Skip to content
2000
image of Discrimination of Ophiopogonis Radix from Different Planting Districts by using Infrared Spectroscopy Combined with One-dimensional Convolutional Neural Network

Abstract

Introduction

The chemical composition of originating from different districts is somewhat different due to the different planting environment. This difference affects the pharmaceutical efficacy of , and therefore poses a challenge to the quality assessment and control of . This study aims to develop a method to discriminate from various planting districts by using infrared (IR) spectroscopy in combination with a one-dimensional convolutional neural network.

Methods

The spectral data of samples from five planting districts were collected and preprocessed with Savizkg-Golag (SG) smoothing and the Standard Normal Variate (SNV) algorithm. Back propagation (BP) artificial neural network (ANN) and one-dimensional convolutional neural network (1D-CNN) were employed to build the pattern recognition model for discriminating the investigated samples.

Results

The discriminant accuracy of the ANN model after SG and SNV preprocessing reached 94.42% and 96.98% respectively. The discrimination accuracy of the 1D-CNN model after SG and SNV preprocessing reached 98.67% and 99.33%, respectively. It is demonstrated that both the ANN model and the 1D-CNN model are able to discriminate samples from different planting districts. Moreover, the developed 1D-CNN model shows higher discrimination accuracy than the ANN model, and SNV preprocessing is better than SG preprocessing for improving the accuracy of the discrimination model.

Discussion

In this study, the classification performance differences between the SNV-ANN and SNV-CNN models were further compared and analyzed through confusion matrices. The SNV-CNN model exhibited superior classification performance compared to the SNV-ANN model.

Conclusion

IR coupled with 1D-CNN is a practicable and promising approach to discriminate from different planting districts. Besides , this approach could be used for the planting districts discrimination of other kinds of Traditional Chinese Medicines (TCM). As a high-throughput and data-driven spectroscopic analysis approach, it can be applied to the standardized quality assessment of TCM.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110381730250723234609
2025-08-06
2025-10-30
Loading full text...

Full text loading...

