Skip to content
2000
image of Advancements in Mass Spectrometry Imaging for Cancer Research: From Tumor Profiling to Personalized Medicine

Abstract

Introduction

Mass Spectrometry Imaging (MSI) is a label-free analytical technique that enables spatially resolved molecular profiling of biomolecules in tissue sections. By simultaneously mapping proteins, lipids, and metabolites, MSI has significantly advanced cancer research by revealing tumor heterogeneity, metabolic reprogramming, and drug distribution patterns—key factors in precision oncology.

Methods

This review is based on a comprehensive literature survey using databases such as PubMed, Scopus, and Web of Science. Studies were selected based on their relevance to recent innovations in MSI, particularly within cancer research and translational applications. Foundational landmark studies were also included to provide historical context and technological evolution.

Results

Significant technological progress has been made in Matrix-Assisted Laser Desorption/Ionization (MALDI) and Desorption Electrospray Ionization (DESI), including the development of MALDI-2 post-ionization and improvements in ambient DESI. These advancements have enhanced spatial resolution (to sub-10 µm), sensitivity, and molecular coverage. MSI applications have enabled high-resolution mapping of tumor microenvironments, drug localization, and discovery of spatially defined biomarkers. Additionally, integrative MSI approaches support multi-omic profiling, which aids in cancer subtype classification and provides insights into drug resistance and metabolic vulnerabilities.

Discussion

MALDI and DESI offer complementary advantages. MALDI excels in proteomic and biomarker studies with high spatial fidelity, while DESI operates under ambient conditions and is ideal for lipidomics and drug mapping. The integration of MSI with other spatial omics platforms and data-driven techniques has enhanced its utility in understanding tumor biology and therapeutic outcomes.

Conclusion

MSI is poised to become a cornerstone of precision oncology and spatial biology. While challenges remain in standardization, data complexity, and clinical adoption, continued advances in instrumentation, ambient ionization, and artificial intelligence–assisted data analysis are accelerating its translational impact. Ongoing innovations promise to bridge the gap between experimental cancer research and routine clinical applications.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110401212250806053745
2025-08-15
2025-10-29
Loading full text...

Full text loading...

References

  1. Hu H. Laskin J. Emerging computational methods in mass spectrometry imaging. Adv. Sci. (Weinh.) 2022 9 34 2203339 10.1002/advs.202203339 36253139
    [Google Scholar]
  2. Buchberger A.R. DeLaney K. Johnson J. Li L. Mass spectrometry imaging: A review of emerging advancements and future insights. Anal. Chem. 2018 90 1 240 265 10.1021/acs.analchem.7b04733 29155564
    [Google Scholar]
  3. Unsihuay D. Mesa Sanchez D. Laskin J. Quantitative mass spectrometry imaging of biological systems. Annu. Rev. Phys. Chem. 2021 72 1 307 329 10.1146/annurev‑physchem‑061020‑053416 33441032
    [Google Scholar]
  4. Ye H. Gemperline E. Li L. A vision for better health: Mass spectrometry imaging for clinical diagnostics. Clin. Chim. Acta 2013 420 11 22 10.1016/j.cca.2012.10.018 23078851
    [Google Scholar]
  5. Tortorella S. Tiberi P. Bowman A.P. Claes B.S.R. Ščupáková K. Heeren R.M.A. Ellis S.R. Cruciani G. LipostarMSI: Comprehensive, vendor-neutral software for visualization, data analysis, and automated molecular identification in mass spectrometry imaging. J. Am. Soc. Mass Spectrom. 2020 31 1 155 163 10.1021/jasms.9b00034 32881505
    [Google Scholar]
  6. Gessel M.M. Norris J.L. Caprioli R.M. MALDI imaging mass spectrometry: Spatial molecular analysis to enable a new age of discovery. J. Proteomics 2014 107 71 82 10.1016/j.jprot.2014.03.021 24686089
    [Google Scholar]
  7. Dong Y. Sonawane P. Cohen H. Polturak G. Feldberg L. Avivi S.H. Rogachev I. Aharoni A. High mass resolution, spatial metabolite mapping enhances the current plant gene and pathway discovery toolbox. New Phytol. 2020 228 6 1986 2002 10.1111/nph.16809 32654288
    [Google Scholar]
  8. Ma X. Fernández F.M. Advances in mass spectrometry imaging for spatial cancer metabolomics. Mass Spectrom. Rev. 2024 43 2 235 268 10.1002/mas.21804 36065601
    [Google Scholar]
  9. Ciocan-Cartita C.A. Jurj A. Buse M. Gulei D. Braicu C. Raduly L. Cojocneanu R. Pruteanu L.L. Iuga C.A. Coza O. Berindan-Neagoe I. The relevance of mass spectrometry analysis for personalized medicine through its successful application in cancer “Omics”. Int. J. Mol. Sci. 2019 20 10 2576 10.3390/ijms20102576 31130665
    [Google Scholar]
  10. Balluff B. Hanselmann M. Heeren R.M.A. Mass Spectrometry imaging for the investigation of intratumor heterogeneity. Adv. Cancer Research. 2017 134 201 223 10.1016/bs.acr.2016.11.008
    [Google Scholar]
  11. Sengupta D. Pratx G. Imaging metabolic heterogeneity in cancer. Mol. Cancer 2016 15 1 4 10.1186/s12943‑015‑0481‑3 26739333
    [Google Scholar]
  12. Bitto V Hönscheid P Besso MJ Enhancing Mass Spectrometry Imaging Accessibility Using Convolutional Autoencoders for Deriving Hypoxia-Associated Peptides from Tumors. NPJ Syst Biol Appl. 2024 10 57 10.1038/s41540‑024‑00385‑x
    [Google Scholar]
  13. Holbrook J.H. Kemper G.E. Hummon A.B. Quantitative mass spectrometry imaging: Therapeutics & biomolecules. Chem. Commun. (Camb.) 2024 60 16 2137 2151 10.1039/D3CC05988J 38284765
    [Google Scholar]
  14. Zhang H. Lu K.H. Ebbini M. Huang P. Lu H. Li L. Mass spectrometry imaging for spatially resolved multi-omics molecular mapping. npj Imaging 2024 2 1 20 10.1038/s44303‑024‑00025‑3 39036554
    [Google Scholar]
  15. Gawin M. Kurczyk A. Niemiec J. Stanek-Widera A. Grela-Wojewoda A. Adamczyk A. Biskup-Frużyńska M. Polańska J. Widłak P. Intra-tumor heterogeneity revealed by mass spectrometry imaging is associated with the prognosis of breast cancer. Cancers (Basel) 2021 13 17 4349 10.3390/cancers13174349 34503159
    [Google Scholar]
  16. Duncan K.D. Pětrošová H. Lum J.J. Goodlett D.R. Mass spectrometry imaging methods for visualizing tumor heterogeneity. Curr. Opin. Biotechnol. 2024 86 103068 10.1016/j.copbio.2024.103068 38310648
    [Google Scholar]
  17. Jacquemin V. Antoine M. Dom G. Detours V. Maenhaut C. Dumont J.E. Dynamic cancer cell heterogeneity: Diagnostic and therapeutic implications. Cancers 2022 14 2 280 10.3390/cancers14020280 35053446
    [Google Scholar]
  18. Gay L. Baker A.M. Graham T.A. Tumour Cell Heterogeneity. F1000Res. 2016 5 7210.1 10.12688/f1000research.7210.1
    [Google Scholar]
  19. Zhu L. Jiang M. Wang H. Sun H. Zhu J. Zhao W. Fang Q. Yu J. Chen P. Wu S. Zheng Z. He Y. A narrative review of tumor heterogeneity and challenges to tumor drug therapy. Ann. Transl. Med. 2021 9 16 1351 10.21037/atm‑21‑1948 34532488
    [Google Scholar]
