Skip to content
2000
image of Network Pharmacology Analysis on the Anticoagulant Effect of the Chemical Constituents of Paeoniae Radix Rubra on Blood Stasis Syndrome in Rats

Abstract

Introduction

In Traditional Chinese Medicine (TCM), BSS refers to impaired circulation or stagnation of blood flow and formation of bruises. The primary therapeutic strategy to treat BSS involves invigorating blood circulation. PRR is a widely used TCM herb for treating acute and critical diseases caused by BSS. However, the anticoagulant effects of different compounds of PRR on BSS remain elusive. The aim of the study was to investigate the pharmacological role of different chemical constituents of Paeoniae Radix Rubra (PRR) in the modulation of anticoagulation in Blood Stasis Syndrome (BSS). This study aimed to analyze the therapeutic effect of PRR on BSS and to assess the ameliorative effect of different chemical constituents of PRR on blood circulation, clotting time, and platelet aggregation in rats with acute BSS.

Methods

Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) was used to screen the targets of PRR, and genes causing BSS were predicted using PharmGKB, OMIM, and TTD databases. Intersected genes between PRR and BSS targets were visualized in Venn diagrams. Core target networks of Protein-Protein Interaction (PPI) and cross-targets were constructed using Cytoscape 3.7.1, and the cross-targets were enriched using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) database. Furthermore, the effects of PRR on platelet aggregation, plasma viscosity, and whole blood viscosity in the rats with BSS were examined by blood rheology and other methods. The serum levels of Endothelin-1 (ET-1), Nitric Oxide (NO), Thromboxaneb2 (TXB2), and 6-keto-Prostaglandin F1 α (6-keto-PGF1α) in the rats were measured by the Enzyme-Linked Immunosorbent Assay (ELISA) method.

Results

The main active compounds of PRR, including total glycosides, flavonoids, and polysaccharides, were identified using the TCMSP database. A total of 31 cross-targets were obtained from the intersection between 129 active targets of PRR and 345 causative genes of BSS. PPI network identified genes such as Albumin (), SRC Proto-Oncogene, Non-Receptor Tyrosine Kinase (), AKT Serine/Threonine Kinase 1 () as the core targets of PRR in alleviating BSS. Enrichment analysis showed that the common targets were mainly associated with several biological processes, including lipid and atherosclerosis, adherens junction, and focal adhesion. Following the intervention with PRR extract, the whole blood viscosity and plasma viscosity were reduced, and platelet aggregation was inhibited in the model rats in comparison to the model group. Moreover, PRR treatment also promoted thrombin time (TT), prothrombin time (PT), and Activated Partial Thromboplastin Time (APTT), increased the level of NO and 6-keto-PGF1α, but reduced the level of Fibrinogen content (FIB) and ET-1 and TXB2 in the serum of the model rats.

Discussion

The present research systematically explored the anticoagulant effect of the chemical constituents of PRR on BSS in rats, applying network pharmacology analysis.

Conclusion

The current findings provided a theoretical foundation for the pharmacological basis of using PRR in the management of BSS.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110395667250625061902
2025-07-01
2025-09-05
Loading full text...

Full text loading...

