Skip to content
2000
image of AI-Enhanced Prediction Tools and Sensor Integration in Advanced Analytical Chemistry Techniques

Abstract

Artificial intelligence is “a technical and scientific field devoted to the engineered system that generates outputs such as content, forecasts, recommendations or decisions for a given set of human-defined objectives”. Combination of AI and analytical techniques will have huge potential to transform decision-making processes and promote innovation across sectors. AI enhances data detection, segmentation, and image resolution with convolutional neural networks (CNNs) excelling in analyzing complex image datasets for material characterization. Machine learning integrates with different methods like gas chromatography (GC), high-performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS), ultraviolet (UV), and infrared (IR) spectroscopy, mass spectrometry (MS), colorimetry, and biosensing techniques. This review provides an overview of AI-based models and sensors of analytical techniques and highlighting chemometric tools in UV and IR spectroscopy for improved accuracy and data interpretation. Real-time AI analysis of sensor data enables immediately useful conclusions, which is a revolution in a variety of fields, including environmental research and pharmaceuticals. Advanced techniques like spectroscopy, chromatography, and mass spectrometry are given an updated aspect by the use of AI and sensors. This may improve these steps, increasing accuracy and efficiency and enabling quicker and more precise analysis of complex compounds. Multi-dimensional sensor data, which is frequently too complicated for conventional techniques, may be analyzed and processed using AI. This improves the study by enabling further understanding and more thorough analysis. Overall, this paper explores AI-based tools and sensors in analytical techniques and highlights their role in error reduction and process automation.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110373957250516113853
2025-05-23
2025-10-11
Loading full text...

Full text loading...

References

  1. Zohuri B. Behgounia F. Application of artificial intelligence driving nano-based drug delivery system. A handbook of artificial intelligence in drug delivery. Elsevier 2023 145 212 10.1016/B978‑0‑323‑89925‑3.00007‑1
    [Google Scholar]
  2. Rupali M. Amit P. A review paper on general concepts of artificial intelligence and machine learning. IARJSET 2017 4 4 79 82 10.17148/IARJSET/NCIARCSE.2017.22
    [Google Scholar]
  3. Jindal S.K. Banerjee S. Patra R. Paul A. Deep learning-based brain malignant neoplasm classification using MRI image segmentation assisted by bias field correction and histogram equalization. Brain Tumor MRI Image Segmentation Using Deep Learning Techniques. Elsevier 2022 135 161
    [Google Scholar]
  4. Zhang C. Lu Y. Study on artificial intelligence: The state of the art and future prospects. J. Ind. Inf. Integr. 2021 23 100224 10.1016/j.jii.2021.100224
    [Google Scholar]
  5. Raza M.A. Aziz S. Noreen M. Saeed A. Anjum I. Ahmed M. Raza S.M. Artificial intelligence (AI) in pharmacy: An overview of innovations. Innov. Pharm. 2022 13 2 13 10.24926/iip.v13i2.4839 36654703
    [Google Scholar]
  6. Vora L.K. Gholap A.D. Jetha K. Thakur R.R.S. Solanki H.K. Chavda V.P. Artificial intelligence in pharmaceutical technology and drug delivery design. Pharmaceutics 2023 15 7 1916 10.3390/pharmaceutics15071916 37514102
    [Google Scholar]
  7. Selvaraj C. Chandra I. Singh S. K. Artificial intelligence and machine learning approaches for drug design: challenges and opportunities for the pharmaceutical industries. Molecular Diversity 2022 26 3 1893 1913 10.1007/s11030‑021‑10326‑z
    [Google Scholar]
  8. Bhattamisra S.K. Banerjee P. Gupta P. Mayuren J. Patra S. Candasamy M. Artificial intelligence in pharmaceutical and healthcare research. Big Data Cognitive Computing 2023 7 1 10 10.3390/bdcc7010010
    [Google Scholar]
  9. Kulkov I. The role of artificial intelligence in business transformation: A case of pharmaceutical companies. Technol. Soc. 2021 66 101629 10.1016/j.techsoc.2021.101629
    [Google Scholar]
  10. Choudhary N. Bharti R. Sharma R. Role of artificial intelligence in chemistry. Mater. Today Proc. 2022 48 1527 1533 10.1016/j.matpr.2021.09.428
    [Google Scholar]
  11. Han R. Yoon H. Kim G. Lee H. Lee Y. Revolutionizing medicinal chemistry: The application of artificial intelligence (AI) in early drug discovery. Pharmaceuticals 2023 16 9 1259 10.3390/ph16091259 37765069
    [Google Scholar]
  12. Cardoso Rial R. AI in analytical chemistry: Advancements, challenges, and future directions. Talanta 2024 274 125949 10.1016/j.talanta.2024.125949 38569367
    [Google Scholar]
  13. Kuntz D. Wilson A.K. Machine learning, artificial intelligence, and chemistry: How smart algorithms are reshaping simulation and the laboratory. Pure Appl. Chem. 2022 94 8 1019 1054 10.1515/pac‑2022‑0202
    [Google Scholar]
  14. Janga J.K. Reddy K.R. Raviteja K.V.N.S. Integrating artificial intelligence, machine learning, and deep learning approaches into remediation of contaminated sites: A review. Chemosphere 2023 345 140476 10.1016/j.chemosphere.2023.140476 37866497
    [Google Scholar]
  15. Kersting K. Machine learning and artificial intelligence: Two fellow travelers on the quest for intelligent behavior in machines. Frontiers Media, SA 2018 1 6 10.3389/fdata.2018.00006