References

  1. Zhu Y. Wang L. Chen M. Zhou Y. Huang J. Simultaneous extraction and determination of characteristic steroidal saponins and homoisoflavonoids in Zhejiang Ophiopogon japonicus. Molecules 2022 27 21 7380 10.3390/molecules27217380
    [Google Scholar]
  2. Chen M.H. Chen X.J. Wang M. Lin L.G. Wang Y.T. Ophiopogon japonicus: A phytochemical, ethnomedicinal and pharmacological review. J. Ethnopharmacol. 2016 181 193 213 10.1016/j.jep.2016.01.037
    [Google Scholar]
  3. Ji Q. Li C. Fu X. Liao J. Hong X. Yu X. Ye Z. Zhang M. Qiu Y. Protected geographical indication discrimination of Zhejiang and non-Zhejiang Ophiopogonis japonicus by near-infrared (NIR) spectroscopy combined with chemometrics: The influence of different stoichiometric and spectrogram pretreatment methods. Molecules 2023 28 6 2803 10.3390/molecules28062803
    [Google Scholar]
  4. Tian Y. Chang S. Xu J. Gong P. Yu B. Qi J. Investigation of the effective components inhibited macrophage foam cell formation in Ophiopogonis Radix. J. Ethnopharmacol. 2022 283 114678 10.1016/j.jep.2021.114678
    [Google Scholar]
  5. Wu Z. Zhao X. Miyamoto A. Zhao S. Liu C. Zheng W. Wang H. Effects of steroidal saponins extract from Ophiopogon japonicus root ameliorates doxorubicin-induced chronic heart failure by inhibiting oxidative stress and inflammatory response. Pharm. Biol. 2019 57 1 176 183 10.1080/13880209.2019.1577467
    [Google Scholar]
  6. Lin Y. Zhu D. Qi J. Qin M. Yu B. Characterization of homoisoflavonoids in different cultivation regions of Ophiopogon japonicus and related antioxidant activity. J. Pharm. Biomed. Anal. 2010 52 5 757 762 10.1016/j.jpba.2010.02.016
    [Google Scholar]
  7. Chen H. Zhao R.H. Jia Q. Ren X.S. Xia Z.N. Antioxidative activity of different extracts of Radix Ophiopogonis in vitro. Chinese J. Anal. Laboratory 2013 32 03 18 21
    [Google Scholar]
  8. Zhang Y.L. Xi M.Z. Choi Y.B. Lee B.H. Antithrombotic effect of fermented Ophiopogon japonicus in thrombosis-induced rat models. J. Med. Food 2017 20 7 637 645 10.1089/jmf.2016.3872
    [Google Scholar]
  9. Kitahiro Y. Koike A. Sonoki A. Muto M. Ozaki K. Shibano M. Anti-inflammatory activities of Ophiopogonis Radix on hydrogen peroxide-induced cellular senescence of normal human dermal fibroblasts. J. Nat. Med. 2018 72 4 905 914 10.1007/s11418‑018‑1223‑9
    [Google Scholar]
  10. Liu Q. Lu J.J. Hong H.J. Yang Q. Wang Y. Chen X.J. Ophiopogon japonicus and its active compounds: A review of potential anticancer effects and underlying mechanisms. Phytomedicine 2023 113 154718 10.1016/j.phymed.2023.154718
    [Google Scholar]
  11. Cheng Z. Li Z. Gu L. Li L. Gao Q. Zhang X. Fu J. Guo Y. Li Q. Shen X. Chen M. Zhang X. Ophiopogonin B alleviates cisplatin resistance of lung cancer cells by inducing Caspase-1/GSDMD dependent pyroptosis. J. Cancer 2022 13 2 715 727 10.7150/jca.66432
    [Google Scholar]
  12. Wang H.Y. Guo L.X. Hu W.H. Peng Z.T. Wang C. Chen Z.C. Liu E.Y.L. Dong T.T.X. Wang T-J. Tsim K.W.K. Polysaccharide from tuberous roots of Ophiopogon japonicus regulates gut microbiota and its metabolites during alleviation of high-fat diet-induced type-2 diabetes in mice. J. Funct. Foods 2019 63 103593 10.1016/j.jff.2019.103593
    [Google Scholar]
  13. Lyu C. Kang C. Kang L. Yang J. Wang S. He Y. Deng A. Wang H. Huang L. Guo L. Structural characterization and discrimination of Ophiopogon japonicas (Liliaceae) from different geographical origins based on metabolite profiling analysis. J. Pharm. Biomed. Anal. 2020 185 113212 10.1016/j.jpba.2020.113212
    [Google Scholar]
  14. Guo M.Y. Jiangb W.J. Yu J.S. Pang X.H. Investigating the authenticity of Ophiopogonis Radix and its Chinese patent medicines by using a nucleotide signature. J. Ethnopharmacol 2020 261 113134 10.1016/j.jep.2020.113134
    [Google Scholar]
