar]
  42. Sun S. Liu H. Xu S. Yan Y. Xie P. Quality analysis of commercial samples of Ziziphi spinosae semen (suanzaoren) by means of chromatographic fingerprinting assisted by principal component analysis. J. Pharm. Anal. 2014 4 3 217 222 10.1016/j.jpha.2014.01.003 29403885
    [Google Scholar]
  43. Li Y. Xie Y. He Y. Hou W. Liao M. Liu C. Quality markers of traditional Chinese medicine: concept, progress, and perspective. Engineering (Beijing) 2019 5 5 888 894 10.1016/j.eng.2019.01.015
    [Google Scholar]
  44. Wang Z. Chang H. Zhao Q. Gou W. Li Y. Tu Z. Hou W. Mass spectrometry imaging for unearthing and validating quality markers in Traditional Chinese medicines. Chin. Herb. Med. 2024 17 1 31 40 39949808
    [Google Scholar]
  45. Dong Z. Wang H. Wang G. Research progress on the pharmacological effects and chemical constituents of Pien Tze Huang and its potential Q-markers. Chin. J. Nat. Med. 2023 21 9 658 669 10.1016/S1875‑5364(23)60400‑5 37777316
    [Google Scholar]
  46. Qin L.L. Yu M. Zhang H.X. Jia H.M. Ye X.C. Zou Z.M. Quality markers of Baizhu dispensing granules based on multi-component qualitative and quantitative analysis combined with network pharmacology and chemometric analysis. J. Ethnopharmacol. 2022 288 114968 10.1016/j.jep.2022.114968 35007681
    [Google Scholar]
  47. Yan X-E. Liu Y. Li Z. Research progress of plant-derived aconitine as insecticide. Sci. Asia 2022 48 2 119 127 10.2306/scienceasia1513‑1874.2022.050
    [Google Scholar]
  48. Li Y. Qi S. Chen X. Hu Z. Separation and determination of aconitine alkaloids in traditional Chinese herbs by nonaqueous capillary electrophoresis. Electrophoresis 2004 25 17 3003 3009 10.1002/elps.200305987 15349941
    [Google Scholar]
  49. Newman C.I.D. Giordano B.C. Copper C.L. Collins G.E. Microchip micellar electrokinetic chromatography separation of alkaloids with UV‐absorbance spectral detection. Electrophoresis 2008 29 4 803 810 10.1002/elps.200700591 18203247
    [Google Scholar]
  50. Li S. Zhao J. Qian Z.M. Li J. Advanced development of chromatography in screening and identification of effective compounds in Chinese materia medica. Sci. China Chem. 2010
    [Google Scholar]
  51. Drašar P. Moravcova J. Recent advances in analysis of Chinese medical plants and traditional medicines. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2004 812 1-2 3 21 10.1016/j.jchromb.2004.09.037 15556485
    [Google Scholar]
  52. Csupor D. Wenzig E.M. Zupkó I. Wölkart K. Hohmann J. Bauer R. Qualitative and quantitative analysis of aconitine-type and lipo-alkaloids of Aconitum carmichaelii roots. J. Chromatogr. A 2009 1216 11 2079 2086 10.1016/j.chroma.2008.10.082 19019379
    [Google Scholar]
  53. Gao X. Hu J. Zhang X. Zuo Y. Wang Y. Zhu S. Research progress of aconitine toxicity and forensic analysis of aconitine poisoning. Forensic Sci. Res. 2020 5 1 25 31 10.1080/20961790.2018.1452346 32490307
    [Google Scholar]
  54. Yao T. Feng C. Chen W. Chen S. Selective separation and simultaneous recoveries of amino acids by temperature-sensitive magnetic ionic liquid aqueous biphasic system. J. Mol. Liq. 2023 371 121099 10.1016/j.molliq.2022.121099
    [Google Scholar]
  55. Liu H. Wen Y. Luan F. Gao Y. Application of experimental design and radial basis function neural network to the separation and determination of active components in traditional Chinese medicines by capillary electrophoresis. Anal. Chim. Acta 2009 638 1 88 93 10.1016/j.aca.2009.02.006 19298884
    [Google Scholar]
  56. Ferreira S.L.C. Bruns R.E. Ferreira H.S. Matos G.D. David J.M. Brandão G.C. da Silva E.G.P. Portugal L.A. dos Reis P.S. Souza A.S. dos Santos W.N.L. Box-Behnken design: An alternative for the optimization of analytical methods. Anal. Chim. Acta 2007 597 2 179 186 10.1016/j.aca.2007.07.011 17683728
    [Google Scholar]
  57. Ling X. Hu Y. Hu Y. Meng J. Analysis of chlorogenic acid and two flavonoids in mulberry leaves of different harvest periods and origins and HPLC fingerprint study for quality control. J. Food Compos. Anal. 2024 132 106284 106291 10.1016/j.jfca.2024.106284
    [Google Scholar]
  58. Allahkarami E. Rezai B. Optimization of cerium extraction from aqueous solutions by response surface methodology employing 4-factor Box-Behnken design. Mater. Sci. Energy Technol. 2022 53 39 46
    [Google Scholar]