    [Google Scholar]
  16. Sarker, IH Machine learning: Algorithms, real-world applications and research directions. SN Comput. Sci. 2021 160 10.1007/s42979‑021‑00592‑x
    [Google Scholar]
  17. El Naqa I. Murphy M.J. What is machine learning? Springer 2015 3 11
    [Google Scholar]
  18. Ayres L.B. Gomez F.J.V. Linton J.R. Silva M.F. Garcia C.D. Taking the leap between analytical chemistry and artificial intelligence: A tutorial review. Anal. Chim. Acta 2021 1161 338403 10.1016/j.aca.2021.338403 33896558
    [Google Scholar]
  19. Abdel-Jaber H. Devassy D. Al Salam A. Hidaytallah L. EL-Amir, M. A review of deep learning algorithms and their applications in healthcare. Algorithms 2022 15 2 71 10.3390/a15020071
    [Google Scholar]
  20. Khurana D. Koli A. Khatter K. Singh S. Natural language processing: State of the art, current trends and challenges. Multimedia Tools Appl. 2023 82 3 3713 3744 10.1007/s11042‑022‑13428‑4 35855771
    [Google Scholar]
  21. Huang J. Chai J. Cho S. Deep learning in finance and banking: A literature review and classification. Front Business Res. China 2020 14 1 13 10.1186/s11782‑020‑00082‑6
    [Google Scholar]
  22. Zhang Z. Zhang Z. Artificial neural network. Multivariate time series analysis in climate and environmental research. Springer 2018 1 35 10.1007/978‑3‑319‑67340‑0_1
    [Google Scholar]
  23. Malik N. Artificial neural networks and their applications. arXiv preprint cs/0505019 2005 10.48550/arXiv.cs/0505019
    [Google Scholar]
  24. Abiodun O.I. Kiru M.U. Jantan A. Omolara A.E. Dada K.V. Umar A.M. Linus O.U. Arshad H. Kazaure A.A. Gana U. Comprehensive review of artificial neural network applications to pattern recognition. IEEE Access 2019 7 158820 158846 10.1109/ACCESS.2019.2945545
    [Google Scholar]
  25. Pachouly J. Ahirrao S. Kotecha K. Selvachandran G. Abraham A. A systematic literature review on software defect prediction using artificial intelligence: Datasets, Data Validation Methods, Approaches, and Tools. Eng. Appl. Artif. Intell. 2022 111 104773 10.1016/j.engappai.2022.104773
    [Google Scholar]
  26. Wang D. Xie L. Yang S.X. Tian F. Support vector machine optimized by genetic algorithm for data analysis of near-infrared spectroscopy sensors. Sensors 2018 18 10 3222 10.3390/s18103222 30257420
    [Google Scholar]
  27. Soori M. Arezoo B. Dastres R. Artificial intelligence, machine learning and deep learning in advanced robotics, a review. Cognitive Robotics 2023 3 54 70 10.1016/j.cogr.2023.04.001
    [Google Scholar]
  28. Mukhamediev R.I. Popova Y. Kuchin Y. Zaitseva E. Kalimoldayev A. Symagulov A. Levashenko V. Abdoldina F. Gopejenko V. Yakunin K. Muhamedijeva E. Yelis M. Review of artificial intelligence and machine learning technologies: Classification, restrictions, opportunities and challenges. Mathematics 2022 10 15 2552 10.3390/math10152552
    [Google Scholar]
  29. Liu D. Sun N. Prospects of artificial intelligence in the development of sustainable separation processes. Front Sustainability 2023 4 1210209 10.3389/frsus.2023.1210209
    [Google Scholar]
  30. Singh Y.R. Shah D.B. Kulkarni M. Patel S.R. Maheshwari D.G. Shah J.S. Shah S. Current trends in chromatographic prediction using artificial intelligence and machine learning. Anal. Methods 2023 15 23 2785 2797 10.1039/D3AY00362K 37264667
    [Google Scholar]
  31. Abba S.I. Usman A.G. Işik, S. Simulation for response surface in the HPLC optimization method development using artificial intelligence models: A data-driven approach. Chemom. Intell. Lab. Syst. 2020 201 104007 10.1016/j.chemolab.2020.104007
    [Google Scholar]
  32. Workman J Mark H Artificial intelligence in analytical spectroscopy. Part II: Example Spectroscopy 2023 10 15 10.56530/spectroscopy.js8781e3
    [Google Scholar]
  33. Prajapati P.R. Rathod D.N. Modi V.S. Basuri T. Chemometrics and its Applications in UV Spectrophotometry. Int. J. Pharmaceutical Chem. Anal. 2016 3 1 43 48 10.5958/2394‑2797.2016.00005.8
    [Google Scholar]
  34. Shahrokhi Z. Sohrabi M.R. Nik S.M. The application of artificial intelligence system and regression methods based on the spectrophotometric method for fast simultaneous determination of naphazoline and antazoline in ophthalmic formulation. Optik (Stuttg.) 2020 203 164010 10.1016/j.ijleo.2019.164010
    [Google Scholar]
  35. Meyer L. Kinder C. Porter J. Using machine learning and infrared spectroscopy to quantify species concentrations in battery electrolytes. J. Electrochem. Soc. 2023 170 10 100521 10.1149/1945‑7111/ad017e
    [Google Scholar]
  36. Wang H.P. Chen P. Dai J.W. Liu D. Li J.Y. Xu Y.P. Chu X-L. Recent advances of chemometric calibration methods in modern spectroscopy: Algorithms, strategy, and related issues. Trends Analyt. Chem. 2022 153 116648 10.1016/j.trac.2022.116648
    [Google Scholar]
  37. Nnachi, AB Advances in UV spectroscopy for monitoring the environment. RIJBAS 2024 3 1 82 89 10.1016/j.trac.2022.116648
    [Google Scholar]
  38. Brudzewski K. Kesik A. Kołodziejczyk, K.; Zborowska, U.; Ulaczyk, J. Gasoline quality prediction using gas chromatography and FTIR spectroscopy: An artificial intelligence approach. Fuel 2006 85 4 553 558 10.1016/j.fuel.2005.07.019
    [Google Scholar]
  39. Limmer M. Lensch H.P. Infrared colorization using deep convolutional neural networks. 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA) CA, USA 18-20 December 2016 61 68 10.1109/ICMLA.2016.0019.