References

  1. Wei B. Sun C. Wan H. Shou Q. Han B. Sheng M. Li L. Kai G. Bioactive components and molecular mechanisms of Salvia miltiorrhiza Bunge in promoting blood circulation to remove blood stasis. J. Ethnopharmacol. 2023 317 116697 10.1016/j.jep.2023.116697 37295577
    [Google Scholar]
  2. Choi T.Y. Jun J.H. Lee J.A. Park B. You S. Jung J. Lee M.S. Expert opinions on the concept of blood stasis in China: An interview study. Chin. J. Integr. Med. 2016 22 11 823 831 10.1007/s11655‑014‑1983‑3 25182157
    [Google Scholar]
  3. Yue S.J. Xin L.T. Fan Y.C. Li S.J. Tang Y.P. Duan J.A. Guan H.S. Wang C.Y. Herb pair Danggui-Honghua: Mechanisms underlying blood stasis syndrome by system pharmacology approach. Sci. Rep. 2017 7 1 40318 10.1038/srep40318 28074863
    [Google Scholar]
  4. Liu P. Shang E.X. Zhu Y. Yu J.G. Qian D.W. Duan J.A. Comparative analysis of compatibility effects on invigorating blood circulation for cyperi rhizoma series of herb pairs using untargeted metabolomics. Front. Pharmacol. 2017 8 677 10.3389/fphar.2017.00677 29018346
    [Google Scholar]
  5. Zou Z.J. Liu Z.H. Gong M.J. Han B. Wang S.M. Liang S.W. Intervention effects of puerarin on blood stasis in rats revealed by a 1H NMR-based metabonomic approach. Phytomedicine 2015 22 3 333 343 10.1016/j.phymed.2015.01.006 25837270
    [Google Scholar]
  6. De Silva K. Myat A. Cotton J. James S. Gershlick A. Stone G.W. Bleeding associated with the management of acute coronary syndromes. Heart 2017 103 7 546 562 10.1136/heartjnl‑2015‑307602 28087588
    [Google Scholar]
  7. Spannagl M. Sibbing D. Direct oral anticoagulants and antiplatelet agents. Hamostaseologie 2014 34 1 78 84 10.5482/HAMO‑13‑11‑0055 24301324
    [Google Scholar]
  8. Hirai T. Hamada Y. Geka Y. Kuwana S. Hirai K. Ishibashi M. Fukaya Y. Kimura T. A retrospective study on the risk factors for bleeding events in warfarin therapy, focusing on renal function. Eur. J. Clin. Pharmacol. 2017 73 11 1491 1497 10.1007/s00228‑017‑2316‑1 28795244
    [Google Scholar]
  9. Liu Y. Cui W. Liu H. Yao M. Shen W. Miao L. Wei J. Liang X. Zhang Y. Exploring the “gene–metabolite” network of ischemic stroke with blood stasis and toxin syndrome by integrated transcriptomics and metabolomics strategy. Sci. Rep. 2024 14 1 11947 10.1038/s41598‑024‑61633‑y 38789486
    [Google Scholar]
  10. Xu H. Chen Z. Shang Q. Gao Z. Yu C. Shi D. Chen K. Asymmetric dimethylarginine predicts one-year recurrent cardiovascular events: Potential biomarker of “toxin syndrome” in coronary heart disease. Chin. J. Integr. Med. 2019 25 5 327 333 10.1007/s11655‑019‑2701‑y 31065970
    [Google Scholar]
  11. Foote H.P. Wu H. Balevic S.J. Thompson E.J. Hill K.D. Graham E.M. Hornik C.P. Kumar K.R. Using pharmacokinetic modeling and electronic health record data to predict clinical and safety outcomes after methylprednisolone exposure during cardiopulmonary bypass in neonates. Congenit. Heart Dis. 2023 18 3 295 313 10.32604/chd.2023.026262 37484782
    [Google Scholar]
  12. Xu J.J. Xu F. Wang W. Zhang Y.F. Hao B.Q. Shang M.Y. Liu G.X. Li Y.L. Yang S.B. Wang X. Cai S.Q. Elucidation of the mechanisms and effective substances of paeoniae radix rubra against toxic heat and blood stasis syndrome with a stage-oriented strategy. Front. Pharmacol. 2022 13 842839 10.3389/fphar.2022.842839 35308239
    [Google Scholar]
  13. Yang Y. Li S. Teixeira da Silva J.A. Yu X. Wang L. Characterization of phytochemicals in the roots of wild herbaceous peonies from China and screening for medicinal resources. Phytochemistry 2020 174 112331 10.1016/j.phytochem.2020.112331 32146385
    [Google Scholar]
  14. Ma X. Wen J.X. Gao S.J. He X. Li P.Y. Yang Y.X. Wei S. Zhao Y.L. Xiao X.H. Paeonia lactiflora Pall. regulates the NF-κB-NLRP3 inflammasome pathway to alleviate cholestasis in rats. J. Pharm. Pharmacol. 2018 70 12 1675 1687 10.1111/jphp.13008 30277564