  15. Deng X. Xu J. Tong C. Shi F. Shi S. Homoisoflavonoids profiling of Ophiopogon japonicus by off‐line coupling high‐speed countercurrent chromatography with high‐performance liquid chromatography–diode array detector‒quadrupole time‐of‐flight tandem mass spectrometry. J. Sep. Sci. 2020 43 8 1406 1414 10.1002/jssc.201901222
    [Google Scholar]
  16. Xie T. Liang Y. Hao H.A.J. Xie L. Gong P. Dai C. Liu L. Kang A. Zheng X. Wang G. Rapid identification of ophiopogonins and ophiopogonones in Ophiopogon japonicus extract with a practical technique of mass defect filtering based on high resolution mass spectrometry. J. Chromatogr. A 2012 1227 234 244 10.1016/j.chroma.2012.01.017
    [Google Scholar]
  17. Verma K. Semwal A. Soni P. Bhatia R. Perspectives of infrared spectroscopy in quantitative estimation of Proteins. Curr. Anal. Chem. 2021 17 5 689 707 10.2174/1573411016999200917113433
    [Google Scholar]
  18. Wu L. Wang B. Yin Y. Duan R. Xie Z. Liu E. Bai X. Characterization of tobacco with near-infrared spectroscopy with competitive adaptive reweighted sampling and partial least squares discrimination. Anal. Lett. 2016 49 14 2290 2300 10.1080/00032719.2016.1144763
    [Google Scholar]
  19. Du C. Zhou J. Liu J. Identification of Chinese medicinal fungus Cordyceps sinensis by depth-profiling mid-infrared photoacoustic spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2017 173 489 494 10.1016/j.saa.2016.10.001
    [Google Scholar]
  20. Sun S. Chen J. Zhou Q. Lu G. Chan K. Application of mid-infrared spectroscopy in the quality control of traditional Chinese medicines. Planta Med. 2010 76 17 1987 1996 10.1055/s‑0030‑1250520
    [Google Scholar]
  21. Zhao Y. Zhang J. Jin H. Zhang J. Shen T. Wang Y. Discrimination of Gentiana rigescens from different origins by fourier transform infrared spectroscopy combined with chemometric methods. J. AOAC Int. 2015 98 1 22 26 10.5740/jaoacint.13‑395
    [Google Scholar]
  22. Qiao L. Zhang Y.Q. Zhao B.Y. Zhou C.Y. Liu R.N. Han P.P. Zhang R. Dong C.M. Rapid identification of banxia(pinelliae rhizoma) from different areas by infrared spectroscopy. Chin Archiv Trad Chin Med. 2022 40 11 73
    [Google Scholar]
  23. Wei M.L. Wang L. Shan S.N. Xie M.Y. Yang Q.S. Cheng W.X. Identifying forsythia suspensa from different origins by FT-IR spectroscopy combined with stoichiometry. Acta. Chinese Med. Pharmacol. 2023 51 08 42 49
    [Google Scholar]
  24. Sun W. Zhang X. Zhang Z. Zhu R. Data fusion of near-infrared and mid-infrared spectra for identification of rhubarb. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2017 171 72 79 10.1016/j.saa.2016.07.039
    [Google Scholar]
  25. Martens H. Understanding the root cause(s) of nonlinearities in near infrared spectroscopy. NIR News 2021 32 1-2 20 26 10.1177/09603360211003758
    [Google Scholar]
  26. Zhang J. Li P. Yin X. Wang S. Zhu Y. Back analysis of surrounding rock parameters in pingdingshan mine based on BP neural network integrated mind evolutionary algorithm. Mathematics 2022 10 10 1746 10.3390/math10101746
    [Google Scholar]
  27. Rumelhart D.E. Hinton G.E. Williams R.J. Learning representations by back-propagating errors. Nature 1986 323 6088 533 536 10.1038/323533a0
    [Google Scholar]
  28. Niu X.Y. Shao L.M. Zhao Z.L. Zhang X.Y. Nondestructive discrimination of strawberry varieties by NIR and BP-ANN. Guangpuxue Yu Guangpu Fenxi 2012 32 8 2095 2099
    [Google Scholar]
  29. Wang R. Song J. Liu J. Ren Z. Zhu C. Yu Y. Li Z. Huang Y. The combination of near-infrared spectroscopy with chemometrics in achieving rapid and accurate determination of rice mildew. J. Food Meas. Charact. 2024 18 7 5437 5449 10.1007/s11694‑024‑02578‑8
    [Google Scholar]
  30. Sun C.Y. Jiao L. Yan N.Y. Yan C.H. Qu L. Zhang S.R. Ma L. Identification of salvia miltiorrhiza from different origins by laser induced breakdown spectroscopy combined with artificial neural network. Spectroscopy Spectral Anal. 2023 43 10 3098 3104