    [Google Scholar]
  40. Day J.S. Edwards H.G.M. Dobrowski S.A. Voice A.M. The detection of drugs of abuse in fingerprints using Raman spectroscopy II: Cyanoacrylate-fumed fingerprints. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2004 60 8-9 1725 1730 10.1016/j.saa.2003.09.013 15248944
    [Google Scholar]
  41. Mumtaz A. Enhancing performance of IR ship detection with baseline AI models over a new benchmark. Samar, A.R. Mumtaz A. 2021 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE) Brisbane, Australia 08-10 December 2021 1 6 10.1109/CSDE53843.2021.9718483
    [Google Scholar]
  42. Caratti A. Squara S. Bicchi C. Liberto E. Vincenti M. Reichenbach S.E. Tao Q. Geschwender D. Alladio E. Cordero C. Boosting comprehensive two-dimensional chromatography with artificial intelligence: Application to food-omics. Trends Analyt. Chem. 2024 174 117669 10.1016/j.trac.2024.117669
    [Google Scholar]
  43. Vaškevičius, M.; Kapočiūtė-Dzikienė J.; Šlepikas, L. Prediction of chromatography conditions for purification in organic synthesis using deep learning. Molecules 2021 26 9 2474 10.3390/molecules26092474 33922736
    [Google Scholar]
  44. Xue X. Sun H. Yang M. Liu X. Hu H.Y. Deng Y. Wang X. Advances in the application of artificial intelligence-based spectral data interpretation: A perspective. Anal. Chem. 2023 95 37 13733 13745 10.1021/acs.analchem.3c02540 37688541
    [Google Scholar]
  45. Singh Y.R. Shah D.B. Maheshwari D.G. Shah J.S. Shah S. Advances in AI-driven retention prediction for different chromatographic techniques: Unraveling the complexity. Crit. Rev. Anal. Chem. 2023 2023 1 11 37672314
    [Google Scholar]
  46. Gessulat S. Schmidt T. Zolg D.P. Samaras P. Schnatbaum K. Zerweck J. Knaute T. Rechenberger J. Delanghe B. Huhmer A. Reimer U. Ehrlich H.C. Aiche S. Kuster B. Wilhelm M. Prosit: Proteome-wide prediction of peptide tandem mass spectra by deep learning. Nat. Methods 2019 16 6 509 518 10.1038/s41592‑019‑0426‑7 31133760
    [Google Scholar]
  47. Beck A.G. Muhoberac M. Randolph C.E. Beveridge C.H. Wijewardhane P.R. Kenttämaa H.I. Chopra G. Recent developments in machine learning for mass spectrometry. ACS Measurement Science 2024 4 3 233 246 10.1021/acsmeasuresciau.3c00060 38910862
    [Google Scholar]
  48. Abdelmoula W.M. Lopez B.G.C. Randall E.C. Kapur T. Sarkaria J.N. White F.M. Agar J.N. Wells W.M. Agar N.Y.R. Peak learning of mass spectrometry imaging data using artificial neural networks. Nat. Commun. 2021 12 1 5544 10.1038/s41467‑021‑25744‑8 34545087
    [Google Scholar]
  49. Giordano S. Takeda S. Donadon M. Saiki H. Brunelli L. Pastorelli R. Cimino M. Soldani C. Franceschini B. Di Tommaso L. Lleo A. Yoshimura K. Nakajima H. Torzilli G. Davoli E. Rapid automated diagnosis of primary hepatic tumour by mass spectrometry and artificial intelligence. Liver Int. 2020 40 12 3117 3124 10.1111/liv.14604 32662575
    [Google Scholar]
  50. Dave S. Dave A. Radhakrishnan S. Das J. Dave S. Biosensors for healthcare: An artificial intelligence approach. Biosensors for emerging and re-emerging infectious diseases. Academic Press 2022 365 383 10.1016/B978‑0‑323‑88464‑8.00008‑7
    [Google Scholar]
  51. Qureshi R. Irfan M. Ali H. Khan A. Nittala A.S. Ali S. Shah A. Gondal T.M. Sadak F. Shah Z. Hadi M.U. Khan S. Al-Tashi Q. Wu J. Bermak A. Alam T. Artificial intelligence and biosensors in healthcare and its clinical relevance: A review. IEEE Access 2023 11 61600 61620 10.1109/ACCESS.2023.3285596
    [Google Scholar]
  52. Vashistha R. Dangi A.K. Kumar A. Chhabra D. Shukla P. Futuristic biosensors for cardiac health care: An artificial intelligence approach. BioTech 2018 8 1 11 10.1007/s13205‑018‑1368‑y
    [Google Scholar]
  53. Sharma N. Sharma R. Jindal N. Machine learning and deep learning applications: A vision. Glob. Transit. Proc. 2021 2 1 24 28 10.1016/j.gltp.2021.01.004
    [Google Scholar]
  54. Chen Y. Zou C. Mastalerz M. Hu S. Gasaway C. Tao X. Applications of micro-fourier transform infrared spectroscopy (FTIR) in the geological sciences: A review. Int. J. Mol. Sci. 2015 16 12 30223 30250 10.3390/ijms161226227 26694380
    [Google Scholar]
  55. Baum Z.J. Yu X. Ayala P.Y. Zhao Y. Watkins S.P. Zhou Q. Artificial intelligence in chemistry: Current trends and future directions. J. Chem. Inf. Model. 2021 61 7 3197 3212 10.1021/acs.jcim.1c00619 34264069
    [Google Scholar]
  56. Chimeno-Trinchet C. Murru C. Díaz-García M.E. Fernández-González A. Badía-Laíño R. Artificial Intelligence and fourier-transform infrared spectroscopy for evaluating water-mediated degradation of lubricant oils. Talanta 2020 219 121312 10.1016/j.talanta.2020.121312 32887052
    [Google Scholar]
  57. Haris P.I. Hering J.A. Artificial intelligence analysis of FTIR and CD spectroscopic data for predicting and quantifying the length and content of protein secondary structures. Biomed. Spectrosc. Imaging 2021 10 1-2 37 43 10.3233/BSI‑210210
    [Google Scholar]
  58. Waeytens J. De Meutter J. Goormaghtigh E. Dazzi A. Raussens V. Determination of secondary structure of proteins by nanoinfrared spectroscopy. Anal. Chem. 2023 95 2 621 627 10.1021/acs.analchem.2c01431 36598929
    [Google Scholar]
  59. Yates J.R. Ruse C.I. Nakorchevsky A. Proteomics by mass spectrometry: Approaches, advances, and applications. Annu. Rev. Biomed. Eng. 2009 11 1 49 79 10.1146/annurev‑bioeng‑061008‑124934 19400705