    [Google Scholar]
  15. Liang J. Xu F. Zhang Y.Z. Huang S. Zang X.Y. Zhao X. Zhang L. Shang M.Y. Yang D.H. Wang X. Cai S.Q. The profiling and identification of the absorbed constituents and metabolites of Paeoniae Radix Rubra decoction in rat plasma and urine by the HPLC–DAD–ESI-IT-TOF-MSn technique: A novel strategy for the systematic screening and identification of absorbed constituents and metabolites from traditional Chinese medicines. J. Pharm. Biomed. Anal. 2013 83 108 121 10.1016/j.jpba.2013.04.029 23727363
    [Google Scholar]
  16. Ru J. Li P. Wang J. Zhou W. Li B. Huang C. Li P. Guo Z. Tao W. Yang Y. Xu X. Li Y. Wang Y. Yang L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform. 2014 6 1 13 10.1186/1758‑2946‑6‑13 24735618
    [Google Scholar]
  17. Liu X. Ouyang S. Yu B. Liu Y. Huang K. Gong J. Zheng S. Li Z. Li H. Jiang H. PharmMapper server: A web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Res. 2010 38 W609 W614 10.1093/nar/gkq300
    [Google Scholar]
  18. Li B. Sheng P. Xie J. Wu Y. Xia X. Wu M. A network pharmacology approach for uncovering the mechanism of ‘kouchuangling’ in radiation-induced oral mucositis treatment. Comb. Chem. High Throughput Screen. 2023 26 5 1042 1057 10.2174/1386207325666220617151600 35718968
    [Google Scholar]
  19. Chen W. Li X. Xiang L. Lin Y. Tang Q. Meng F. Computational analysis illustrates the mechanism of qingfei paidu decoction in blocking the transition of covid-19 patients from mild to severe stage. Curr. Gene Ther. 2022 22 3 277 289 10.2174/1566523221666210907162005 34493195
    [Google Scholar]
  20. Wishart D.S. Feunang Y.D. Guo A.C. Lo E.J. Marcu A. Grant J.R. Sajed T. Johnson D. Li C. Sayeeda Z. Assempour N. Iynkkaran I. Liu Y. Maciejewski A. Gale N. Wilson A. Chin L. Cummings R. Le D. Pon A. Knox C. Wilson M. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res. 2018 46 D1 D1074 D1082 10.1093/nar/gkx1037 29126136
    [Google Scholar]
  21. Amberger J.S. Bocchini C.A. Schiettecatte F. Scott A.F. Hamosh A. OMIM.org: Online mendelian inheritance in man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res. 2015 43 D1 D789 D798 10.1093/nar/gku1205 25428349
    [Google Scholar]
  22. Li Y.H. Yu C.Y. Li X.X. Zhang P. Tang J. Yang Q. Fu T. Zhang X. Cui X. Tu G. Zhang Y. Li S. Yang F. Sun Q. Qin C. Zeng X. Chen Z. Chen Y.Z. Zhu F. Therapeutic target database update 2018: Enriched resource for facilitating bench-to-clinic research of targeted therapeutics. Nucleic Acids Res. 2018 46 D1 D1121 D1127 10.1093/nar/gkx1076 29140520
    [Google Scholar]
  23. Szklarczyk D. Kirsch R. Koutrouli M. Nastou K. Mehryary F. Hachilif R. Gable A.L. Fang T. Doncheva N.T. Pyysalo S. Bork P. Jensen L.J. von Mering C. The STRING database in 2023: Protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023 51 D1 D638 D646 10.1093/nar/gkac1000 36370105
    [Google Scholar]
  24. Ye J. Yang R. Li L. Zhong S. Jiang R. Hu Z. Molecular mechanism of Danxiong Tongmai Granules in treatment of coronary heart disease. Aging 2024 16 10 8843 8865 10.18632/aging.205845 38775721
    [Google Scholar]
  25. Sherman B.T. Hao M. Qiu J. Jiao X. Baseler M.W. Lane H.C. Imamichi T. Chang W. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022 50 W1 W216 W221 10.1093/nar/gkac194 35325185
    [Google Scholar]
  26. Xia S. Tao H. Su S. Chen X. Ma L. Li J. Gao B. Liu X. Pi L. Feng J. Li F. Li J. Zhang Z. DNA methylation variation is identified in monozygotic twins discordant for congenital heart diseases. Congenit. Heart Dis. 2024 19 2 247 256 10.32604/chd.2024.052583
    [Google Scholar]
  27. Xie P. Cui L. Shan Y. Kang W. Antithrombotic effect and mechanism of radix paeoniae rubra. BioMed Res. Int. 2017 2017 1 9 10.1155/2017/9475074 28299338
