Skip to content
2000
image of Biodiversification of Phytocompound in Hydrocotyle rotundifolia Originating from Selected Biogeographical Regions of the Indian Subcontinent

Abstract

Introduction

Geographical location plays a critical role in the distribution and potency of medicinal plants. Climate, soil composition, and other factors significantly affect the chemical composition of plants and their medicinal properties. This study aims to investigate how the expression of biodiversity manifests in the phytocompound of from different biogeographical locations across the Indian subcontinent.

Methods

The study analyzed the amount of genistein in the aerial part of across three different biogeographical zones using a precise, simple, and highly reproducible validated HPTLC method and adopted different standard spectroscopic methods for soil characterization.

Results

The quantity of genistein was found to be highest (0.74%) in the plants growing in the soil of the northeast region, where the available nitrogen (23.45 Kgha-1) and potassium (267.354 Kgha-1) were also highest among the three regions.

Discussion

Correlating the soil characters and climatic factors, it may be concluded that the Northeast region, with its favorable soil conditions and climatic support, is the ideal location for growing this plant and producing genistein.

Conclusion

This information is invaluable for applications in agriculture, pharmaceuticals, and environmental studies because understanding the distribution and concentration of phytocompounds across different locations can have numerous applications in these fields.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110375747250530060412
2025-06-03
2025-09-04
Loading full text...

Full text loading...