    [Google Scholar]
  60. Zhang H. Zhang J. Yuan C. Zhang D. Lu D. Chen S. Wu Y. Wu C. Recent advances in mass spectrometry imaging combined with artificial intelligence for spatially clarifying molecular profiles: Toward biomedical applications. Trends Analyt. Chem. 2024 178 117834 10.1016/j.trac.2024.117834
    [Google Scholar]
  61. Baygi S.F. Barupal D.K. IDSL_MINT: A deep learning framework to predict molecular fingerprints from mass spectra. J. Cheminform. 2024 16 1 8 10.1186/s13321‑024‑00804‑5 38238779
    [Google Scholar]
  62. Keifer D.Z. Jarrold M.F. Single‐molecule mass spectrometry. Mass Spectrom. Rev. 2017 36 6 715 733 10.1002/mas.21495 26873676
    [Google Scholar]
  63. Mehrotra P. Biosensors and their applications: A review. J. Oral Biol. Craniofac. Res. 2016 6 2 153 159 10.1016/j.jobcr.2015.12.002 27195214
    [Google Scholar]
  64. Jin X. Liu C. Xu T. Su L. Zhang X. Artificial intelligence biosensors: Challenges and prospects. Biosens. Bioelectron. 2020 165 112412 10.1016/j.bios.2020.112412 32729531
    [Google Scholar]
  65. Malhotra S. Verma A. Tyagi N. Kumar V. Biosensors: Principle, types and applications. Int. J. Adv. Res. Innov. Ideas Educ. 2017 3 2 3639 3644
    [Google Scholar]
  66. Yoon J-Y. Use of machine learning/artificial intelligence in chemical sensors and biosensors. Machine Learning and Artificial Intelligence in Chemical and Biological Sensing. Elsevier 2024 71 81 10.1016/B978‑0‑443‑22001‑2.00003‑2
    [Google Scholar]
  67. Workman J. Exploring the spectrum of analytical techniques for material characterization. Spectroscopy 2023 6 13 10.56530/spectroscopy.on6669u1
    [Google Scholar]
  68. Workman J. Mark H. Artificial intelligence in analytical spectroscopy, Part I: Basic concepts and discussion. Spectroscopy 2023 13 20 10.56530/spectroscopy.og4284z8
    [Google Scholar]
  69. Mousavizadegan M. Firoozbakhtian A. Hosseini M. Ju H. Machine learning in analytical chemistry: From synthesis of nanostructures to their applications in luminescence sensing. Trends Analyt. Chem. 2023 167 117216 10.1016/j.trac.2023.117216
    [Google Scholar]
  70. Shinde G. Godage R.K. Jadhav R.S. Manoj B. Aniket B. A review on advances in UV spectroscopy. RJST 2020 12 1 47 51 10.5958/2349‑2988.2020.00005.4
    [Google Scholar]
  71. Tistaert C. Dejaegher B. Heyden Y.V. Chromatographic separation techniques and data handling methods for herbal fingerprints: A review. Anal. Chim. Acta 2011 690 2 148 161 10.1016/j.aca.2011.02.023 21435470
    [Google Scholar]
  72. Coskun O. Separation techniques: Chromatography. North. Clin. Istanb. 2016 3 2 156 160 28058406
    [Google Scholar]
  73. Patil A.R. Ghagare P.M. Deshmane B.J. Kondawar M.S. Review on chromatography principal types and it’s application. Res. J. Pharm. Dos. Forms Technol. 2020 12 1 27 32 10.5958/0975‑4377.2020.00005.1
    [Google Scholar]
  74. Jain S. Jain A. A brief review on different chromatography techniques. JOPIR 2024 2 1 72 77
    [Google Scholar]
  75. Ding Y. Jin Y. Yao B. Khan A. Artificial intelligence based simulation of Cd(II) adsorption separation from aqueous media using a nanocomposite structure. J. Mol. Liq. 2021 344 117772 10.1016/j.molliq.2021.117772
    [Google Scholar]
  76. Jirayupat C. Nagashima K. Hosomi T. Takahashi T. Tanaka W. Samransuksamer B. Zhang G. Liu J. Kanai M. Yanagida T. Image processing and machine learning for automated identification of chemo-/biomarkers in chromatography–mass spectrometry. Anal. Chem. 2021 93 44 14708 14715 10.1021/acs.analchem.1c03163 34704450
    [Google Scholar]
  77. Xie J. Chen S. Zhao L. Dong X. Application of artificial intelligence to quantitative structure–retention relationship calculations in chromatography. J. Pharm. Anal. 2025 15 1 101155 10.1016/j.jpha.2024.101155 39896319
    [Google Scholar]
  78. Singh Y. Chen S. Two-Dimensional Liquid chromatography advancing metabolomics research. Relevant Applications of High-Performance Liquid Chromatography in Food., Environmental, Clinical and Biological Fields; Intechopen 2024 10.5772/intechopen.1006558
    [Google Scholar]
  79. Ghali U.M. Usman A.G. Chellube Z.M. Degm M.A.A. Hoti K. Umar H. Abba S.I. Advanced chromatographic technique for performance simulation of anti-Alzheimer agent: An ensemble machine learning approach. SN Appl. Sci. 2020 2 11 1871 10.1007/s42452‑020‑03690‑2
    [Google Scholar]
  80. Bueschl C. Doppler M. Varga E. Seidl B. Flasch M. Warth B. Zanghellini J. PeakBot: machine-learning-based chromatographic peak picking. Bioinformatics 2022 38 13 3422 3428 10.1093/bioinformatics/btac344 35604083
    [Google Scholar]
  81. Workman J. Artificial intelligence on artificial intelligence. Sep. Sci. 2024 20 6 21 24 10.1093/bioinformatics/btac344
    [Google Scholar]
  82. Mouellef M. Vetter F.L. Zobel-Roos S. Strube J. Fast and versatile chromatography process design and operation optimization with the aid of artificial intelligence. Processes 2021 9 12 2121 10.3390/pr9122121
    [Google Scholar]
  83. El khediri, S.; Benfradj, A.; Thaljaoui, A.; Moulahi, T.; Ullah Khan, R.; Alabdulatif, A.; Lorenz, P. Integration of artificial intelligence (AI) with sensor networks: Trends, challenges, and future directions. J. King Saud Univ Comput. Inf. Sci. 2024 36 1 101892 10.1016/j.jksuci.2023.101892