  20. Nilsson A. Goodwin R.J.A. Shariatgorji M. Vallianatou T. Webborn P.J.H. Andrén P.E. Mass spectrometry imaging in drug development. Anal. Chem. 2015 87 3 1437 1455 10.1021/ac504734s 25526173
    [Google Scholar]
  21. Hristova J. Svinarov D. Enhancing precision medicine through clinical mass spectrometry platform. Biotechnol. Biotechnol. Equip. 2022 36 1 107 117 10.1080/13102818.2022.2053342
    [Google Scholar]
  22. Greer T. Sturm R. Li L. Mass spectrometry imaging for drugs and metabolites. J. Proteomics 2011 74 12 2617 2631 10.1016/j.jprot.2011.03.032 21515430
    [Google Scholar]
  23. Djambazova K.V. Van Ardenne J.M. Spraggins J.M. Advances in imaging mass spectrometry for biomedical and clinical research. Trends Analyt. Chem. 2023 169 117344 10.1016/j.trac.2023.117344 38045023
    [Google Scholar]
  24. Heeren R.M.A. MALDI techniques in mass spectrometry imaging. Encyclopedia of Spectroscopy and Spectrometry. 3rd ed Lindon J.C. Tranter G.E. Koppenaal D.W. Amsterdam Elsevier 2017 711 718 10.1016/B978‑0‑12‑803224‑4.00008‑X
    [Google Scholar]
  25. Porta Siegel T. Hamm G. Bunch J. Cappell J. Fletcher J.S. Schwamborn K. Mass spectrometry imaging and integration with other imaging modalities for greater molecular understanding of biological tissues. Mol. Imaging Biol. 2018 20 6 888 901 10.1007/s11307‑018‑1267‑y 30167993
    [Google Scholar]
  26. Xue J. Bai Y. Liu H. Recent advances in ambient mass spectrometry imaging. Trends Analyt. Chem. 2019 120 115659 10.1016/j.trac.2019.115659
    [Google Scholar]
  27. Baijnath S. Kaya I. Nilsson A. Shariatgorji R. Andrén P.E. Advances in spatial mass spectrometry enable in-depth neuropharmacodynamics. Trends Pharmacol. Sci. 2022 43 9 740 753 10.1016/j.tips.2022.06.005 35803758
    [Google Scholar]
  28. Zaima N. Hayasaka T. Goto-Inoue N. Setou M. Matrix-assisted laser desorption/ionization imaging mass spectrometry. Int. J. Mol. Sci. 2010 11 12 5040 5055 10.3390/ijms11125040 21614190
    [Google Scholar]
  29. Nunes J.B. Ijsselsteijn M.E. Abdelaal T. Ursem R. van der Ploeg M. Giera M. Everts B. Mahfouz A. Heijs B. de Miranda N.F.C.C. Integration of mass cytometry and mass spectrometry imaging for spatially resolved single-cell metabolic profiling. Nat. Methods 2024 21 10 1796 1800 10.1038/s41592‑024‑02392‑6 39210066
    [Google Scholar]
  30. Pinto C.A. Widodo E. Waltham M. Thompson E.W. Breast cancer stem cells and epithelial mesenchymal plasticity – Implications for chemoresistance. Cancer Lett. 2013 341 1 56 62 10.1016/j.canlet.2013.06.003 23830804
    [Google Scholar]
  31. Ramón y Cajal S. Sesé M. Capdevila C. Aasen T. De Mattos-Arruda L. Diaz-Cano S.J. Hernández-Losa J. Castellví J. Clinical implications of intratumor heterogeneity: Challenges and opportunities. J. Mol. Med. (Berl.) 2020 98 2 161 177 10.1007/s00109‑020‑01874‑2 31970428
    [Google Scholar]
  32. Lim Z.F. Ma P.C. Emerging insights of tumor heterogeneity and drug resistance mechanisms in lung cancer targeted therapy. J. Hematol. Oncol. 2019 12 1 134 10.1186/s13045‑019‑0818‑2 31815659
    [Google Scholar]
  33. Spruill M.L. Maletic-Savatic M. Martin H. Li F. Liu X. Spatial analysis of drug absorption, distribution, metabolism, and toxicology using mass spectrometry imaging. Biochem. Pharmacol. 2022 201 115080 10.1016/j.bcp.2022.115080 35561842
    [Google Scholar]
  34. Granborg J.R. Handler A.M. Janfelt C. Mass spectrometry imaging in drug distribution and drug metabolism studies – Principles, applications and perspectives. Trends Analyt. Chem. 2022 146 116482 10.1016/j.trac.2021.116482
    [Google Scholar]
  35. McKinnon J.C. Balez R. Young R.S.E. Brown M.L. Lum J.S. Robinson L. Belov M.E. Ooi L. Tortorella S. Mitchell T.W. Ellis S.R. MALDI-2-enabled oversampling for the mass spectrometry imaging of metabolites at single-cell resolution. J. Am. Soc. Mass Spectrom. 2024 35 11 2729 2742 10.1021/jasms.4c00241 39137242
    [Google Scholar]
  36. Birhanu A.G. Mass spectrometry-based proteomics as an emerging tool in clinical laboratories. Clin. Proteomics 2023 20 1 32 10.1186/s12014‑023‑09424‑x 37633929
    [Google Scholar]
  37. Aparna C.H. Madhavi Latha N. Supriya P. Gowrisankar D. A review on matrix-assisted laser desorption/ionization mass spectroscopy. Asian J. Pharm. Clin. Res. 2015 8 5 28 33
    [Google Scholar]
  38. Planque M. Igelmann S. Ferreira Campos A.M. Fendt S.M. Spatial metabolomics principles and application to cancer research. Curr. Opin. Chem. Biol. 2023 76 102362 10.1016/j.cbpa.2023.102362 37413787
    [Google Scholar]
  39. Darie-Ion L. Whitham D. Jayathirtha M. Rai Y. Neagu A.N. Darie C.C. Petre B.A. Applications of MALDI-MS/MS-based proteomics in biomedical research. Molecules 2022 27 19 6196 10.3390/molecules27196196 36234736
    [Google Scholar]
  40. Walch A. Rauser S. Deininger S.O. Höfler H. MALDI imaging mass spectrometry for direct tissue analysis: A new frontier for molecular histology. Histochem. Cell Biol. 2008 130 3 421 434 10.1007/s00418‑008‑0469‑9 18618129
    [Google Scholar]
  41. Rohner T.C. Staab D. Stoeckli M. MALDI mass spectrometric imaging of biological tissue sections. Mech. Ageing Dev. 2005 126 1 177 185 10.1016/j.mad.2004.09.032 15610777
    [Google Scholar]
  42. Hermann J. Noels H. Theelen W. Lellig M. Orth-Alampour S. Boor P. Jankowski V. Jankowski J. Sample preparation of formalin-fixed paraffin-embedded tissue sections for MALDI-mass spectrometry imaging. Anal. Bioanal. Chem. 2020 412 6 1263 1275 10.1007/s00216‑019‑02296‑x 31989198
    [Google Scholar]
  43. Lemaire R. Desmons A. Tabet J.C. Day R. Salzet M. Fournier I. Direct analysis and MALDI imaging of formalin-fixed, paraffin-embedded tissue sections. J. Proteome Res. 2007 6 4 1295 1305 10.1021/pr060549i 17291023
    [Google Scholar]
  44. Zhu X. Xu T. Peng C. Wu S. Advances in MALDI mass spectrometry imaging single cell and tissues. Front Chem. 2022 9 782432 10.3389/fchem.2021.782432 35186891
    [Google Scholar]
  45. He M.J. Pu W. Wang X. Zhang W. Tang D. Dai Y. Comparing DESI-MSI and MALDI-MSI mediated spatial metabolomics and their applications in cancer studies. Front. Oncol. 2022 12 891018 10.3389/fonc.2022.891018 35924152
    [Google Scholar]
  46. Baker T.C. Han J. Borchers C.H. Recent advancements in matrix-assisted laser desorption/ionization mass spectrometry imaging. Curr. Opin. Biotechnol. 2017 43 62 69 10.1016/j.copbio.2016.09.003 27690313
    [Google Scholar]
  47. Wu Q. Comi T.J. Li B. Rubakhin S.S. Sweedler J.V. On-tissue derivatization via electrospray deposition for matrix-assisted laser desorption/ionization mass spectrometry imaging of endogenous fatty acids in rat brain tissues. Anal. Chem. 2016 88 11 5988 5995 10.1021/acs.analchem.6b01021 27181709
    [Google Scholar]
  48. Morato N.M. Cooks R.G. Desorption electrospray ionization mass spectrometry: 20 years. Acc. Chem. Res. 2023 56 18 2526 2536 10.1021/acs.accounts.3c00382 37671799
    [Google Scholar]
  49. Wiseman J.M. Laughlin B.C. Desorption Electrospray Ionization (DESI) mass spectrometry: A brief introduction and overview. Curr Sep Drug Dev 2023 56 18 2526 10.1021/acs.accounts.3c00382.