    [Google Scholar]
  28. Zhang Q. Zhang A. Wu F. Wang X. UPLC-G2Si-HDMS untargeted metabolomics for identification of yunnan baiyao’s metabolic target in promoting blood circulation and removing blood stasis. Molecules 2022 27 10 3208 10.3390/molecules27103208
    [Google Scholar]
  29. Wang J. Zhang J. A preliminary study of TCM stage-oriented treatment of atherosclerosis. J. Tradit. Chin. Med. 2009 29 3 201 204 10.1016/S0254‑6272(09)60065‑0 19894385
    [Google Scholar]
  30. Chen K. Blood stasis syndrome and its treatment with activating blood circulation to remove blood stasis therapy. Chin. J. Integr. Med. 2012 18 12 891 896 10.1007/s11655‑012‑1291‑5 23238996
    [Google Scholar]
  31. Fan Z. Liu J. Wang X. Yang S. Wang Q. Yan L. Zhang Y. Wu X. Paeoniae radix rubra: A review of ethnopharmacology, phytochemistry, pharmacological activities, therapeutic mechanism for blood stasis syndrome, and quality control. Chem. Biodivers. 2024 21 8 202401119 10.1002/cbdv.202401119 38850115
    [Google Scholar]
  32. Li L. Yao D. Lu Y. Deng J. Wei J. Yan Y. Deng H. Han L. Lu C. Metabonomics study on serum characteristic metabolites of psoriasis vulgaris patients with blood-stasis syndrome. Front. Pharmacol. 2020 11 558731 10.3389/fphar.2020.558731 33312124
    [Google Scholar]
  33. Zhi-Rong G.U. Chun-Miao X. Xin L. Xiao-Yan S.U. Lin P. Bin G.E. Jun-Ling C. Study on drug properties and syndrome-symptom-formula-herb network of traditional Chinese medicine in treatment of effort angina pectoris based on data visualization. Zhongguo Zhongyao Zazhi 2020 45 18 4482 4489 33164379
    [Google Scholar]
  34. Goto H. Blood stasis syndrome in Japan and its molecular biological analysis. Chin. J. Integr. Med. 2014 20 7 490 495 10.1007/s11655‑014‑1882‑7 24972576
    [Google Scholar]
  35. Gao M. Zha Y. Sheng N. Cao Y. Yao W. Bao B. Shan M. Cheng F. Yu S. Zhang Y. Geng T. Liu S. Yan H. Chen P. Zhang J. Zhang L. Integrated transcriptomics and lipidomics reveals protective effect in vascular endothelial barrier of a polysaccharide from Typhae Pollen. Int. J. Biol. Macromol. 2024 282 Pt 2 136817 10.1016/j.ijbiomac.2024.136817 39490477
    [Google Scholar]
  36. Ma M. Du Q. Shi S. Lv J. Zhang W. Ge D. Xing L. Yu N. Integrating UPLC-Q-TOF-MS and network pharmacology to explore the potential mechanisms of Paeonia lactiflora pall in the treatment of blood stasis syndrome. Molecules 2024 29 13 3019 10.3390/molecules29133019 38998977
    [Google Scholar]
  37. Zheng G.H. Xiong S.Q. Chen H.Y. Mei L.J. Wang T. Associations of platelet-activating factor acetylhydrolase (PAF-AH) gene polymorphisms with circulating PAF-AH levels and risk of coronary heart disease or blood stasis syndrome in the Chinese Han population. Mol. Biol. Rep. 2014 41 11 7141 7151 10.1007/s11033‑014‑3597‑4 25034894
    [Google Scholar]
  38. Ye Q. Zhang Y. Yan D. Sun Y. Li M. Cao H. Wang S. Meng J. Integrating pharmacokinetics and network analysis to investigate the mechanism of Moutan Cortex in blood-heat and blood stasis syndrome. Chin. Med. 2022 17 1 107 10.1186/s13020‑022‑00657‑w 36104759
    [Google Scholar]
  39. Zhao Y. Liu Y. Guan Y. Liu N. Effect of Yinian Jiangya Yin on primary hypertension in early stage--a clinical observation on 40 patients. J. Tradit. Chin. Med. 2010 30 3 171 175 10.1016/S0254‑6272(10)60035‑0 21053621
    [Google Scholar]
  40. Jin S.N. Wen J.F. Wang T.T. Kang D.G. Lee H.S. Cho K.W. Vasodilatory effects of ethanol extract of Radix Paeoniae Rubra and its mechanism of action in the rat aorta. J. Ethnopharmacol. 2012 142 1 188 193 10.1016/j.jep.2012.04.035 22543176
    [Google Scholar]
/content/journals/cac/10.2174/0115734110395667250625061902
Loading
/content/journals/cac/10.2174/0115734110395667250625061902
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test