References

  1. Ekor M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol. 2014 4 177 182 10.3389/fphar.2013.00177 24454289
    [Google Scholar]
  2. Adegbaju O.D. Otunola G.A. Afolayan A.J. Effects of growth stage and seasons on the phytochemical content and antioxidant activities of crude extracts of Celosia argentea L. Heliyon 2020 6 6 e04086 10.1016/j.heliyon.2020.e04086 32514483
    [Google Scholar]
  3. Hazra K. Mandal A.K. Mandal D. Ravte R.K. Hazra J. Rao M.M. Seasonal dynamics of Shatavarin-IV, a potential biomarker of Asparagus racemosus by HPTLC: Possible validation of the ancient Ayurvedic text. Indian J. Tradit. Knowl. 2019 19 1 174 181 10.56042/ijtk.v19i1.30864
    [Google Scholar]
  4. Hu J. Huang W. Zhang F. Luo X. Chen Y. Xie J. Variability of volatile compounds in the medicinal plant Dendrobium officinale from different regions. Molecules 2020 25 21 5046 5053 10.3390/molecules25215046 33143136
    [Google Scholar]
  5. Tiwari V. Meena B. Nair K.N. Upreti D.K. Tamta S. Rana T.S. Assessment of genetic diversity and population structure of Bergenia stracheyi (Saxifragaceae) in the Western Himalaya (India). Biochem. Syst. Ecol. 2017 70 205 210 10.1016/j.bse.2016.12.001
    [Google Scholar]
  6. Chauhan R.S. Nautiyal M.C. Cecotti R. Mella M. Tava A. Variation in the essential oil composition of Angelica archangelica from three different altitudes in Western Himalaya, India. Ind. Crops Prod. 2016 94 401 404 10.1016/j.indcrop.2016.08.044
    [Google Scholar]
  7. Mohammadi Bazargani M. Falahati-Anbaran M. Rohloff J. Comparative analyses of phytochemical variation within and between congeneric species of willow herb, Epilobium hirsutum and E. parviflorum: Contribution of environmental factors. Front. Plant Sci. 2021 11 595190 10.3389/fpls.2020.595190
    [Google Scholar]
  8. Joshi J. Agarwal I. Integrative taxonomy in the Indian subcontinent: Current progress and prospects. J. Indian Inst. Sci. 2021 101 2 125 149 10.1007/s41745‑021‑00244‑2
    [Google Scholar]
  9. Johnson J. Loria S.F. Joseph M.M. Harms D. Biogeographical and diversification analyses of Indian pseudoscorpions reveal the Western Ghats as museums of ancient biodiversity. Mol. Phylogenet. Evol. 2022 175 107495 10.1016/j.ympev.2022.107495 35569808
    [Google Scholar]
  10. Fattorini S. Historical biogeography of earwigs. Biology 2022 11 12 1794 1801 10.3390/biology11121794 36552303
    [Google Scholar]
  11. Mallick J.K. An annotated checklist of dicotyledonus angiosperms in Darjeeling Himalayas and foothills, West Bengal, India. J. New Biol. Rep. 2020 9 94 208
    [Google Scholar]
  12. Shankar R. KumarTripathi A. Anku G. Neyaz S. Rawat M.S. Indigenous medicinal plants of Northeast India in human health: Literary Note. J. Drug Res. Ayurvedic Sci. 2017 2 2 104 117 10.5005/jp‑journals‑10059‑0012
    [Google Scholar]
  13. Hydrocotyle rotundifolia Roxb.. 2023 Available from: https://wfoplantlist.org/taxon/wfo-0001068460-2023-12?page=1
  14. Das R.J. Pathak K. Use of indigenous plants in traditional health care systems by Mishing tribe of Dikhowmukh, Sivasagar District, Assam. Int. J. Herb. Med. 2013 1 50 57
    [Google Scholar]
  15. Kalita R. Kalita P. Bhuyan G.D. Barooah A. An ethnobotanical study on common plants with medicinal properties and ITK used by the tea garden tribes of eastern upper Brahmaputra Valley Zone (UBVZ) of Assam. Int. J. Environ. Clim. Change 2022 12 1388 1398 10.9734/ijecc/2022/v12i121579
    [Google Scholar]
  16. Hazarika I. Mukundan G.K. Sundari P.S. Laloo D. Journey of Hydrocotyle sibthorpioides Lam.: From traditional utilization to modern therapeutics—A review. Phytother. Res. 2021 35 4 1847 1871 10.1002/ptr.6924 33140507
    [Google Scholar]
  17. Bordoloi M. Bordoloi P.K. Dutta P.P. Singh V. Nath S. Narzary B. Bhuyan P.D. Rao P.G. Barua I.C. Studies on some edible herbs: Antioxidant activity, phenolic content, mineral content and antifungal properties. J. Funct. Foods 2016 23 220 229 10.1016/j.jff.2016.02.028
    [Google Scholar]
  18. Handique P.J. Garg M. Evaluation of antioxidant and antimicrobial activity of a medicinal plant Hydrocotylesibthorpiodes Lam., grown in NE India. Int. J. Pharm. Sci. Res. 2017 8 3524 3529
    [Google Scholar]
  19. Huang Q. Huang R. Zhang S. Lin J. Wei L. He M. Zhuo L. Lin X. Protective effect of genistein isolated from Hydrocotyle sibthorpioides on hepatic injury and fibrosis induced by chronic alcohol in rats. Toxicol. Lett. 2013 217 2 102 110 10.1016/j.toxlet.2012.12.014 23274713
    [Google Scholar]
  20. Husin F. Chan Y.Y. Gan S.H. Sulaiman S.A. Shueb R.H. The effect of Hydrocotylesibthorpioides Lam. extracts on in vitro dengue replication. Evid. Based Complement. Alternat. Med. 2015 2015 1 9 10.1155/2015/596109 25767554
    [Google Scholar]
  21. Mazumdar P. Jalaluddin N.S.M. Nair I. Tian Tian T. Rejab N.A.B. Harikrishna J.A. A review of Hydrocotyle bonariensis, a promising functional food and source of health-related phytochemicals. J. Food Sci. Technol. 2023 60 10 2503 2516 10.1007/s13197‑022‑05516‑y 37599849
    [Google Scholar]
  22. Arya A.K. Durgapal M. Bachheti A. Deepti Joshi K.K. Gonfa Y.H. Bachheti R.K. Husen A. Ethnomedicinal use, phytochemistry, and other potential application of aquatic and semiaquatic medicinal plants. Evid. Based Complement. Alternat. Med. 2022 2022 1 19 10.1155/2022/4931556 35990854
    [Google Scholar]
  23. Umar S. Gusriyani S. Afriwardi A. Aldi Y. Activities of hydrocotyle sibthorpioides Lam. extract in capsule on natural killer and CD8 cells in human. Trop. J. Nat. Prod. Res. 2023 7 8 1 12 10.26538/tjnpr/v7i8.29
    [Google Scholar]
