Skip to content
2000
image of Application of UPLC-Q-Exactive-MS Technology Combined With Network Pharmacology to Investigate the Mechanism of Action of Aster Tataricus L. Extract in the Treatment of Drug-induced Liver Injury

Abstract

Objective/Introduction

To investigate the pharmacodynamic material basis and potential mechanism of Aster tataricus L. total flavonoids (ATF) in treating isoniazid (INH) and rifampicin (RIF)-induced drug-induced liver injury (DILI) in C57BL/6 mice

Methods

ATF was extracted using ultrasonic extraction and purified with AB-8 macroporous adsorbent resin. A DILI model was established in male C57BL/6 mice using INH and RIF. Histopathological changes were assessed by HE staining, and serum levels of ALT and AST, as well as liver levels of SOD, MDA, GSH-Px, and T-AOC, were measured. UPLC-Q-Exactive-MS was used to analyze ATF and serum components in DILI mice, followed by network pharmacology analysis and molecular docking validation.

Results

TThe extraction rate of ATF was 31.9%, and the purification rate was 83.1%. ATF treatment alleviated cell necrosis and inflammation, reduced organ index, and normalized biochemical indices, with the best effects observed at low doses. UPLC-Q-Exactive-MS identified 15 blood-entry components, 9 prototype components, and 4 core targets with high binding energies.

Discussion

Efficient extraction and purification methods for total flavonoids from Aster tataricus L. were developed. Their pharmacological basis and potential targets for treating DILI were identified, providing a theoretical basis for DILI treatment.

Conclusion

This study provides a theoretical basis for the treatment of DILI using ATF. The developed extraction and purification methods efficiently obtained ATF, and its pharmacological basis and potential targets were identified. This research offers a new direction for exploring natural products from Traditional Chinese Medicine for DILI treatment.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode.
Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110348076250428113339
2025-05-05
2025-09-09
Loading full text...

Full text loading...

/deliver/fulltext/cac/10.2174/0115734110348076250428113339/BMS-CAC-2024-HT57-6408-1.html?itemId=/content/journals/cac/10.2174/0115734110348076250428113339&mimeType=html&fmt=ahah