    [Google Scholar]
  50. Santagata S. Eberlin L.S. Norton I. Calligaris D. Feldman D.R. Ide J.L. Liu X. Wiley J.S. Vestal M.L. Ramkissoon S.H. Orringer D.A. Gill K.K. Dunn I.F. Dias-Santagata D. Ligon K.L. Jolesz F.A. Golby A.J. Cooks R.G. Agar N.Y.R. Intraoperative mass spectrometry mapping of an onco-metabolite to guide brain tumor surgery. Proc. Natl. Acad. Sci. USA 2014 111 30 11121 11126 10.1073/pnas.1404724111 24982150
    [Google Scholar]
  51. Brown H.M. Alfaro C.M. Pirro V. Dey M. Hattab E.M. Cohen-Gadol A.A. Cooks R.G. Intraoperative mass spectrometry platform for IDH mutation status prediction, glioma diagnosis, and estimation of tumor cell infiltration. J. Appl. Lab. Med. 2021 6 4 902 916 10.1093/jalm/jfaa233 33523209
    [Google Scholar]
  52. Eberlin L.S. Ferreira C.R. Dill A.L. Ifa D.R. Cooks R.G. Desorption electrospray ionization mass spectrometry for lipid characterization and biological tissue imaging. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2011 1811 11 946 960 10.1016/j.bbalip.2011.05.006 21645635
    [Google Scholar]
  53. Rankin-Turner S. Heaney L.M. Applications of ambient ionization mass spectrometry in 2020: An annual review. Anal. Sci. Adv. 2021 2 3-4 193 212 10.1002/ansa.202000135 38716454
    [Google Scholar]
  54. Nygren H. Malmberg P. High resolution imaging by organic secondary ion mass spectrometry. Trends Biotechnol. 2007 25 11 499 504 10.1016/j.tibtech.2007.07.010 17920142
    [Google Scholar]
  55. Petras D. Jarmusch A.K. Dorrestein P.C. From single cells to our planet—recent advances in using mass spectrometry for spatially resolved metabolomics. Curr. Opin. Chem. Biol. 2017 36 24 31 10.1016/j.cbpa.2016.12.018 28086192
    [Google Scholar]
  56. Zhao F.J. Moore K.L. Lombi E. Zhu Y.G. Imaging nlm distribution and speciation in plant cells. Trends Plant Sci. 2014 19 3 183 192 10.1016/j.tplants.2013.12.001 24394523
    [Google Scholar]
  57. Fletcher J.S. Sämfors S. Vallin J. Svanström A. Grantham J. Correlated fluorescence microscopy and multi-ion beam secondary ion mass spectrometry imaging reveals phosphatidylethanolamine increases in the membrane of cancer cells over-expressing the molecular chaperone subunit CCTδ. Anal. Bioanal. Chem. 2021 413 2 445 453 10.1007/s00216‑020‑03013‑9 33130974
    [Google Scholar]
  58. Penen F. Raavé R. Kip A. Heskamp S. Malmberg P. Time of flight secondary ion mass spectrometry imaging for precise localization of zirconium-labelled trastuzumab in xenograft cancer tumour tissues. Microchem. J. 2022 181 107860 10.1016/j.microc.2022.107860
    [Google Scholar]
  59. Chandra S. Lorey D.R. II SIMS ion microscopy in cancer research: Single cell isotopic imaging for chemical composition, cytotoxicity and cell cycle recognition. Cell. Mol. Biol. 2001 47 3 503 518 11441958
    [Google Scholar]
  60. Gorman B.L. Kraft M.L. High-resolution secondary ion mass spectrometry analysis of cell membranes. Anal. Chem. 2020 92 2 1645 1652 10.1021/acs.analchem.9b04492 31854976
    [Google Scholar]
  61. Jia F. Zhao X. Zhao Y. Advancements in ToF-SIMS imaging for life sciences. Front Chem. 2023 11 1237408 10.3389/fchem.2023.1237408 37693171
    [Google Scholar]
  62. Lee S. Verkhoturov D.S. Eller M.J. Nanoprojectile secondary ion mass spectrometry enables multiplexed analysis of individual hepatic extracellular vesicles. bioRxiv 2023 2023.08.21.554053 10.1101/2023.08.21.554053
    [Google Scholar]
  63. Fragu P. Klijanienko J. Gandia D. Halpern S. Armand J.P. Quantitative mapping of 4′-iododeoxyrubicin in metastatic squamous cellcarcinoma by secondary ion mass spectrometry (SIMS) microscopy. Cancer Res. 1992 52 4 974 977 1737359
    [Google Scholar]
  64. Jungnickel H. Laux P. Luch A. Time-of-flight secondary ion mass spectrometry (ToF-SIMS): A new tool for the analysis of toxicological effects on single cell level. Toxics 2016 4 1 5 10.3390/toxics4010005 29051411
    [Google Scholar]
  65. Passarelli M Pirkl A Moellers R The 3D OrbiSIMS—Label-Free Metabolic Imaging with Subcellular Lateral Resolution and High Mass-Resolving Power. Nat Methods. 2017 14 10 4504 10.1038/nmeth.4504
    [Google Scholar]
  66. Kumar B.S. Desorption electrospray ionization mass spectrometry imaging (DESI-MSI) in disease diagnosis: an overview. Anal. Methods 2023 15 31 3768 3784 10.1039/D3AY00867C 37503728
    [Google Scholar]
  67. Qi K. Wu L. Liu C. Pan Y. Recent advances of ambient mass spectrometry imaging and its applications in lipid and metabolite analysis. Metabolites 2021 11 11 780 10.3390/metabo11110780 34822438
    [Google Scholar]
  68. Lanekoff I. Laskin J. Imaging of lipids and metabolites using nanospray desorption electrospray ionization mass spectrometry. Methods Mol. Biol. 2015 1203 99 106 10.1007/978‑1‑4939‑1357‑2_10 25361670
    [Google Scholar]
  69. Iqfath M. Wali S.N. Amer S. Hernly E. Laskin J. Nanospray desorption electrospray ionization mass spectrometry imaging (nano-DESI MSI): a tutorial review. ACS Meas. Sci. Au 2024 4 5 475 487 10.1021/acsmeasuresciau.4c00028 39430971
    [Google Scholar]
  70. Yin R. Burnum-Johnson K.E. Sun X. Dey S.K. Laskin J. High spatial resolution imaging of biological tissues using nanospray desorption electrospray ionization mass spectrometry. Nat. Protoc. 2019 14 12 3445 3470 10.1038/s41596‑019‑0237‑4 31723300
    [Google Scholar]
  71. Unsihuay D. Qiu J. Swaroop S. Nagornov K.O. Kozhinov A.N. Tsybin Y.O. Kuang S. Laskin J. Imaging of triglycerides in tissues using nanospray desorption electrospray ionization (Nano-DESI) mass spectrometry. Int. J. Mass Spectrom. 2020 448 116269 10.1016/j.ijms.2019.116269 32863736
    [Google Scholar]