    [Google Scholar]
  84. Basivi P.K. Hamieh T. Kakani V. Pasupuleti V.R. Sasikala G. Heo S.M. Pasupuleti K.S. Kim M-D. Munagapati V.S. Siva Kumar N. Wen J-C. Kim C.W. Exploring advanced materials: Harnessing the synergy of inverse gas chromatography and artificial vision intelligence. Trends Analyt. Chem. 2024 173 117655 10.1016/j.trac.2024.117655
    [Google Scholar]
  85. Shang L. Liu C. Tang F. Chen B. Liu L. Hayashi K. Artificial intelligence-based gas chromatography-olfactometry for sensory evaluation of key compounds in food ingredients. bioRxiv 2022 2022.04
    [Google Scholar]
  86. Poole C.F. Sample preparation for gas chromatography. Gas Chromatography. Elsevier 2021 615 653 10.1016/B978‑0‑12‑820675‑1.00005‑8
    [Google Scholar]
  87. i T.P.; Smith, R.; Guhan, S.; Taksen, K.; Vavra, M.; Myers, D.; Hearn, M.T.W. Intelligent automation of high-performance liquid chromatography method development by means of a real-time knowledge-based approach. J. Chromatogr. A 2002 972 1 27 43 10.1016/S0021‑9673(02)01075‑0 12395945
    [Google Scholar]
  88. Reuhs B.L. High-performance liquid chromatography. Food. Analysis Food. Science Text Series. Springer 2017 10.1007/978‑3‑319‑45776‑5_13
    [Google Scholar]
  89. Put R. Vander Heyden Y. Review on modelling aspects in reversed-phase liquid chromatographic quantitative structure–retention relationships. Anal. Chim. Acta 2007 602 2 164 172 10.1016/j.aca.2007.09.014 17933600
    [Google Scholar]
  90. Stashenko E. Martínez, JR Gas chromatography-mass spectrometry. Advances in Gas Chromatography. InTech 2014 10.5772/57492
    [Google Scholar]
  91. Baccolo G. Quintanilla-Casas B. Vichi S. Augustijn D. Bro R. From untargeted chemical profiling to peak tables: A fully automated AI driven approach to untargeted GC-MS. Trends Analyt. Chem. 2021 145 116451 10.1016/j.trac.2021.116451
    [Google Scholar]
  92. Misra B.B. Advances in high resolution GC-MS technology: A focus on the application of GC-Orbitrap-MS in metabolomics and exposomics for FAIR practices. Anal. Methods 2021 13 20 2265 2282 10.1039/D1AY00173F 33987631
    [Google Scholar]
  93. DMGAN: Bridging AI and chemistry with enhanced GC-MS data generation. Yoon N. Kim H. 2024 1 4 10.9/SENSORS60989.2024.10784884
    [Google Scholar]
  94. Yergey A.L. Edmonds C.G. Lewis I.A. Vestal, ML Liquid Chromatography/Mass Spectrometry. Springer 2013 10.1007/978‑1‑4899‑3605‑9
    [Google Scholar]
  95. Kumar P. Dinesh S. Rini R. LCMS: A review and a recent update. J. Pharm. Pharm. Sci. 2016 5 5 377 391
    [Google Scholar]
  96. Kantz E.D. Tiwari S. Watrous J.D. Cheng S. Jain M. Deep neural networks for classification of LC-MS spectral peaks. Anal. Chem. 2019 91 19 12407 12413 10.1021/acs.analchem.9b02983 31483992
    [Google Scholar]
  97. Kehl N. Gessner A. Maas R. Fromm M.F. Taudte R.V. A supervised machine-learning approach for the efficient development of a multi method (LC-MS) for a large number of drugs and subsets thereof: Focus on oral antitumor agents. Clin. Chem. Lab. Med. 2024 62 2 293 302 10.1515/cclm‑2023‑0468 37606251
    [Google Scholar]
  98. Alam S.D. Ali I. Beg M.A. Kanamarlapudi V. Deb P. Bagadi M. Separation and identification of berberine in plant extracts using LC-MS for antibacterial activity against E. coli determination and artificial intelligence prediction for other activities. Research Square 2024 10.21203/rs.3.rs‑4013947/v1
    [Google Scholar]
  99. Kensert A. Bosten E. Collaerts G. Efthymiadis K. Van Broeck P. Desmet G. Cabooter D. Convolutional neural network for automated peak detection in reversed-phase liquid chromatography. J. Chromatogr. A 2022 1672 463005 10.1016/j.chroma.2022.463005 35430477
    [Google Scholar]
  100. Hollas, JM Modern spectroscopy; John Wiley and Sons 2004 50963
    [Google Scholar]
  101. Mandru A. Mane J. Mandapati R. A review on UV-visible spectroscopy. JOPIR 2023 1 91 96
    [Google Scholar]
  102. Akash M.S.H. Rehman K. Akash M.S.H. Rehman K. Ultraviolet-Visible (UV-VIS) Spectroscopy. Essentials of Pharmaceutical Analysis. Springer 2020 29 56 10.1007/978‑981‑15‑1547‑7_3
    [Google Scholar]
  103. Verma G. Mishra M. Development and optimization of UV-Vis spectroscopy: A review. World J. Pharm. Res. 2018 7 11 1170 1180
    [Google Scholar]
  104. Guo Y. Liu C. Ye R. Duan Q. Advances on water quality detection by uv-vis spectroscopy. Appl. Sci. 2020 10 19 6874 10.3390/app10196874
    [Google Scholar]
  105. Zhang H. Zhang L. Wang S. Zhang L. Online water quality monitoring based on UV–Vis spectrometry and artificial neural networks in a river confluence near Sherfield-on-Loddon. Environ. Monit. Assess. 2022 194 9 630 10.1007/s10661‑022‑10118‑4 35920913
    [Google Scholar]
  106. Noble W.S. What is a support vector machine? Nat. Biotechnol. 2006 24 12 1565 1567 10.1038/nbt1206‑1565 17160063
    [Google Scholar]
  107. Shao J. Liu Y. Yan J. Yan Z.Y. Wu Y. Ru Z. Liao J.Y. Miao X. Qian L. Prediction of maximum absorption wavelength using deep neural networks. J. Chem. Inf. Model. 2022 62 6 1368 1375 10.1021/acs.jcim.1c01449 35290042
    [Google Scholar]
  108. Quan N.M. Phung H.M. Uyen L. Dat L.Q. Ngoc L.G. Hoang N.M. Tu T.K.M. Dung N.H. Ai C.T.D. Trinh D.N.T. Species and geographical origin authenticity of green coffee beans using UV–VIS spectroscopy and PLS–DA prediction model. Food Chem. Adv. 2023 2 100281 10.1016/j.focha.2023.100281