    [Google Scholar]
  31. LeCun Y. Bengio Y. Hinton G. Deep learning. Nature 2015 521 7553 436 444 10.1038/nature14539
    [Google Scholar]
  32. Kiranyaz S. Avci O. Abdeljaber O. Ince T. Gabbouj M. Inman D.J. 1D convolutional neural networks and applications: A survey. Mech. Syst. Signal Process. 2021 151 107398 10.1016/j.ymssp.2020.107398
    [Google Scholar]
  33. Mokari A. Guo S. Bocklitz T. Exploring the steps of infrared (IR) spectral analysis: pre-processing, (classical) data modelling, and deep learning. Molecules 2023 28 19 6886 10.3390/molecules28196886
    [Google Scholar]
  34. Wang K. Shi Y. Liu C.C. Xie Y. Cai P. Kong S.T. A review of infrared spectrum modeling based on convolutional neural networks. Infrared Technology 2021 43 8 757 765
    [Google Scholar]
  35. Sheng Y. Jiao J. Teng Y. Ma X. Li C. Jiang L. Identification of tea varieties and grades based on convolution neural network and near infrared spectroscopy. J. Anal. Science 2022 38 5 552 560
    [Google Scholar]
  36. Xiao Q. Bai X. Gao P. He Y. Application of convolutional neural network-based feature extraction and data fusion for geographical origin identification of radix astragali by visible/short-wave near-infrared and near infrared hyperspectral imaging. Sensors 2020 20 17 4940 10.3390/s20174940
    [Google Scholar]
  37. Liu J. Fan S. Cheng W. Yang Y. Li X. Wang Q. Liu B. Xu Z. Wu Y. Non-destructive discrimination of sunflower seeds with different internal mildew grades by fusion of near-infrared diffuse reflectance and transmittance spectra combined with 1D-CNN. Foods 2023 12 2 295 10.3390/foods12020295
    [Google Scholar]
  38. Shi Y. He T. Zhong J. Mei X. Li Y. Li M. Zhang W. Ji D. Su L. Lu T. Zhao X. Classification and rapid non-destructive quality evaluation of different processed products of Cyperus rotundus based on near-infrared spectroscopy combined with deep learning. Talanta 2024 268 1 125266 10.1016/j.talanta.2023.125266
    [Google Scholar]
  39. Zhang L. Guan Y. Wang N. Ge F. Zhang Y. Zhao Y. Identification of growth years for Puerariae Thomsonii Radix based on hyperspectral imaging technology and deep learning algorithm. Sci. Rep. 2023 13 1 14286 10.1038/s41598‑023‑40863‑6
    [Google Scholar]
  40. Chen X. Cheng G. Liu S. Meng S. Jiao Y. Zhang W. Liang J. Zhang W. Wang B. Xu X. Xu J. Probing 1D convolutional neural network adapted to near-infrared spectroscopy for efficient classification of mixed fish. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022 279 121350 10.1016/j.saa.2022.121350
    [Google Scholar]
  41. Wu F.M. Ceng J. Li M. Bao X.H. Zhou J. Effect of drying temperature on quality of Ophiopogonis Radix based on the appearance character characteristics and content of chemical components. Chin J. Pharm. Analysis 2016 036 007 1310 1315
    [Google Scholar]
  42. Gallagher N.B. Savitzky-Golay Smoothing and Differentiation Filter. Manson, WA, USA Eigenvector Research Incorporated 2020
    [Google Scholar]
  43. Schmid M. Rath D. Diebold U. Why and how Savitzky–Golay filters should be replaced. ACS Meas Sci. Au 2022 2 2 185 196 10.1021/acsmeasuresciau.1c00054
    [Google Scholar]
  44. Yu M. Li S. Yang F. Zheng Y. Li P. Jiang L. Liu X. Identification on different origins of citri reticulatae pericarpium using near infrared spectroscopy combined with optimized spectral pretreatments. J. Instrumental Anal. 2021 40 65 71
    [Google Scholar]
  45. Chen J. Jönsson P. Tamura M. Gu Z. Matsushita B. Eklundh L. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter. Remote Sens. Environ. 2004 91 3-4 332 344 10.1016/j.rse.2004.03.014
    [Google Scholar]
  46. Rinnan Å. Berg F. Engelsen S.B. Review of the most common pre-processing techniques for near-infrared spectra. Trends Analyt. Chem. 2009 28 10 1201 1222 10.1016/j.trac.2009.07.007
    [Google Scholar]