  72. Nguyen S.N. Kyle J.E. Dautel S.E. Sontag R. Luders T. Corley R. Ansong C. Carson J. Laskin J. Lipid coverage in nanospray desorption electrospray ionization mass spectrometry imaging of mouse lung tissues. Anal. Chem. 2019 91 18 11629 11635 10.1021/acs.analchem.9b02045 31412198
    [Google Scholar]
  73. Unsihuay D. Yin R. Sanchez D.M. Yang M. Li Y. Sun X. Dey S.K. Laskin J. High-resolution imaging and identification of biomolecules using Nano-DESI coupled to ion mobility spectrometry. Anal. Chim. Acta 2021 1186 339085 10.1016/j.aca.2021.339085 34756271
    [Google Scholar]
  74. Jiang L.X. Hilger R.T. Laskin J. Hardware and software solutions for implementing nanospray desorption electrospray ionization (nano‐DESI) sources on commercial mass spectrometers. J. Mass Spectrom. 2024 59 7 e5065 10.1002/jms.5065 38866597
    [Google Scholar]
  75. Duncan K.D. Bergman H.M. Lanekoff I. A pneumatically assisted nanospray desorption electrospray ionization source for increased solvent versatility and enhanced metabolite detection from tissue. Analyst (Lond.) 2017 142 18 3424 3431 10.1039/C7AN00901A 28828451
    [Google Scholar]
  76. Yang M. Unsihuay D. Hu H. Nguele Meke F. Qu Z. Zhang Z.Y. Laskin J. Nano-DESI mass spectrometry imaging of proteoforms in biological tissues with high spatial resolution. Anal. Chem. 2023 95 12 5214 5222 10.1021/acs.analchem.2c04795 36917636
    [Google Scholar]
  77. Hale O.J. Cooper H.J. Native mass spectrometry imaging of proteins and protein complexes by nano-desi. Anal. Chem. 2021 93 10 4619 4627 10.1021/acs.analchem.0c05277 33661614
    [Google Scholar]
  78. Qin M. Qian Y. Huang L. Zhong C. Li M. Yu J. Chen H. Extractive electrospray ionization mass spectrometry for analytical evaluation and synthetic preparation of pharmaceutical chemicals. Front. Pharmacol. 2023 14 1110900 10.3389/fphar.2023.1110900 36713836
    [Google Scholar]
  79. Gu H. Xu N. Chen H. Direct analysis of biological samples using extractive electrospray ionization mass spectrometry (EESI-MS). Anal. Bioanal. Chem. 2012 403 8 2145 2153 10.1007/s00216‑012‑5874‑1 22434271
    [Google Scholar]
  80. Koyanagi G.K. Blagojevic V. Bohme D.K. Applications of extractive electrospray ionization (EESI) in analytical chemistry. Int. J. Mass Spectrom. 2015 379 146 150 10.1016/j.ijms.2015.01.011
    [Google Scholar]
  81. Lu H. Ye J. Wei Y. Tracing molecular margins of lung cancer by internal extractive electrospray ionization mass spectrometry. Chin. Chem. Lett. 2024 110077 10.1016/j.cclet.2024.110077
    [Google Scholar]
  82. Zheng Q. Zhang J. Wang X. Zhang W. Xiao Y. Hu S. Xu J. Neutral desorption extractive electrospray ionization mass spectrometry analysis sputum for non-invasive lung adenocarcinoma detection. OncoTargets Ther. 2021 14 469 479 10.2147/OTT.S269300 33488101
    [Google Scholar]
  83. Zuo W. Bai W. Gan X. Xu F. Wen G. Zhang W. Detection of lung cancer by analysis of exhaled gas utilizing extractive electrospray ionization-mass spectroscopy. J. Biomed. Nanotechnol. 2019 15 4 633 646 10.1166/jbn.2019.2719 30841959
    [Google Scholar]
  84. Sukhikh G. Chagovets V. Wang X. Rodionov V. Kometova V. Tokareva A. Kononikhin A. Starodubtseva N. Chingin K. Chen H. Frankevich V. Combination of low-temperature electrosurgical unit and extractive electrospray ionization mass spectrometry for molecular profiling and classification of tissues. Molecules 2019 24 16 2957 10.3390/molecules24162957 31443190
    [Google Scholar]
  85. Luo Z. He J. Chen Y. He J. Gong T. Tang F. Wang X. Zhang R. Huang L. Zhang L. Lv H. Ma S. Fu Z. Chen X. Yu S. Abliz Z. Air flow-assisted ionization imaging mass spectrometry method for easy whole-body molecular imaging under ambient conditions. Anal. Chem. 2013 85 5 2977 2982 10.1021/ac400009s 23384246
    [Google Scholar]
  86. Tang F. Chen Y. He J.M. Luo Z-G. Abliz Z. Wang X-H. Design and performance of air flow-assisted ionization imaging mass spectrometry system. Chin. Chem. Lett. 2014 25 5 687 692 10.1016/j.cclet.2014.01.046
    [Google Scholar]
  87. Sun C. Li T. Song X. Huang L. Zang Q. Xu J. Bi N. Jiao G. Hao Y. Chen Y. Zhang R. Luo Z. Li X. Wang L. Wang Z. Song Y. He J. Abliz Z. Spatially resolved metabolomics to discover tumor-associated metabolic alterations. Proc. Natl. Acad. Sci. USA 2019 116 1 52 57 10.1073/pnas.1808950116 30559182
    [Google Scholar]
  88. Lv Y. Li T. Guo C. Sun C. Tang F. Huang L. Luo Z. Li X. Zhang R. Zang Q. He J. Abliz Z. A high-performance bio-tissue imaging method using air flow-assisted desorption electrospray ionization coupled with a high-resolution mass spectrometer. Chin. Chem. Lett. 2019 30 2 461 464 10.1016/j.cclet.2018.06.006
    [Google Scholar]
  89. Li T. He J. Mao X. Bi Y. Luo Z. Guo C. Tang F. Xu X. Wang X. Wang M. Chen J. Abliz Z. In situ biomarker discovery and label-free molecular histopathological diagnosis of lung cancer by ambient mass spectrometry imaging. Sci. Rep. 2015 5 1 14089 10.1038/srep14089 26404114
    [Google Scholar]
  90. Xiao Y. Li Y. Zhao H. Spatiotemporal metabolomic approaches to the cancer-immunity panorama: A methodological perspective. Mol. Cancer 2024 23 1 202 10.1186/s12943‑024‑02113‑9 39294747
    [Google Scholar]
  91. Nemes P. Vertes A. Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry. Anal. Chem. 2007 79 21 8098 8106 10.1021/ac071181r 17900146
    [Google Scholar]
  92. Bokhart M.T. Muddiman D.C. Infrared matrix-assisted laser desorption electrospray ionization mass spectrometry imaging analysis of biospecimens. Analyst (Lond.) 2016 141 18 5236 5245 10.1039/C6AN01189F 27484166
    [Google Scholar]
  93. Knizner K.T. Guymon J.P. Garrard K.P. Bouvrée G. Manni J. Hauschild J.P. Strupat K. Fort K.L. Earley L. Wouters E.R. Pu F. Radosevich A.J. Elsen N.L. Williams J.D. Pankow M.R. Muddiman D.C. Next-generation infrared matrix-assisted laser desorption electrospray ionization source for mass spectrometry imaging and high-throughput screening. J. Am. Soc. Mass Spectrom. 2022 33 11 2070 2077 10.1021/jasms.2c00178 36173393