    [Google Scholar]
  109. Orlando A. Franceschini F. Muscas C. Pidkova S. Bartoli M. Rovere M. Tagliaferro A. A comprehensive review on Raman spectroscopy applications. Chemosensors 2021 9 9 262 10.3390/chemosensors9090262
    [Google Scholar]
  110. Rygula A. Majzner K. Marzec K.M. Kaczor A. Pilarczyk M. Baranska M. Raman spectroscopy of proteins: A review. J. Raman Spectrosc. 2013 44 8 1061 1076 10.1002/jrs.4335
    [Google Scholar]
  111. Ralbovsky N.M. Lednev I.K. Raman spectroscopy and chemometrics: A potential universal method for diagnosing cancer. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019 219 463 487 10.1016/j.saa.2019.04.067 31075613
    [Google Scholar]
  112. Post C. Brülisauer S. Waldschläger K. Hug W. Grüneis L. Heyden N. Schmor S. Förderer A. Reid R. Reid M. Bhartia R. Nguyen Q. Schüttrumpf H. Amann F. Application of laser-induced, deep uv raman spectroscopy and artificial intelligence in real-time environmental monitoring—solutions and first results. Sensors 2021 21 11 3911 10.3390/s21113911 34198916
    [Google Scholar]
  113. Thompson J.M. Infrared spectroscopy. Jenny Stanford Publishing 2018 33 10.1201/9781351206037
    [Google Scholar]
  114. Kamal M. Karoui R. Analytical methods coupled with chemometric tools for determining the authenticity and detecting the adulteration of dairy products: A review. Trends Food Sci. Technol. 2015 46 1 27 48 10.1016/j.tifs.2015.07.007
    [Google Scholar]
  115. Shawky E. Nahar L. Nassief S.M. Sarker S.D. Ibrahim R.S. Spice authentication by near-infrared spectroscopy: Current advances, limitations, and future perspectives. Trends Food Sci. Technol. 2024 148 104522 10.1016/j.tifs.2024.104522
    [Google Scholar]
  116. Al-Antari M.A. Artificial intelligence for medical diagnostics—existing and future aI technology. Diagnostics 2023 13 4 688 10.3390/diagnostics13040688
    [Google Scholar]
  117. Guo S. Popp J. Bocklitz T. Chemometric analysis in Raman spectroscopy from experimental design to machine learning–based modeling. Nat. Protoc. 2021 16 12 5426 5459 10.1038/s41596‑021‑00620‑3 34741152
    [Google Scholar]
  118. Mantsch H.H. Biomedical vibrational spectroscopy in the era of artificial intelligence. Molecules 2021 26 5 1439 10.3390/molecules26051439 33800959
    [Google Scholar]
  119. Rehman I.U. Khan R.S. Rehman S. Role of artificial intelligence and vibrational spectroscopy in cancer diagnostics. Expert Rev. Mol. Diagn. 2020 20 8 749 755 10.1080/14737159.2020.1784008 32544359
    [Google Scholar]
  120. Marin T. Moore J. Understanding near-infrared spectroscopy. Adv. Neonatal Care 2011 11 6 382 388 10.1097/ANC.0b013e3182337ebb 22123468
    [Google Scholar]
  121. Anderson D.J. Anderson R.G. Moug S.J. Baker M.J. Liquid biopsy for cancer diagnosis using vibrational spectroscopy: Systematic review. BJS Open 2020 4 4 554 562 10.1002/bjs5.50289 32424976
    [Google Scholar]
  122. Galán-Freyle N.J. Ospina-Castro M.L. Medina-González A.R. Villarreal-González R. Hernández-Rivera S.P. Pacheco-Londoño L.C. Artificial intelligence assisted mid-infrared laser spectroscopy in situ detection of petroleum in soils. Appl. Sci. 2020 10 4 1319 10.3390/app10041319
    [Google Scholar]
  123. Lin M. Rasco B.A. Cavinato A.G. Al-Holy M. Infrared (IR) spectroscopy—near-infrared spectroscopy and mid-infrared spectroscopy. Infrared Spectroscopy for Food. Quality Analysis and Control 2009 119 143
    [Google Scholar]
  124. Haas J. Mizaikoff B. Advances in mid-infrared spectroscopy for chemical analysis. Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 2016 9 1 45 68 10.1146/annurev‑anchem‑071015‑041507 27070183
    [Google Scholar]
  125. Liang N. Sun S. Zhang C. He Y. Qiu Z. Advances in infrared spectroscopy combined with artificial neural network for the authentication and traceability of food. Crit. Rev. Food Sci. Nutr. 2022 62 11 2963 2984 10.1080/10408398.2020.1862045 33345592
    [Google Scholar]
  126. Zhou J. Liu X. Zhou H. Xu S. Xie J. Xu C. Artificial-intelligence-enhanced mid-infrared lab-on-a-chip for mixture spectroscopy analysis. Laser Photonics Rev. 2024 19 2400754 10.1002/lpor.202400754
    [Google Scholar]
  127. Jamwal R. Amit Kumari S. Sharma S. Kelly S. Cannavan A. Singh D.K. Recent trends in the use of FTIR spectroscopy integrated with chemometrics for the detection of edible oil adulteration. Vib. Spectrosc. 2021 113 103222 10.1016/j.vibspec.2021.103222
    [Google Scholar]
  128. Domon B. Aebersold R. Mass spectrometry and protein analysis. Science 2006 312 212 10.1126/science.1124619
    [Google Scholar]
  129. Siddiqui M.R. AlOthman Z.A. Rahman N. Analytical techniques in pharmaceutical analysis: A review. Arab. J. Chem. 2017 10 S1409 S1421 10.1016/j.arabjc.2013.04.016
    [Google Scholar]
  130. van Oosten L.N. Klein C.D. Machine learning in mass spectrometry: A MALDI-TOF MS approach to phenotypic antibacterial screening. J. Med. Chem. 2020 63 16 8849 8856 10.1021/acs.jmedchem.0c00040 32191034
    [Google Scholar]
  131. Nasios I. Analyze mass spectrometry data with artificial intelligence to assist the understanding of past habitability of Mars and provide insights for future missions. Icarus 2024 408 115824 10.1016/j.icarus.2023.115824
    [Google Scholar]