  59. Bai X. Qiu A. Fang X. Optimized conditions for extracting triterpenoid from Actinidia deliciosa root by using improved microwave-assisted equipment. Nongye Gongcheng Xuebao (Beijing) 2006 22 188 193
    [Google Scholar]
  60. Chang H.Y. Hsiung T.M. Huang Y.F. Huang C.C. Using rhodamine 6G-modified gold nanoparticles to detect organic mercury species in highly saline solutions. Environ. Sci. Technol. 2011 45 4 1534 1539 10.1021/es103369d 21268634
    [Google Scholar]
  61. Zheng X. Guo L. Zhu C. Hu T. Gong X. Wu C. Wang G. Dong H. Hou Y. A robust electrochemical sensor based on AgNWs@MoS2 for highly sensitive detection of thiabendazole residues in food samples. Food Chem. 2024 433 137304 10.1016/j.foodchem.2023.137304 37683473
    [Google Scholar]
  62. Almalki A.H. Abduljabbar M.H. Alnemari R.M. Alosaimi M.E. Alaqel S.I. Serag A. A Box-Behnken response surface methodology for optimizing fluorescent detection of cenobamate using graphene quantum dots: Environmental impact assessment and pharmacokinetic applications. Microchem. J. 2024 205 111381 10.1016/j.microc.2024.111381
    [Google Scholar]
  63. Guo Y. Shao S. Zhang W. Li C. Meng Z. Sun S. Yang D. Lü S. Content Determination and Release Characteristics of Six Components in the Different Phases of “Glycyrrhizaglabra-Nux vomica” Decoction by UPLC-MS/MS. Molecules 2022 27 19 6180 10.3390/molecules27196180 36234720
    [Google Scholar]
  64. Qiu P. Chen X. Chen X. Lin L. Ai C. Simultaneous determination of five toxic alkaloids in body fluids by high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2008 875 2 471 477 10.1016/j.jchromb.2008.09.034 18922745
    [Google Scholar]
  65. Lai C.K. Poon W.T. Chan Y.W. Hidden aconite poisoning: identification of yunaconitine and related aconitum alkaloids in urine by liquid chromatography-tandem mass spectrometry. J. Anal. Toxicol. 2006 30 7 426 433 10.1093/jat/30.7.426 16959134
    [Google Scholar]
  66. Fan Y.F. Xie Y. Liu L. Ho H.M. Wong Y.F. Liu Z.Q. Zhou H. Paeoniflorin reduced acute toxicity of aconitine in rats is associated with the pharmacokinetic alteration of aconitine. J. Ethnopharmacol. 2012 141 2 701 708 10.1016/j.jep.2011.09.005 21930193
    [Google Scholar]
  67. Luo Y.R. Yun C. Lynch K.L. Comstock K. A High-Resolution Liquid Chromatography-Mass Spectrometry Method for Identification of Toxic Natural Products in Clinical Cases. Am J. Clin. Pathol 2020 154 S128 S128 (Suppl. 1) 10.1093/ajcp/aqaa161.280
    [Google Scholar]
  68. Zhang Y. He Y. Li Y. Zhou C. Yu J. Dai Z. Ma S. Simultaneous determination of six diterpenoid alkaloids in Fuzilizhong pills by HPLC coupled with QDA mass detector. Yaowu Fenxi Zazhi 2018 38 1248 1253
    [Google Scholar]
  69. Stahl R. Arjo W. Wagner K. Furcolow C. Nolte D. Johnston J. Development of a high performance liquid chromatography/mass spectroscopy method for the determination of strychnine concentrations in insects used to assess potential risks to insectivores. J Chromatogr B Analyt Technol Biomed Life Sci 2004 811 2 257 262 10.1016/S1570‑0232(04)00742‑1 15522729
    [Google Scholar]
  70. Xia L.V. Qing G. GC-MS determination of pseudoephedrine, ephedrine, strychnine and brucine in Shufeng Huoluo pills. J China Pharm. Uni 2008 39 519 522
    [Google Scholar]
  71. Jabeen N. Quantitative determination of aconitine in Aconitum chasmanthum and Aconitum heterophyllum from Kashmir Himalayas using HPLC. J. Pharm. Res. 2011 4 2471 2473
    [Google Scholar]
  72. Jiang Z.H. Xie Y. Zhou H. Wang J.R. Liu Z.Q. Wong Y.F. Cai X. Xu H.X. Liu L. Quantication of Aconitum alkaloids in aconite roots by a modied RP‐HPLC method. Phytochem. Anal. 2005 16 6 415 421 10.1002/pca.861 16315485
    [Google Scholar]
  73. Miao P. Cai D.C. Xiang B.R. An D.K. Ito Y. Separation and Purification of Strychnine from Crude Extract of Strychnos nux-vomica L. by High-Speed Countercurrent Chromatography. J. Liq. Chromatogr. Relat. Technol. 1998 21 1-2 163 170 10.1080/10826079808001945
    [Google Scholar]
  74. Ong E.S. Apandi S.N. Determination of berberine and strychnine in medicinal plants and herbal preparations by pressurized liquid extraction with capillary zone electrophoresis. Electrophoresis 2001 22 13 2723 2729 10.1002/1522‑2683(200108)22:13<2723:AID‑ELPS2723>3.0.CO;2‑O 11545398
    [Google Scholar]
/content/journals/cac/10.2174/0115734110367259250610033446
Loading
/content/journals/cac/10.2174/0115734110367259250610033446
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test