    [Google Scholar]
  94. van Geenen F.A.M.G. Claassen F.W. Franssen M.C.R. Zuilhof H. Nielen M.W.F. Laser ablation electrospray ionization hydrogen/deuterium exchange ambient mass spectrometry imaging. J. Am. Soc. Mass Spectrom. 2020 31 2 249 256 10.1021/jasms.9b00082 32031404
    [Google Scholar]
  95. Robichaud G. Barry J.A. Muddiman D.C. IR-MALDESI mass spectrometry imaging of biological tissue sections using ice as a matrix. J. Am. Soc. Mass Spectrom. 2014 25 3 319 328 10.1007/s13361‑013‑0787‑6 24385399
    [Google Scholar]
  96. Barry J.A. Groseclose M.R. Robichaud G. Castellino S. Muddiman D.C. Assessing drug and metabolite detection in liver tissue by UV-MALDI and IR-MALDESI mass spectrometry imaging coupled to FT-ICR MS. Int. J. Mass Spectrom. 2015 377 448 455 10.1016/j.ijms.2014.05.012 26056514
    [Google Scholar]
  97. Nemes P. Barton A.A. Li Y. Vertes A. Ambient molecular imaging and depth profiling of live tissue by infrared laser ablation electrospray ionization mass spectrometry. Anal. Chem. 2008 80 12 4575 4582 10.1021/ac8004082 18473485
    [Google Scholar]
  98. Sampson J.S. Murray K.K. Muddiman D.C. Intact and top-down characterization of biomolecules and direct analysis using infrared matrix-assisted laser desorption electrospray ionization coupled to FT-ICR mass spectrometry. J. Am. Soc. Mass Spectrom. 2009 20 4 667 673 10.1016/j.jasms.2008.12.003 19185512
    [Google Scholar]
  99. Li D. Ouyang Z. Ma X. Mass spectrometry imaging for single-cell or subcellular lipidomics: A review of recent advancements and future development. Molecules 2023 28 6 2712 10.3390/molecules28062712 36985684
    [Google Scholar]
  100. Chan Y.H. Pathmasiri K.C. Pierre-Jacques D. Hibbard M.C. Tao N. Fischer J.L. Yang E. Cologna S.M. Gao R. Gel-assisted mass spectrometry imaging enables sub-micrometer spatial lipidomics. Nat. Commun. 2024 15 1 5036 10.1038/s41467‑024‑49384‑w 38866734
    [Google Scholar]
  101. Passarelli M.K. Ewing A.G. Single-cell imaging mass spectrometry. Curr. Opin. Chem. Biol. 2013 17 5 854 859 10.1016/j.cbpa.2013.07.017 23948695
    [Google Scholar]
  102. Niehaus M. Soltwisch J. Belov M.E. Dreisewerd K. Transmission-mode MALDI-2 mass spectrometry imaging of cells and tissues at subcellular resolution. Nat. Methods 2019 16 9 925 931 10.1038/s41592‑019‑0536‑2 31451764
    [Google Scholar]
  103. Yin Z. Cheng X. Liu R. Li X. Hang L. Hang W. Xu J. Yan X. Li J. Tian Z. Chemical and topographical single-cell imaging by near-field desorption mass spectrometry. Angew. Chem. Int. Ed. 2019 58 14 4541 4546 10.1002/anie.201813744 30600882
    [Google Scholar]
  104. Towle Z. Cruickshank F. Mackay C.L. Clarke D.J. Horsfall L.E. Utilising Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) to track the oxidation of lignin by an alkaliphilic laccase. Analyst (Lond.) 2024 149 8 2399 2411 10.1039/D4AN00124A 38477231
    [Google Scholar]
  105. Marshall A.G. Hendrickson C.L. Jackson G.S. Fourier transform ion cyclotron resonance mass spectrometry: A primer. Mass Spectrom. Rev. 1998 17 1 1 35 10.1002/(SICI)1098‑2787(1998)17:1<1::AID‑MAS1>3.0.CO;2‑K 9768511
    [Google Scholar]
  106. Soltwisch J. Heijs B. Koch A. Vens-Cappell S. Höhndorf J. Dreisewerd K. MALDI-2 on a trapped ion mobility quadrupole time-of-flight instrument for rapid mass spectrometry imaging and ion mobility separation of complex lipid profiles. Anal. Chem. 2020 92 13 8697 8703 10.1021/acs.analchem.0c01747 32449347
    [Google Scholar]
  107. Cochran D. Powers R. Fourier transform ion cyclotron resonance mass spectrometry applications for metabolomics. Biomedicines 2024 12 8 1786 10.3390/biomedicines12081786 39200250
    [Google Scholar]
  108. Bowman A.P. Blakney G.T. Hendrickson C.L. Ellis S.R. Heeren R.M.A. Smith D.F. Ultra-high mass resolving power, mass accuracy, and dynamic range maldi mass spectrometry imaging by 21-T FT-ICR MS. Anal. Chem. 2020 92 4 3133 3142 10.1021/acs.analchem.9b04768 31955581
    [Google Scholar]
  109. Vickerman J.C. Molecular imaging and depth profiling by mass spectrometry—SIMS, MALDI or DESI? Analyst (Lond.) 2011 136 11 2199 2217 10.1039/c1an00008j 21461433
    [Google Scholar]
  110. Goodwin R.J.A. Takats Z. Bunch J. A critical and concise review of mass spectrometry applied to imaging in drug discovery. SLAS Discov. 2020 25 9 963 976 10.1177/2472555220941843 32713279
    [Google Scholar]
  111. Ikegawa M. Kakuda N. Miyasaka T. Toyama Y. Nirasawa T. Minta K. Hanrieder J. Mass spectrometry imaging in Alzheimer’s disease. Brain Connect. 2023 13 6 319 333 10.1089/brain.2022.0057 36905365
    [Google Scholar]
  112. Reyzer M.L. Chaurand P. Angel P.M. Caprioli R.M. Direct molecular analysis of whole-body animal tissue sections by MALDI imaging mass spectrometry. Methods Mol. Biol. 2010 656 285 301 10.1007/978‑1‑60761‑746‑4_17 20680598
    [Google Scholar]
  113. Bruand J. Sistla S. Mériaux C. Dorrestein P.C. Gaasterland T. Ghassemian M. Wisztorski M. Fournier I. Salzet M. Macagno E. Bafna V. Automated querying and identification of novel peptides using MALDI mass spectrometric imaging. J. Proteome Res. 2011 10 4 1915 1928 10.1021/pr101159e 21332220
    [Google Scholar]
  114. Bien T. Koerfer K. Schwenzfeier J. Dreisewerd K. Soltwisch J. Mass spectrometry imaging to explore molecular heterogeneity in cell culture. Proc. Natl. Acad. Sci. USA 2022 119 29 e2114365119 10.1073/pnas.2114365119 35858333
    [Google Scholar]
  115. Liang Y. Feng Q. Wang Z. Mass Spectrometry imaging as a new method: To reveal the pathogenesis and the mechanism of traditional medicine in cerebral ischemia. Front. Pharmacol. 2022 13 887050 10.3389/fphar.2022.887050 35721195