References

  1. Shao Y. Liu R. Yang J. Progress in the study of tuberculosis diagnostic methods and their applied value. China Trop. Med. 2024 24 02 207 212 10.13604/j.cnki.46‑1064/r.2024.02.16
    [Google Scholar]
  2. Zhuang X. Li L. Liu T. Zhang R. Yang P. Wang X. Dai L. Mechanisms of isoniazid and rifampicin-induced liver injury and the effects of natural medicinal ingredients: A review. Front. Pharmacol. 2022 13 1037814 10.3389/fphar.2022.1037814 36299895
    [Google Scholar]
  3. Jaeschke H. Akakpo J.Y. Umbaugh D.S. Ramachandran A. Novel therapeutic approaches against acetaminophen-induced liver injury and acute liver failure. Toxicol. Sci. 2020 174 2 159 167 10.1093/toxsci/kfaa002 31926003
    [Google Scholar]
  4. Deepmala S.J. Slattery J. Kumar N. Delhey L. Berk M. Dean O. Spielholz C. Frye R. Clinical trials of N-acetylcysteine in psychiatry and neurology: A systematic review. Neurosci. Biobehav. Rev. 2015 55 294 321 10.1016/j.neubiorev.2015.04.015 25957927
    [Google Scholar]
  5. Rhodes K. Braakhuis A. Performance and side effects of supplementation with N-Acetylcysteine: A systematic review and meta-analysis. Sports Med. 2017 47 8 1619 1636 10.1007/s40279‑017‑0677‑3 28102488
    [Google Scholar]
  6. Wang K. Feng X. Chai L. Cao S. Qiu F. The metabolism of berberine and its contribution to the pharmacological effects. Drug Metab. Rev. 2017 49 2 139 157 10.1080/03602532.2017.1306544 28290706
    [Google Scholar]
  7. Yuan Y. Zhai Y. Chen J. Xu X. Wang H. Kaempferol ameliorates oxygen-glucose deprivation/reoxygenation-induced neuronal ferroptosis by activating Nrf2/SLC7A11/GPX4 axis. Biomolecules 2021 11 7 923 10.3390/biom11070923 34206421
    [Google Scholar]
  8. Ince E. The protective effect of quercetin in the alcohol-induced liver and lymphoid tissue injuries in newborns. Mol. Biol. Rep. 2020 47 1 451 459 10.1007/s11033‑019‑05148‑0 31673888
    [Google Scholar]
  9. Xu T. Hu S. Liu Y. Sun K. Luo L. Zeng L. Hawk tea flavonoids as natural hepatoprotective agents alleviate acute liver damage by reshaping the intestinal microbiota and modulating the Nrf2 and NF-κB signaling pathways. Nutrients 2022 14 17 3662 10.3390/nu14173662 36079919
    [Google Scholar]
  10. Zhao P. Hu Z. Ma W. Zang L. Tian Z. Hou Q. Quercetin alleviates hyperthyroidism‐induced liver damage via Nrf2 signaling pathway. Biofactors 2020 46 4 608 619 10.1002/biof.1626 32078205
    [Google Scholar]
  11. Benković G. Bojić M. Maleš Ž. Tomić S. Screening of flavonoid aglycons’ metabolism mediated by the human liver cytochromes P450. Acta Pharm. 2019 69 4 541 562 10.2478/acph‑2019‑0039 31639084
    [Google Scholar]
  12. Naderi M. Seyedabadi M. Talebpour Amiri F. Akbari S. Shaki F. Rutin mitigates perfluorooctanoic acid-induced liver injury via modulation of oxidative stress, apoptosis, and inflammation. Iran. J. Basic Med. Sci. 2023 26 11 1291 1297 10.22038/IJBMS.2023.69747.15187 37886008
    [Google Scholar]
  13. Jiashuo W.U. Fangqing Z. Zhuangzhuang L.I. Weiyi J. Yue S. Integration strategy of network pharmacology in traditional Chinese medicine: A narrative review. J. Tradit. Chin. Med. 2022 42 3 479 486 10.19852/j.cnki.jtcm.20220408.003 35610020
    [Google Scholar]
  14. Li X. Liu Z. Liao J. Chen Q. Lu X. Fan X. Network pharmacology approaches for research of traditional Chinese medicines. Chin. J. Nat. Med. 2023 21 5 323 332 10.1016/S1875‑5364(23)60429‑7 37245871
    [Google Scholar]
  15. Ma Y.Q. Zhang M. Sun Z.H. Tang H.Y. Wang Y. Liu J.X. Zhang Z.X. Wang C. Identification of anti-gastric cancer effects and molecular mechanisms of resveratrol: From network pharmacology and bioinformatics to experimental validation. World J. Gastrointest. Oncol. 2024 16 2 493 513 10.4251/wjgo.v16.i2.493 38425392
    [Google Scholar]
  16. Zhou K. Lu D. You J. Liu T. Sun J. Lu Y. Pan J. Li Y. Liu C. Integrated plasma pharmacochemistry and network pharmacology to explore the mechanism of Gerberae Piloselloidis Herba in treatment of allergic asthma. J. Ethnopharmacol. 2022 298 115624 10.1016/j.jep.2022.115624 35970314
    [Google Scholar]