  24. Zou J.P. Zhang Z. Lv J.Y. Zhang X.Q. Zhang Z.Y. Han S.T. Liu Y.W. Liu W.W. Ji J. Shi D.H. Design, synthesis and anti-cancer evaluation of genistein-1,3,5-triazine derivatives. Tetrahedron 2023 134 133293 10.1016/j.tet.2023.133293
    [Google Scholar]
  25. Patel D. Vora A. Development and validation of a high-performance thin-layer chromatographic method for the simultaneous determination of genistein and vitexin in seeds of Vigna mungo. J. Planar Chromatogr. Mod. TLC 2014 27 6 472 476 10.1556/JPC.27.2014.6.12
    [Google Scholar]
  26. Puri H.S. Rasayana: Ayurvedic Herbs for Longevity and Rejuvenation. CRC Press London 2002 10.4324/9780203216569
    [Google Scholar]
  27. Satpathy S. Patra A. Hussain M.D. Ahirwar B. Simultaneous estimation of genistein and daidzein in Pueraria tuberosa (Willd.) DC by validated high-performance thin-layer chromatography (HPTLC) densitometry method. J. Liq. Chromatogr. Relat. Technol. 2017 40 10 499 505 10.1080/10826076.2017.1329743
    [Google Scholar]
  28. Čertner M. Lučanová M. Sliwinska E. Kolář F. Loureiro J. Plant material selection, collection, preservation, and storage for nuclear DNA content estimation. Cytometry A 2022 101 9 737 748 10.1002/cyto.a.24482 34254737
    [Google Scholar]
  29. Vogl C.R. Vogl-Lukasser B. Puri R.K. Tools and methods for data collection in ethnobotanical studies of home gardens. Field Methods 2004 16 3 285 306 10.1177/1525822X04266844
    [Google Scholar]
  30. Smith B. Chinnappa C. Yeung E. Stasolla C. Sumner M. Huang B. Plant Collection, Identification, and Herbarium Procedures. Plant Microtechniques and Protocols. Cham Springer 2015 541 572 10.1007/978‑3‑319‑19944‑3_30
    [Google Scholar]
  31. Hazra K. Kumar D. Mondal S. Arya D. Bhardwaj Y. Walsan V. Sharma P. Singh R. Meena A.K. Mangal A.K. The diversity of the phytochemical array in unexplored high altitude medicinal plant Gonostegia hirta (Blume. ex Hassk.) Miq. Indian J. Nat. Prod. Resour. 2025 16 1 9
    [Google Scholar]
  32. Hodge W.H. The use of alcohol in plant collecting. Rhodora 1947 49 207 210
    [Google Scholar]
  33. Zhdanov D.A. Braslavskii V.B. Kurkin V.A. Determination of infrared thermogravimetric moisture (loss on drying) for different morphological group of medicinal plant raw materials: development the techniques. Aspirantskiy Vestnik Povolzhiya 2021 21 5-6 73 77 10.55531/2072‑2354.2021.21.3.73‑77
    [Google Scholar]
  34. Quality control methods for herbal materials. Geneva World Health Organization 2011 5 7
    [Google Scholar]
  35. Quality control methods for herbal materials. Geneva World Health Organization 2011 45 47
    [Google Scholar]
  36. Carter M.R. Gregorich E.G. Soil Sampling and Methods of Analysis. 2nd ed Boca Raton CRC press 2007 2 12 10.1201/9781420005271
    [Google Scholar]
  37. Tan K.H. Soil Sampling, Preparation, and Analysis. 2nd ed Boca Raton CRC press 2014 14 23 10.1201/9781482274769
    [Google Scholar]
  38. Quality control methods for herbal materials. Geneva World Health Organization 2011 65 69
    [Google Scholar]
  39. Hazra K. Mitra A. Singh R. Singh A. Hazra J. Rationalisation of extractive protocol by high-performance thin-layer chromatographic–densitometric quantification of berberine in multiple hydroalcoholic extract of Tinospora cordifolia stem. J. Planar Chromatogr. Mod. TLC 2021 34 2 157 163 10.1007/s00764‑021‑00098‑5
    [Google Scholar]
  40. Hazra K. Kumar D. Debnath S. Mondal S. Batule M. Dutta S. Singh A. Singh R. Mangal A.K. Dynamicity and extractability of hydro-alcoholic solvents for Tinospora cordifolia stem: An investigation for target-oriented traditional drug discovery based on biologically active phytocompounds. Vegetos 2024 1 1 11 10.1007/s42535‑024‑00835‑1
    [Google Scholar]
  41. Hazra K. Kumar D. Mitra A. Dutta S.S. Sarkar S. Babu G. Phytopharmacognostic profiling of Prunus cerasoides Buch.-Ham. ex D. Don, heartwood. Indian J. Nat. Prod. Resour. 2024 15 146 155 10.56042/ijnpr.v15i1.4232
    [Google Scholar]
  42. Harmonised Tripartite Guideline, text on Validation of Analytical Procedures, Methodology(IFPMA). Proceedings of the International Conference on Harmonization Geneva, 1994
    [Google Scholar]
  43. Harmonised Tripartite Guideline, text on Validation of Analytical Procedures, Methodology(IFPMA). Proceedings of the International Conference on Harmonization Geneva, 1996
    [Google Scholar]
  44. Soil testing methods. Food and Agricultural Organization of the United Nations Rome 2020 25 47 10.4060/ca2796en
    [Google Scholar]
  45. GoM-WRD (2009) Laboratory testing procedure for soil & water sample analysis. Govt. of Maharashtra Pune 2009 38 61
    [Google Scholar]
  46. Environment and Health. Environmental Protection Agency Chicago 2007 3015 3050
    [Google Scholar]
  47. Standard Methods for the examination of Water and Wastewater. Washington, DC American Public Health Association 2022 3111 3125
    [Google Scholar]
  48. Pandey R. Sharma J. Singh R. Rawat M. Saklani H. Tomar P.K. Tiwari L. Bhatt I.D. Chand T. Bala N. Panwar V.P. Semeraro T. Vegetation characteristics based climate change vulnerability assessment of temperate forests of Western Himalaya. Forests 2022 13 6 848 10.3390/f13060848
    [Google Scholar]
  49. Barik P.A. Mazumdar M. Dutta M.K. A study on hydroelectric and irrigation potential of Dikhowriver, Assam. J. Eng. Technol. 2017 6 82 87
    [Google Scholar]
  50. Mukherjee A. Banerjee S. Rainfall and temperature trend analysis in the red and lateritic zone of West Bengal. J. Agrometerol. 2009 11 2 196 200 10.54386/jam.v11i2.1254
    [Google Scholar]
/content/journals/cac/10.2174/0115734110375747250530060412
Loading
/content/journals/cac/10.2174/0115734110375747250530060412
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test