    [Google Scholar]
  116. Caprioli R.M. Imaging mass spectrometry: Molecular microscopy for the new age of biology and medicine. Proteomics 2016 16 11-12 1607 1612 10.1002/pmic.201600133 27159897
    [Google Scholar]
  117. Levenson R.M. Borowsky A.D. Angelo M. Immunohistochemistry and mass spectrometry for highly multiplexed cellular molecular imaging. Lab. Invest. 2015 95 4 397 405 10.1038/labinvest.2015.2 25730370
    [Google Scholar]
  118. Balluff B. Heeren R.M.A. Race A.M. An overview of image registration for aligning mass spectrometry imaging with clinically relevant imaging modalities. J. Mass Spectrom. Adv. Clin. Lab 2022 23 26 38 10.1016/j.jmsacl.2021.12.006 35156074
    [Google Scholar]
  119. Chen R. Snyder M. Promise of personalized omics to precision medicine. Wiley Interdiscip. Rev. Syst. Biol. Med. 2013 5 1 73 82 10.1002/wsbm.1198 23184638
    [Google Scholar]
  120. Jove M. Spencer J. Clench M. Loadman P.M. Twelves C. Precision pharmacology: Mass spectrometry imaging and pharmacokinetic drug resistance. Crit. Rev. Oncol. Hematol. 2019 141 153 162 10.1016/j.critrevonc.2019.06.008 31302407
    [Google Scholar]
  121. Scott A.J. Jones J.W. Orschell C.M. MacVittie T.J. Kane M.A. Ernst R.K. Mass spectrometry imaging enriches biomarker discovery approaches with candidate mapping. Health Phys. 2014 106 1 120 128 10.1097/HP.0b013e3182a4ec2f 24276555
    [Google Scholar]
  122. Tebani A. Afonso C. Marret S. Bekri S. Omics-based strategies in precision medicine: Toward a paradigm shift in inborn errors of metabolism investigations. Int. J. Mol. Sci. 2016 17 9 1555 10.3390/ijms17091555 27649151
    [Google Scholar]
  123. Kwon Y.W. Jo H.S. Bae S. Seo Y. Song P. Song M. Yoon J.H. Application of proteomics in cancer: Recent trends and approaches for biomarkers discovery. Front. Med. (Lausanne) 2021 8 747333 10.3389/fmed.2021.747333 34631760
    [Google Scholar]
  124. Zhang Y. Guillermier C. De Raedt T. Cox A.G. Maertens O. Yimlamai D. Lun M. Whitney A. Maas R.L. Goessling W. Cichowski K. Steinhauser M.L. Imaging mass spectrometry reveals tumor metabolic heterogeneity. iScience 2020 23 8 101355 10.1016/j.isci.2020.101355 32712466
    [Google Scholar]
  125. Moiso E. Provero P. Cancer Metabolic Subtypes and Their Association with Molecular and Clinical Features. Cancers 2022 14 9 2145 10.3390/cancers14092145 35565274
    [Google Scholar]
  126. Prieto D.A. Johann D.J. Jr Wei B.R. Ye X. Chan K.C. Nissley D.V. Simpson R.M. Citrin D.E. Mackall C.L. Linehan W.M. Blonder J. Mass spectrometry in cancer biomarker research: A case for immunodepletion of abundant blood-derived proteins from clinical tissue specimens. Biomarkers Med. 2014 8 2 269 286 10.2217/bmm.13.101 24521024
    [Google Scholar]
  127. Nishidate M. Hayashi M. Aikawa H. Tanaka K. Nakada N. Miura S. Ryu S. Higashi T. Ikarashi Y. Fujiwara Y. Hamada A. Applications of MALDI mass spectrometry imaging for pharmacokinetic studies during drug development. Drug Metab. Pharmacokinet. 2019 34 4 209 216 10.1016/j.dmpk.2019.04.006 31101590
    [Google Scholar]
  128. Fuchs K. Kiss A. Bize P.E. Duran R. Denys A. Hopfgartner G. Borchard G. Jordan O. Mapping of drug distribution in the rabbit liver tumor model by complementary fluorescence and mass spectrometry imaging. J. Control. Release 2018 269 128 135 10.1016/j.jconrel.2017.10.042 29101054
    [Google Scholar]
  129. Fujiwara Y. Furuta M. Manabe S. Koga Y. Yasunaga M. Matsumura Y. Imaging mass spectrometry for the precise design of antibody-drug conjugates. Sci. Rep. 2016 6 1 24954 10.1038/srep24954 27098163
    [Google Scholar]
  130. Liu X. Flinders C. Mumenthaler S.M. Hummon A.B. MALDI mass spectrometry imaging for evaluation of therapeutics in colorectal tumor organoids. J. Am. Soc. Mass Spectrom. 2018 29 3 516 526 10.1007/s13361‑017‑1851‑4 29209911
    [Google Scholar]
  131. Zhang J. Du Q. Song X. Gao S. Pang X. Li Y. Zhang R. Abliz Z. He J. Evaluation of the tumor-targeting efficiency and intratumor heterogeneity of anticancer drugs using quantitative mass spectrometry imaging. Theranostics 2020 10 6 2621 2630 10.7150/thno.41763 32194824
    [Google Scholar]
  132. Abu Sammour D. Marsching C. Geisel A. Erich K. Schulz S. Ramallo Guevara C. Rabe J.H. Marx A. Findeisen P. Hohenberger P. Hopf C. Quantitative mass spectrometry imaging reveals mutation status-independent lack of imatinib in liver metastases of gastrointestinal stromal tumors. Sci. Rep. 2019 9 1 10698 10.1038/s41598‑019‑47089‑5 31337874
    [Google Scholar]
  133. Crutchfield C.A. Thomas S.N. Sokoll L.J. Chan D.W. Advances in mass spectrometry-based clinical biomarker discovery. Clin. Proteomics 2016 13 1 1 10.1186/s12014‑015‑9102‑9 26751220
    [Google Scholar]
  134. Diamandis E.P. Mass spectrometry as a diagnostic and a cancer biomarker discovery tool: opportunities and potential limitations. Mol. Cell. Proteomics 2004 3 4 367 378 10.1074/mcp.R400007‑MCP200 14990683
    [Google Scholar]
  135. Liu C. The application of SELDI-TOF-MS in clinical diagnosis of cancers. BioMed Res. Int. 2011 2011 1 245821 10.1155/2011/245821 21687541
    [Google Scholar]
  136. Jones E.A. Schmitz N. Waaijer C.J.F. Frese C.K. van Remoortere A. van Zeijl R.J.M. Heck A.J.R. Hogendoorn P.C.W. Deelder A.M. Altelaar A.F.M. Bovée J.V.M.G. McDonnell L.A. Imaging mass spectrometry-based molecular histology differentiates microscopically identical and heterogeneous tumors. J. Proteome Res. 2013 12 4 1847 1855 10.1021/pr301190g 23480610
    [Google Scholar]
  137. Zhang A. Miao K. Sun H. Deng C.X. Tumor heterogeneity reshapes the tumor microenvironment to influence drug resistance. Int. J. Biol. Sci. 2022 18 7 3019 3033 10.7150/ijbs.72534 35541919
    [Google Scholar]