  47. Jiao Y. Li Z. Chen X. Fei S. Preprocessing methods for near‐infrared spectrum calibration. J. Chemometr. 2020 34 11 e3306 10.1002/cem.3306
    [Google Scholar]
  48. Liu P. Wang J. Li Q. Gao J. Tan X. Bian X. Rapid identification and quantification of Panax notoginseng with its adulterants by near infrared spectroscopy combined with chemometrics. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019 206 23 30 10.1016/j.saa.2018.07.094
    [Google Scholar]
  49. Jin P. Fu Y. Niu R. Zhang Q. Zhang M. Li Z. Zhang X. Non-Destructive detection of the freshness of air-modified mutton based on near-infrared spectroscopy. Foods 2023 12 14 2756 10.3390/foods12142756
    [Google Scholar]
  50. Ou-Yang Q. Zhao J.W. Chen Q.S. Lin H. Huang X.Y. Study on classification of soy sauce by electronic tongue technique combined with artificial neural network. J. Food Sci. 2011 76 9 523 527 10.1111/j.1750‑3841.2011.02382.x
    [Google Scholar]
  51. Sun Y. Chen L. Huang B. Chen K. A rapid identification method for calamine using near-infrared spectroscopy based on multi-reference correlation coefficient method and back propagation artificial neural network. Appl. Spectrosc. 2017 71 7 1447 1456 10.1177/0003702816685569
    [Google Scholar]
  52. Zhong G. Kang M. Yang S. Precision obtained using an artificial neural network for predicting the material removal rate in ultrasonic machining. Appl. Sci. 2017 7 12 1268 10.3390/app7121268
    [Google Scholar]
  53. Lu Y. Li Z. Zhao X. Lv S. Wang X. Wang K. Ni H. Recognition of rice sheath blight based on a backpropagation neural network. Electronics 2021 10 23 2907 10.3390/electronics10232907
    [Google Scholar]
  54. Bishop C.M. Neural networks for pattern recognition. Neural Comput. Appl. 1995 3 1 58 64
    [Google Scholar]
  55. Demuth G.B. Beale M.H. Jess O.D. Hagan M.T. Neural Network Design. 2nd ed Stillwater, OK, USA Martin Hagan 2014
    [Google Scholar]
  56. Yuan Z.R. Artificial neural network and its application. 3rd ed Beijing Tsinghua University Press 1999
    [Google Scholar]
  57. Wu H. Chen J. Liu X. Xiao Y. Wang M. Zheng Y. Rao Y. One-dimensional CNN-based intelligent recognition of vibrations in pipeline monitoring with DAS. J. Lightwave Technol. 2019 37 17 4359 4366 10.1109/JLT.2019.2923839
    [Google Scholar]
  58. Dong X. Dong Y. Liu J. Wang C. Bao C. Wang N. Zhao X. Chen Z. Identification and quantitative detection of illegal additives in wheat flour based on near-infrared spectroscopy combined with chemometrics. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2024 323 124938 10.1016/j.saa.2024.124938
    [Google Scholar]
  59. Guo Y. Zhang L. Li Z. He Y. Lv C. Chen Y. Lv H. Du Z. Online detection of dry matter in potatoes based on visible near-infrared transmission spectroscopy combined with 1D-CNN. Agriculture 2024 14 5 787 10.3390/agriculture14050787
    [Google Scholar]
  60. Zhang Y. Yu W. He L. Cui L. Cheng G. Signals classification based on IA-optimal CNN. Neural Comput. Appl. 2021 33 15 9703 9721 10.1007/s00521‑021‑05736‑x
    [Google Scholar]
  61. Antunes A. Ferreira B. Marques N. Carriço N. Hyperparameter optimization of a convolutional neural network model for pipe burst location in water distribution networks. J. Imaging 2023 9 3 68 10.3390/jimaging9030068
    [Google Scholar]
  62. Eliwa E.H.I. El Koshiry A.M. Abd El-Hafeez T. Farghaly H.M. Utilizing convolutional neural networks to classify monkeypox skin lesions. Sci. Rep. 2023 13 1 14495 10.1038/s41598‑023‑41545‑z
    [Google Scholar]
  63. Liu P. Shi L. Miao Z. Jin B. Zhou Q. Relative distribution entropy loss function in CNN image retrieval. Entropy 2020 22 3 321 10.3390/e22030321
    [Google Scholar]
  64. Ma C. Shi Y. Huang Y. Dai G. Raman spectroscopy-based prediction of ofloxacin concentration in solution using a novel loss function and an improved GA-CNN model. BMC Bioinformatics 2023 24 1 409 10.1186/s12859‑023‑05542‑3