  132. Liebal U.W. Phan A.N.T. Sudhakar M. Raman K. Blank L.M. Machine learning applications for mass spectrometry-based metabolomics. Metabolites 2020 10 6 243 10.3390/metabo10060243 32545768
    [Google Scholar]
  133. Chen X. Shu W. Zhao L. Wan J. Advanced mass spectrometric and spectroscopic methods coupled with machine learning for in vitro diagnosis. VIEW 2023 4 1 20220038 10.1002/VIW.20220038
    [Google Scholar]
  134. Peris-Díaz M.D. Krężel, A. A guide to good practice in chemometric methods for vibrational spectroscopy, electrochemistry, and hyphenated mass spectrometry. Trends Analyt. Chem. 2021 135 116157 10.1016/j.trac.2020.116157
    [Google Scholar]
  135. Xu L.L. Young A. Zhou A. Röst H.L. Machine learning in mass spectrometric analysis of DIA data. Proteomics 2020 20 21-22 1900352 10.1002/pmic.201900352 32061181
    [Google Scholar]
  136. Neely B.A. Dorfer V. Martens L. Bludau I. Bouwmeester R. Degroeve S. Deutsch E.W. Gessulat S. Käll L. Palczynski P. Payne S.H. Rehfeldt T.G. Schmidt T. Schwämmle V. Uszkoreit J. Vizcaíno J.A. Wilhelm M. Palmblad M. Toward an integrated machine learning model of a proteomics experiment. J. Proteome Res. 2023 22 3 681 696 10.1021/acs.jproteome.2c00711 36744821
    [Google Scholar]
  137. Fricke F. Brandalero M. Liehr S. Kern S. Meyer K. Kowarik S. Hierzegger R. Westerdick S. Maiwald M. Hubner M. Artificial intelligence for mass spectrometry and nuclear magnetic resonance spectroscopy using a novel data augmentation method. IEEE Trans. Emerg. Top. Comput. 2022 10 1 87 98 10.1109/TETC.2021.3131371
    [Google Scholar]
  138. Lee E.S. Durant T.J. Supervised machine learning in the mass spectrometry laboratory: A tutorial. J. Mass Spectrom. Adv. Clin. Lab 2022 23 1 6 10.1016/j.jmsacl.2021.12.001
    [Google Scholar]
  139. Echle A. Ghaffari Laleh N. Quirke P. Grabsch H.I. Muti H.S. Saldanha O.L. Brockmoeller S.F. van den Brandt P.A. Hutchins G.G.A. Richman S.D. Horisberger K. Galata C. Ebert M.P. Eckardt M. Boutros M. Horst D. Reissfelder C. Alwers E. Brinker T.J. Langer R. Jenniskens J.C.A. Offermans K. Mueller W. Gray R. Gruber S.B. Greenson J.K. Rennert G. Bonner J.D. Schmolze D. Chang-Claude J. Brenner H. Trautwein C. Boor P. Jaeger D. Gaisa N.T. Hoffmeister M. West N.P. Kather J.N. Artificial intelligence for detection of microsatellite instability in colorectal cancer: A multicentric analysis of a pre-screening tool for clinical application. ESMO Open 2022 7 2 100400 10.1016/j.esmoop.2022.100400 35247870
    [Google Scholar]
  140. Liu Q. Hu Z. Li W. Zou C. Jin H. Wang S. Chou S. Dou S-X. Sodium transition metal oxides: The preferred cathode choice for future sodium-ion batteries? Energy Environ. Sci. 2021 14 1 158 179 10.1039/D0EE02997A
    [Google Scholar]
  141. Fernandes G.M. Silva W.R. Barreto D.N. Lamarca R.S. Lima Gomes P.C.F. Flávio da S Petruci, J.; Batista, A.D. Novel approaches for colorimetric measurements in analytical chemistry: A review. Anal. Chim. Acta 2020 1135 187 203 10.1016/j.aca.2020.07.030 33070854
    [Google Scholar]
  142. Reddy L.P. Rao G.A. Chandrasekhar V. Prakash T.J. Pradeep M. Spectrophotometric and colorimetric evaluation of staining of the light cured composite after exposure with different intensities of light curing units. J. Conserv. Dent. 2011 14 4 391 394 10.4103/0972‑0707.87208 22144810
    [Google Scholar]
  143. Wu Y. Feng J. Hu G. Zhang E. Yu H.H. Colorimetric sensors for chemical and biological sensing applications. Sensors 2023 23 5 2749 10.3390/s23052749 36904948
    [Google Scholar]
  144. Yang F-Q. Ge L. Colorimetric sensors: Methods and applications. Sensors 2023 23 24 9887 10.3390/s23249887
    [Google Scholar]
  145. Jin Z. Yim W. Retout M. Housel E. Zhong W. Zhou J. Strano M.S. Jokerst J.V. Colorimetric sensing for translational applications: From colorants to mechanisms. Chem. Soc. Rev. 2024 53 15 7681 7741 10.1039/D4CS00328D 38835195
    [Google Scholar]
  146. Zhou J. Liu Y. Du X. Gui Y. He J. Xie F. Cai J. Recent advances in design and application of nanomaterials-based colorimetric biosensors for agri-food safety analysis. ACS Omega 2023 8 49 46346 46361 10.1021/acsomega.3c06409 38107919
    [Google Scholar]
  147. Kumar H. Kuča, K.; Bhatia, S.K.; Saini, K.; Kaushal, A.; Verma, R.; Bhalla, T.C.; Kumar, D. Applications of nanotechnology in sensor-based detection of foodborne pathogens. Sensors 2020 20 7 1966 10.3390/s20071966 32244581
    [Google Scholar]
  148. Lakshmanan S. SCG, K.D.; Joseph, P.; Muthusamy, S.; Kinoshita, T. Colorimetric sensors for rapid detection of various analytes. Mater. Sci. Eng. C 2017 78 1231 1245 10.1016/j.msec.2017.05.018
    [Google Scholar]
  149. Schasfoort R.B.M. Introduction to Surface Plasmon Resonance. Handbook of Surface Plasmon Resonance. The Royal Society of Chemistry 2017 1 26 10.1039/9781788010283‑00001
    [Google Scholar]
  150. Englebienne P. Hoonacker A.V. Verhas M. Surface plasmon resonance: Principles, methods and applications in biomedical sciences. J. Spectrosc. 2003 17 2-3 255 273 10.1155/2003/372913
    [Google Scholar]
  151. Nguyen H. Park J. Kang S. Kim M. Surface plasmon resonance: A versatile technique for biosensor applications. Sensors 2015 15 5 10481 10510 10.3390/s150510481 25951336
    [Google Scholar]
  152. Karki B. Uniyal A. Sarkar P. Pal A. Yadav R.B. Sensitivity improvement of surface plasmon resonance sensor for glucose detection in urine samples using heterogeneous layers: An analytical perspective. J. Opt. 2023 53 1 11 10.1007/s12596‑023‑01418‑0