  138. Salemme V. Centonze G. Avalle L. Natalini D. Piccolantonio A. Arina P. Morellato A. Ala U. Taverna D. Turco E. Defilippi P. The role of tumor microenvironment in drug resistance: Emerging technologies to unravel breast cancer heterogeneity. Front. Oncol. 2023 13 1170264 10.3389/fonc.2023.1170264 37265795
    [Google Scholar]
  139. Giordano S. Morosi L. Veglianese P. Licandro S.A. Frapolli R. Zucchetti M. Cappelletti G. Falciola L. Pifferi V. Visentin S. D’Incalci M. Davoli E. 3D Mass spectrometry imaging reveals a very heterogeneous drug distribution in tumors. Sci. Rep. 2016 6 1 37027 10.1038/srep37027 27841316
    [Google Scholar]
  140. Agostini M. Traldi P. Hamdan M. Mass spectrometry-based proteomics: Analyses related to drug-resistance and disease biomarkers. Medicina (Kaunas) 2023 59 10 1722 10.3390/medicina59101722 37893440
    [Google Scholar]
  141. Zhang Z. Bao C. Jiang L. Wang S. Wang K. Lu C. Fang H. When cancer drug resistance meets metabolomics (bulk, single-cell and/or spatial): Progress, potential, and perspective. Front. Oncol. 2023 12 1054233 10.3389/fonc.2022.1054233 36686803
    [Google Scholar]
  142. Vitorino R. Transforming clinical research: The power of high-throughput omics integration. Proteomes 2024 12 3 25 10.3390/proteomes12030025 39311198
    [Google Scholar]
  143. Zhang N. Kandalai S. Zhou X. Hossain F. Zheng Q. Applying multi‐omics toward tumor microbiome research. iMeta 2023 2 1 e73 10.1002/imt2.73 38868335
    [Google Scholar]
  144. Heo Y.J. Hwa C. Lee G.H. Park J.M. An J.Y. Integrative multi-omics approaches in cancer research: From biological networks to clinical subtypes. Mol. Cells 2021 44 7 433 443 10.14348/molcells.2021.0042 34238766
    [Google Scholar]
  145. Chakraborty S. Sharma G. Karmakar S. Banerjee S. Multi-OMICS approaches in cancer biology: New era in cancer therapy. Biochim. Biophys. Acta Mol. Basis Dis. 2024 1870 5 167120 10.1016/j.bbadis.2024.167120 38484941
    [Google Scholar]
  146. Carrillo-Rodriguez P. Selheim F. Hernandez-Valladares M. Mass spectrometry-based proteomics workflows in cancer research: The relevance of choosing the right Steps. Cancers 2023 15 2 555 10.3390/cancers15020555 36672506
    [Google Scholar]
  147. Cho W.C. Mass spectrometry-based proteomics in cancer research. Expert Rev. Proteomics 2017 14 9 725 727 10.1080/14789450.2017.1365604 28783987
    [Google Scholar]
  148. Berghmans E. Boonen K. Maes E. Mertens I. Pauwels P. Baggerman G. Implementation of MALDI Mass spectrometry imaging in cancer proteomics research: Applications and challenges. J. Pers. Med. 2020 10 2 54 10.3390/jpm10020054 32580362
    [Google Scholar]
  149. De Zuani M. Xue H. Park J.S. Dentro S.C. Seferbekova Z. Tessier J. Curras-Alonso S. Hadjipanayis A. Athanasiadis E.I. Gerstung M. Bayraktar O. Cvejic A. Single-cell and spatial transcriptomics analysis of non-small cell lung cancer. Nat. Commun. 2024 15 1 4388 10.1038/s41467‑024‑48700‑8 38782901
    [Google Scholar]
  150. Xie C. Wang J. Diao X. Wang X. Cai Z. Li R. Single-cell resolution DESI mass spectrometry imaging through 10-fold sample expansion. bioRxiv 2024 10.1101/2024.10.21.619369
    [Google Scholar]
  151. Claes B.S.R. Krestensen K.K. Yagnik G. Grgic A. Kuik C. Lim M.J. Rothschild K.J. Vandenbosch M. Heeren R.M.A. MALDI-IHC-guided in-depth spatial proteomics: Targeted and untargeted MSI combined. Anal. Chem. 2023 95 4 2329 2338 10.1021/acs.analchem.2c04220 36638208
    [Google Scholar]
  152. Gemperline E. Chen B. Li L. Challenges and recent advances in mass spectrometric imaging of neurotransmitters. Bioanalysis 2014 6 4 525 540 10.4155/bio.13.341 24568355
    [Google Scholar]
  153. Gawor A. Bulska E. A standardized protocol for assuring the validity of proteomics results from liquid chromatography–high-resolution mass spectrometry. Int. J. Mol. Sci. 2023 24 7 6129 10.3390/ijms24076129 37047102
    [Google Scholar]
  154. Bruker Corporation . SCiLS Lab: Mass spectrometry imaging software. 2024 Available from: https://www.bruker.com/en/products-and-solutions/mass-spectrometry/ms-software/scils-lab.html
  155. Moens R.A.R. Migas L.G. Van Ardenne J.M. Skaar E.P. Spraggins J.M. Van de Plas R. Preserving full spectrum information in imaging mass spectrometry data reduction. bioRxiv 2024 10.1101/2024.09.30.614425
    [Google Scholar]
  156. Veselkov K. Sleeman J. Claude E. Vissers J.P.C. Galea D. Mroz A. Laponogov I. Towers M. Tonge R. Mirnezami R. Takats Z. Nicholson J.K. Langridge J.I. BASIS: High-performance bioinformatics platform for processing of large-scale mass spectrometry imaging data in chemically augmented histology. Sci. Rep. 2018 8 1 4053 10.1038/s41598‑018‑22499‑z 29511258
    [Google Scholar]
  157. Abdelmoula W.M. Lopez B.G.C. Randall E.C. Kapur T. Sarkaria J.N. White F.M. Agar J.N. Wells W.M. Agar N.Y.R. Peak learning of mass spectrometry imaging data using artificial neural networks. Nat. Commun. 2021 12 1 5544 10.1038/s41467‑021‑25744‑8 34545087
    [Google Scholar]
  158. Szabo Z. Janaky T. Challenges and developments in protein identification using mass spectrometry. Trends Analyt. Chem. 2015 69 76 87 10.1016/j.trac.2015.03.007
    [Google Scholar]
  159. Chong Y.K. Ho C.C. Leung S.Y. Lau S.K.P. Woo P.C.Y. Clinical Mass Spectrometry in the Bioinformatics Era: A Hitchhiker’s Guide. Comput. Struct. Biotechnol. J. 2018 16 316 334 10.1016/j.csbj.2018.08.003 30237866
    [Google Scholar]
  160. Alexandrov T. MALDI imaging mass spectrometry: Statistical data analysis and current computational challenges. BMC Bioinformatics 2012 13 S16 Suppl. 16 S11 10.1186/1471‑2105‑13‑S16‑S11 23176142
    [Google Scholar]
  161. Flores J.E. Claborne D.M. Weller Z.D. Webb-Robertson B.J.M. Waters K.M. Bramer L.M. Missing data in multi-omics integration: Recent advances through artificial intelligence. Front. Artif. Intell. 2023 6 1098308 10.3389/frai.2023.1098308 36844425