  17. Shen Y. Xu M. Chen Y. Wang H. Zhou Y. Zhu Y. Yang H. Yu J. Integrated extraction and purification of total bioactive flavonoids from Toona sinensis leaves. Nat. Prod. Res. 2019 33 20 3025 3028 10.1080/14786419.2018.1512996 30580592
    [Google Scholar]
  18. Kim S. Oh D.S. Oh J. Son T. Yuk D. Jung Y.S. Silymarin prevents restraint stress-induced acute liver injury by ameliorating oxidative stress and reducing inflammatory response. Molecules 2016 21 4 443 10.3390/molecules21040443 27043523
    [Google Scholar]
  19. Gugsa E. Molla T.S. Bekele T. Dejenie T.A. Hepatoprotective effect of hydromethanol extract of Otostegia integrifolia benth leaves in isoniazid and rifampicin induced Swiss albino mice. Metab. Open 2023 20 100255 10.1016/j.metop.2023.100255 38115863
    [Google Scholar]
  20. Dubiwak A.D. Damtew T.W. Senbetu M.W. Yewhalaw D. Asere T.G. Nemo G. Baye M.F. Hepatoprotective effect of corm of Ensete ventricosum (welw.) cheesman extract against isoniazid and rifampicin induced hepatotoxicity in Swiss albino mice. J. Toxicol. 2021 2021 1 8 10.1155/2021/4760455 34422040
    [Google Scholar]
  21. Xiang X. Ai J. Zhao K. Studies on characteristics of liver injury model induced by rifampicin and isoniazid in mice. Chin Bull Pharmacol. 2019 35 04 586 590 10.3969/j.issn.1001‑1978.2019.04.028
    [Google Scholar]
  22. Feldman A.T. Wolfe D. Tissue processing and hematoxylin and eosin staining. Methods Mol. Biol. 2014 1180 31 43 10.1007/978‑1‑4939‑1050‑2_3 25015141
    [Google Scholar]
  23. Ge K. Zheng D. Wang J. Jia W. Zhao A. A method for quantifying hepatic and intestinal ceramides on mice by UPLC-MS/MS. Anal. Biochem. 2023 661 114982 10.1016/j.ab.2022.114982 36375519
    [Google Scholar]
  24. Wang S. Zhang Z. Yu Z. Han C. Wang X. Pharmacokinetic study of delavinone in mice after intravenous and oral administration by UPLC-MS/MS. BioMed Res. Int. 2019 2019 1 6 10.1155/2019/3163218 31016188
    [Google Scholar]
  25. Wang T. Sheng K. Zhang Y. Jin S. Feng L. Wang L. Metabolomics analysis reveals the effect of fermentation on the chemical composition and antioxidant activity of Paeonia lactiflora root. Heliyon 2024 10 7 e28450 10.1016/j.heliyon.2024.e28450 38560231
    [Google Scholar]
  26. Xiao G. Hu Z. Jia C. Yang M. Li D. Xu A. Jiang J. Chen Z. Li Y. Li S. Chen W. Zhang J. Bi X. Deciphering the mechanisms of Yinlan Tiaozhi capsule in treating hyperlipidemia by combining network pharmacology, molecular docking and experimental verification. Sci. Rep. 2023 13 1 6424 10.1038/s41598‑023‑33673‑3 37076581
    [Google Scholar]
  27. Dong Y. Tao B. Xue X. Feng C. Ren Y. Ma H. Zhang J. Si Y. Zhang S. Liu S. Li H. Zhou J. Li G. Wang Z. Xie J. Zhu Z. Molecular mechanism of Epicedium treatment for depression based on network pharmacology and molecular docking technology. BMC Complement. Med. Ther. 2021 21 1 222 10.1186/s12906‑021‑03389‑w 34479552
    [Google Scholar]
  28. Ma M. Du Q. Shi S. Integrating UPLC-Q-TOF-MS and network pharmacology to explore the potential mechanisms of Paeonia lactiflora Pall. in the treatment of blood stasis syndrome. Molecules 2024 29 13 3019 10.3390/molecules29133019
    [Google Scholar]
  29. Diretto G. Jin X. Capell T. Zhu C. Gomez-Gomez L. Differential accumulation of pelargonidin glycosides in petals at three different developmental stages of the orange-flowered gentian (Gentiana lutea L. var. aurantiaca). PLoS One 2019 14 2 e0212062 10.1371/journal.pone.0212062 30742659
    [Google Scholar]
  30. Xin Z. Ma S. Ren D. Liu W. Han B. Zhang Y. Xiao J. Yi L. Deng B. UPLC–Orbitrap–MS/MS combined with chemometrics establishes variations in chemical components in green tea from Yunnan and Hunan origins. Food Chem. 2018 266 534 544 10.1016/j.foodchem.2018.06.056 30381222
    [Google Scholar]
  31. Cao S. Ni B. Feng L. Yin X. Dou H. Fu J. Lin L. Ni J. Simultaneous determination of typhaneoside and isorhamnetin-3-O-neohesperidoside in rats after oral administration of pollen Typhae extract by UPLC-MS/MS. J. Chromatogr. Sci. 2015 53 6 866 871 10.1093/chromsci/bmu132 25349196
    [Google Scholar]