    [Google Scholar]
  65. Kompanets A. Duits R. Pai G. Leonetti D. Snijder H.H.B. Loss function inversion for improved crack segmentation in steel bridges using a CNN framework. Autom. Construct. 2025 170 105896 105896 10.1016/j.autcon.2024.105896
    [Google Scholar]
  66. Fu T. Li X. Evaluating the stability of artificial sand-binding vegetation by combining statistical methods and a neural network model. Sci. Rep. 2023 13 1 6544 6544 [J] 10.1038/s41598‑023‑33879‑5
    [Google Scholar]
  67. Deng S. Pei C. Yan X. Hao H. Cui M. Zhao F. Cai C. Shi Y. Lost circulation prediction method based on an improved fruit fly algorithm for support vector machine optimization. ACS Omega 2023 8 36 32838 32847 10.1021/acsomega.3c03919
    [Google Scholar]
  68. He J. Ye L. Li J. Huang W. Huo Y. Gao J. Liu L. Zhang W. Identification of Ophiopogonis Radix from different producing areas by headspace‐gas chromatography‐ion mobility spectrometry analysis. J. Food Biochem. 2022 46 6 e13850 10.1111/jfbc.13850
    [Google Scholar]
  69. Han H. Sha R. Dai J. Wang Z. Mao J. Cai M. Garlic origin traceability and identification based on fusion of multi-source heterogeneous spectral information. Foods 2024 13 7 1016 10.3390/foods13071016
    [Google Scholar]
  70. Tan X. Xi H. Yang J. Wang W. Development and validation of prediction model for high ovarian response in in vitro fertilization-embryo transfer: A longitudinal study. Comput. Math. Methods Med. 2021 2021 1 12 10.1155/2021/7822119
    [Google Scholar]
  71. Yu L. Jin W. Zhou J. Li X. Zhang Y. Optimal extraction bioactive components of tetramethylpyrazine in Chinese herbal medicine jointly using back propagation neural network and genetic algorithm in R language. Pak. J. Pharm. Sci. 2020 33 1 95 102
    [Google Scholar]
  72. Lyu Z. Yu Y. Samali B. Rashidi M. Mohammadi M. Nguyen T.N. Nguyen A. Back-propagation neural network optimized by K-fold cross-validation for prediction of torsional strength of reinforced concrete beam. Materials 2022 15 4 1477 10.3390/ma15041477
    [Google Scholar]
  73. Whittington J.C.R. Bogacz R. Theories of error back-propagation in the brain. Trends Cogn. Sci. 2019 23 3 235 250 10.1016/j.tics.2018.12.005
    [Google Scholar]
  74. Wu Y. Feng J. Development and application of artificial neural network. Wirel. Pers. Commun. 2018 102 2 1645 1656 10.1007/s11277‑017‑5224‑x
    [Google Scholar]
  75. Johny A. Madhusoodanan K.N. Dynamic learning rate in deep CNN model for metastasis detection and classification of histopathology images. Comput. Math. Methods Med. 2021 2021 1 13 10.1155/2021/5557168
    [Google Scholar]
  76. Chen Y.M. Huang W.T. Ho W.H. Tsai J.T. Classification of age-related macular degeneration using convolutional-neural-network-based transfer learning. BMC Bioinformatics 2021 22 S5 99 10.1186/s12859‑021‑04001‑1
    [Google Scholar]
  77. Chen S. Du X. Zhao W. Guo P. Chen H. Jiang Y. Wu H. Olive oil classification with Laser-induced fluorescence (LIF) spectra using 1-dimensional convolutional neural network and dual convolution structure model. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022 279 121418 10.1016/j.saa.2022.121418
    [Google Scholar]
  78. Su H. Yang Q. Ning Y. Hu Z. Liu L. Multi-label auroral image classification based on CNN and transformer. IEEE Trans. Image Process. 2025 34 1835 1848 10.1109/TIP.2025.3550003
    [Google Scholar]
  79. Wang Y. Liu J. Fast detection of ammonia nitrogen concentration in biogas fluid using near-infrared spectroscopy combined with wavelength selection by coronavirus herd immunity optimizer. Microchem. J. 2024 207 112203 10.1016/j.microc.2024.112203
    [Google Scholar]
/content/journals/cac/10.2174/0115734110381730250723234609
Loading
/content/journals/cac/10.2174/0115734110381730250723234609
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test