    [Google Scholar]
  153. Zain H. Batumalay M. Harith Z. Rahim H. Harun S. J. Phys. Conf. Ser. 2022 2411 012013 [Machine learning algorithms for surface plasmon resonance bio-detection applications, A short review. 10.1088/1742‑6596/2411/1/012
    [Google Scholar]
  154. Hassani-Marand M. Jafarinejad S. Hormozi-Nezhad M.R. An AI-enabled multi colorimetric sensor array: Towards rapid and noninvasive detection of neuroblastoma urinary markers. Sens. Actuators B Chem. 2023 396 134571 10.1016/j.snb.2023.134571
    [Google Scholar]
  155. Kavita V. DNA biosensors: A review. J. Bioeng. Biomed. Sci. 2017 7 2 222
    [Google Scholar]
  156. Perumal V. Hashim U. Advances in biosensors: Principle, architecture and applications. J. Appl. Biomed. 2014 12 1 1 15 10.1016/j.jab.2013.02.001
    [Google Scholar]
  157. Karunakaran C. Rajkumar R. Bhargava K. Introduction to biosensors. Biosensors and bioelectronics. Elsevier 2015 1 68 10.1016/B978‑0‑12‑803100‑1.00001‑3
    [Google Scholar]
  158. Kadian S. Kumari P. Shukla S. Narayan R. Recent advancements in machine learning enabled portable and wearable biosensors. Talanta Open 2023 8 100267 10.1016/j.talo.2023.100267
    [Google Scholar]
  159. Haleem A. Javaid M. Singh R.P. Suman R. Rab S. Biosensors applications in medical field: A brief review. Sens. Int. 2021 2 100100 10.1016/j.sintl.2021.100100
    [Google Scholar]
  160. Smart home for elderly care, based on Wireless Sensor Network. Ransing, R.S. Rajput M. 2015 International Conference on Nascent Technologies in the Engineering Field (ICNTE) Navi Mumbai, India 09-10 January 2015 1 5 10.1109/ICNTE.2015.7029932
    [Google Scholar]
  161. Malik S. Singh J. Goyat R. Saharan Y. Chaudhry V. Umar A. Ibrahim A.A. Akbar S. Ameen S. Baskoutas S. Nanomaterials-based biosensor and their applications: A review. Heliyon 2023 9 9 e19929 10.1016/j.heliyon.2023.e19929 37809900
    [Google Scholar]
  162. Bhambri P. Khang A. AI-integrated biosensors and bioelectronics for agriculture. Harnessing High-Performance Computing and AI for Environmental Sustainability. IGI Global 2024 28 45 10.4018/979‑8‑3693‑1794‑5.ch002
    [Google Scholar]
  163. Cheng S-T. Shen C-F. Shiau J-H. Chou K-R. Lin W-Y. Lien C-L. Development of an electrochemical biosensor with TiN nano-electrode arrays for IL-6 detection. Sens. Actuators Rep. 2024 ••• 100204 10.1016/j.snr.2024.100204
    [Google Scholar]
  164. de Oliveira Filho J.I. Faleiros M.C. Ferreira D.C. Mani V. Salama K.N. Empowering electrochemical biosensors with ai: Overcoming interference for precise dopamine detection in complex samples. Adv. Intell. Syst. 2023 5 10 2300227 10.1002/aisy.202300227
    [Google Scholar]
  165. Sun J. Mu Q. Kimura H. Murugadoss V. He M. Du W. Hou C. Oxidative degradation of phenols and substituted phenols in the water and atmosphere: a review. Adv. Compos. Hybrid Mater. 2022 5 2 627 640 10.1007/s42114‑022‑00435‑0
    [Google Scholar]
  166. Gu C. Su X. Liu B. Zheng C. Wang S. Tian Y. Ma J. Wu L. Recent progress in advanced materials for electrochemical determination of phenolic contaminants. Microchem. J. 2023 195 109513 10.1016/j.microc.2023.109513
    [Google Scholar]
  167. Bhat A. Anwer S. Bhat K.S. Mohideen M.I.H. Liao K. Qurashi, A Prospects challenges and stability of 2D MXenes for clean energy conversion and storage applications. npj 2D Mater. Appl. 2021 5 61 10.1038/s41699‑021‑00239‑8
    [Google Scholar]
  168. Chen Z. Li J. Li T. Fan T. Meng C. Li C. Kang J. Chai L. Hao Y. Tang Y. Al-Hartomy O.A. Wageh S. Al-Sehemi A.G. Luo Z. Yu J. Shao Y. Li D. Feng S. Liu W.J. He Y. Ma X. Xie Z. Zhang H.A. CRISPR/Cas12a-empowered surface plasmon resonance platform for rapid and specific diagnosis of the Omicron variant of SARS-CoV-2. Natl. Sci. Rev. 2022 9 8 nwac104 10.1093/nsr/nwac104 35992231
    [Google Scholar]
  169. Scott A. Pandey R. Saxena S. Osman E. Li Y. Soleymani L. A smartphone operated electrochemical reader and actuator that streamlines the operation of electrochemical biosensors. ECS Sens. Plus 2022 1 1 014601 10.1149/2754‑2726/ac5fb3
    [Google Scholar]
  170. Roy S. Arshad F. Eissa S. Safavieh M. Alattas S.G. Ahmed M.U. Zourob M. Recent developments towards portable point-of-care diagnostic devices for pathogen detection. Sens. Diagn. 2022 1 1 87 105 10.1039/D1SD00017A
    [Google Scholar]
  171. Pérez-Fernández B. de la Escosura-Muñiz A. Electrochemical biosensors based on nanomaterials for aflatoxins detection: A review (2015–2021). Anal. Chim. Acta 2022 1212 339658 10.1016/j.aca.2022.339658 35623779
    [Google Scholar]
  172. Ajiboye T.O. Oladoye P.O. Olanrewaju C.A. Akinsola G.O. Organophosphorus pesticides: Impacts, detection and removal strategies. Environ. Nanotechnol. Monit. Manag. 2022 17 100655 10.1016/j.enmm.2022.100655
    [Google Scholar]
  173. Yan T. Zhang G. Chai H. Qu L. Zhang X. Flexible biosensors based on colorimetry, fluorescence, and electrochemistry for point-of-care testing. Front. Bioeng. Biotechnol. 2021 9 753692 10.3389/fbioe.2021.753692 34650963
    [Google Scholar]
/content/journals/cac/10.2174/0115734110373957250516113853
Loading
/content/journals/cac/10.2174/0115734110373957250516113853
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test