  32. El-Zahar H. Menze E.T. Handoussa H. Osman A.K. El-Shazly M. Mostafa N.M. Swilam N. UPLC-PDA-MS/MS profiling and healing activity of polyphenol-rich fraction of Alhagi maurorum against oral ulcer in rats. Plants 2022 11 3 455 10.3390/plants11030455 35161436
    [Google Scholar]
  33. Amaya-Cruz D.M. Pérez-Ramírez I.F. Delgado-García J. Mondragón-Jacobo C. Dector-Espinoza A. Reynoso-Camacho R. An integral profile of bioactive compounds and functional properties of prickly pear (Opuntia ficus indica L.) peel with different tonalities. Food Chem. 2019 278 568 578 10.1016/j.foodchem.2018.11.031 30583413
    [Google Scholar]
  34. Li W.L.Y.L.M. Mechanism of Huangkui Capsule in treatment of diabetic nephropathy based on literature mining and network pharmacology. Yaowu Pingjia Yanjiu 2021 44 10 2214 2224 10.7501/j.issn.16746376.2021.10.024
    [Google Scholar]
  35. Zhou W. Shan J. Meng M. A two-step ultra-high-performance liquid chromatography-quadrupole/time of flight mass spectrometry with mass defect filtering method for rapid identification of analogues from known components of different chemical structure types in Fructus Gardeniae-Fructus Forsythiae herb pair extract and in rat’s blood. J. Chromatogr. A 2018 1563 99 123 10.1016/j.chroma.2018.05.067 29861306
    [Google Scholar]
  36. Buendía B. Gil M.I. Tudela J.A. Gady A.L. Medina J.J. Soria C. López J.M. Tomás-Barberán F.A. HPLC-MS analysis of proanthocyanidin oligomers and other phenolics in 15 strawberry cultivars. J. Agric. Food Chem. 2010 58 7 3916 3926 10.1021/jf9030597 20038100
    [Google Scholar]
  37. Chen Y. Cai X. Li G. He X. Yu X. Yu X. Xiao Q. Xiang Z. Wang C. Chemical constituents of radixACTINIDIA CHINENSIS planch by UPLC–QTOF–MS. Biomed. Chromatogr. 2021 35 7 e5103 10.1002/bmc.5103 33629744
    [Google Scholar]
  38. Yang J. Qian D. Jiang S. Shang E. Guo J. Duan J. Identification of rutin deglycosylated metabolites produced by human intestinal bacteria using UPLC–Q-TOF/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2012 898 95 100 10.1016/j.jchromb.2012.04.024 22583754
    [Google Scholar]
  39. Yang L.L. Xiao N. Li X.W. Fan Y. Alolga R.N. Sun X.Y. Wang S.L. Li P. Qi L.W. Pharmacokinetic comparison between quercetin and quercetin 3-O-β-glucuronide in rats by UHPLC-MS/MS. Sci. Rep. 2016 6 1 35460 10.1038/srep35460 27775094
    [Google Scholar]
  40. Bvenura C. Kambizi L. Composition of phenolic compounds in South African Schinus molle L. Berries. Foods 2022 11 10 1376 10.3390/foods11101376 35626946
    [Google Scholar]
  41. Cui H. Xia H. Qian Z. Anthocyanins and flavonoids accumulation forms of five different color tree peony cultivars at blooming stages. Zhongguo Nong Ye Ke Xue 2021 54 13 2858 2869 10.3864/j.issn.0578‑1752.2021.13.014
    [Google Scholar]
  42. Lin L.J. Zhang M.X. Li H. Lan X.M. Wei X.L. Guo C. Yang B. Identification of Q-markers for Schisandrae Sphenantherae Fructus in treating drug-induced liver injury based on network pharmacology, fingerprint and quantitative analysis. Zhongguo Zhongyao Zazhi 2023 48 20 5460 5473 10.19540/j.cnki.cjcmm.20230627.201 38114139
    [Google Scholar]
  43. Trenker R. Jura N. Receptor tyrosine kinase activation: From the ligand perspective. Curr. Opin. Cell Biol. 2020 63 174 185 10.1016/j.ceb.2020.01.016 32114309
    [Google Scholar]
  44. Chen Y. Li K. Zhao H. Hao Z. Yang Y. Gao M. Zhao D. Integrated lipidomics and network pharmacology analysis to reveal the mechanisms of berberine in the treatment of hyperlipidemia. J. Transl. Med. 2022 20 1 412 10.1186/s12967‑022‑03623‑0 36076294
    [Google Scholar]
  45. Zheng J. Yuan Q. Zhou C. Huang W. Yu X. Mitochondrial stress response in drug-induced liver injury. Mol. Biol. Rep. 2021 48 10 6949 6958 10.1007/s11033‑021‑06674‑6 34432218
    [Google Scholar]
  46. Yu Y. Zhou S. Wang Y. Di S. Wang Y. Huang X. Chen Y. Leonurine alleviates acetaminophen-induced acute liver injury by regulating the PI3K/AKT signaling pathway in mice. Int. Immunopharmacol. 2023 120 110375 10.1016/j.intimp.2023.110375 37267857
    [Google Scholar]
/content/journals/cac/10.2174/0115734110348076250428113339
Loading
/content/journals/cac/10.2174/0115734110348076250428113339
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test