    [Google Scholar]
  162. Chughtai K. Heeren R.M.A. Mass spectrometric imaging for biomedical tissue analysis. Chem. Rev. 2010 110 5 3237 3277 10.1021/cr100012c 20423155
    [Google Scholar]
  163. Liu H. Pan Y. Xiong C. Han J. Wang X. Chen J. Nie Z. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) for in situ analysis of endogenous small molecules in biological samples. Trends Analyt. Chem. 2022 157 116809 10.1016/j.trac.2022.116809
    [Google Scholar]
  164. Kibbe R.R. Muddiman D.C. Quantitative mass spectrometry imaging (qMSI): A tutorial. J. Mass Spectrom. 2024 59 4 e5009 10.1002/jms.5009 38488849
    [Google Scholar]
  165. Tressler C. Tilley S. Yang E. Donohue C. Barton E. Creissen A. Glunde K. Factorial design to optimize matrix spraying parameters for MALDI mass spectrometry imaging. J. Am. Soc. Mass Spectrom. 2021 32 12 2728 2737 10.1021/jasms.1c00081 34699220
    [Google Scholar]
  166. Tuck M. Grélard F. Blanc L. Desbenoit N. MALDI-MSI towards multimodal imaging: Challenges and perspectives. Front Chem. 2022 10 904688 10.3389/fchem.2022.904688 35615316
    [Google Scholar]
  167. Saunders K.D.G. Lewis H.M. Beste D.J.V. Cexus O. Bailey M.J. Spatial single cell metabolomics: Current challenges and future developments. Curr. Opin. Chem. Biol. 2023 75 102327 10.1016/j.cbpa.2023.102327 37224735
    [Google Scholar]
  168. Wevers D. Ramautar R. Clark C. Hankemeier T. Ali A. Opportunities and challenges for sample preparation and enrichment in mass spectrometry for single‐cell metabolomics. Electrophoresis 2023 44 24 2000 2024 10.1002/elps.202300105 37667867
    [Google Scholar]
  169. Alexandrov T. Spatial metabolomics and imaging mass spectrometry in the age of artificial intelligence. Annu. Rev. Biomed. Data Sci. 2020 3 1 61 87 10.1146/annurev‑biodatasci‑011420‑031537 34056560
    [Google Scholar]
  170. de Souza L.P. Borghi M. Fernie A. Plant single-cell metabolomics—challenges and perspectives. Int. J. Mol. Sci. 2020 21 23 8987 10.3390/ijms21238987 33256100
    [Google Scholar]
  171. Ghafari N. Sleno L. Challenges and recent advances in quantitative mass spectrometry‐based metabolomics. Anal. Sci. Adv. 2024 5 5-6 e2400007 10.1002/ansa.202400007 38948317
    [Google Scholar]
  172. Zhou X. Zhang W. Ouyang Z. Recent advances in on-site mass spectrometry analysis for clinical applications. Trends Analyt. Chem. 2022 149 116548 10.1016/j.trac.2022.116548 35125564
    [Google Scholar]
  173. Javorek M. Hendrych M. Ondráková K. Preisler J. Bednařík A. Staining tissues with basic blue 7: A new dual-polarity matrix for MALDI mass spectrometry imaging. Anal. Chem. 2025 97 5 2828 2836 10.1021/acs.analchem.4c05244 39883587
    [Google Scholar]
  174. Son A. Kim W. Park J. Park Y. Lee W. Lee S. Kim H. Mass spectrometry advancements and applications for biomarker discovery, diagnostic innovations, and personalized medicine. Int. J. Mol. Sci. 2024 25 18 9880 10.3390/ijms25189880 39337367
    [Google Scholar]
  175. Piga I. Magni F. Smith A. The journey towards clinical adoption of MALDI‐MS ‐based imaging proteomics: from current challenges to future expectations. FEBS Lett. 2024 598 6 621 634 10.1002/1873‑3468.14795 38140823
    [Google Scholar]
  176. King M.E. Lin M. Spradlin M. Eberlin L.S. Advances and emerging medical applications of direct mass spectrometry technologies for tissue analysis. Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 2023 16 1 1 25 10.1146/annurev‑anchem‑061020‑015544 36944233
    [Google Scholar]
  177. Moore J.L. Patterson N.H. Norris J.L. Caprioli R.M. Prospective on imaging mass spectrometry in clinical diagnostics. Mol. Cell. Proteomics 2023 22 9 100576 10.1016/j.mcpro.2023.100576 37209813
    [Google Scholar]
  178. Lin G. Chung Y.L. Current opportunities and challenges of magnetic resonance spectroscopy, positron emission tomography, and mass spectrometry imaging for mapping cancer metabolism in vivo. BioMed Res. Int. 2014 2014 1 13 10.1155/2014/625095 24724090
    [Google Scholar]
  179. Deininger S.O. Bollwein C. Casadonte R. Wandernoth P. Gonçalves J.P.L. Kriegsmann K. Kriegsmann M. Boskamp T. Kriegsmann J. Weichert W. Schirmacher P. Ly A. Schwamborn K. Multicenter evaluation of tissue classification by matrix-assisted laser desorption/ionization mass spectrometry imaging. Anal. Chem. 2022 94 23 8194 8201 10.1021/acs.analchem.2c00097 35658398
    [Google Scholar]
  180. Banerjee S. Empowering clinical diagnostics with mass spectrometry. ACS Omega 2020 5 5 2041 2048 10.1021/acsomega.9b03764 32064364
    [Google Scholar]
  181. Vaysse P.M. Heeren R.M.A. Porta T. Balluff B. Mass spectrometry imaging for clinical research – latest developments, applications, and current limitations. Analyst (Lond.) 2017 142 15 2690 2712 10.1039/C7AN00565B 28642940
    [Google Scholar]
  182. Nimesh S. Mohottalage S. Vincent R. Kumarathasan P. Current status and future perspectives of mass spectrometry imaging. Int. J. Mol. Sci. 2013 14 6 11277 11301 10.3390/ijms140611277 23759983
    [Google Scholar]
  183. Pietkiewicz D. Plewa S. Zaborowski M. Garrett T.J. Matuszewska E. Kokot Z.J. Matysiak J. Mass spectrometry imaging in gynecological cancers: The best is yet to come. Cancer Cell Int. 2022 22 1 414 10.1186/s12935‑022‑02832‑3 36536419
    [Google Scholar]
  184. McDonnell L.A. Angel P.M. Lou S. Drake R.R. Mass spectrometry imaging in cancer research: Future perspectives. Adv. Cancer Res. 2017 134 283 290 10.1016/bs.acr.2016.11.010 28110655
    [Google Scholar]
/content/journals/cac/10.2174/0115734110401212250806053745
Loading
/content/journals/cac/10.2174/0115734110401212250806053745
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test