Skip to content
2000
image of Removal of Malachite Green from Aqueous Solutions by Using Bi4V2O11 Nanosheet

Abstract

Introduction

Transition metal oxides are highly effective for dye removal due to their adaptable surface chemistry, availability, and robust mechanical and thermal properties. Among them, BiVO nanosheets offer potential due to their morphology and high surface area. To synthesize BiVO nanosheets and evaluate their performance in removing malachite green, focusing on the impact of adsorbent amount, contact time, and interfering ions on dye removal efficiency. This study aims to evaluate the performance of BiVO nanosheets in removing malachite green dye from aqueous solutions and to examine the effects of adsorbent dosage, contact time, and the presence of coexisting ions on the sorption process.

Methods

BiVO nanosheets were synthesized and used to remove the malachite green dye. Batch experiments were conducted to study the effects of adsorbent dose, contact time, and coexisting ions (Na+, Ca2+, and tannic acid). Equilibrium data were fitted to the Langmuir isotherm model to determine the maximum sorption capacity.

Results

Malachite green sorption using BiVO nanosheets reached equilibrium within 240 minutes, demonstrating efficient dye removal under the tested conditions. The sorption process conformed to the Langmuir isotherm model, indicating monolayer adsorption with a maximum capacity of 47.27 mg/g. While the presence of Na+ and tannic acid had negligible effects on dye removal efficiency, the coexistence of Ca2+ significantly reduced the removal efficiency from 95% to 58%, highlighting the potential impact of divalent ions on the adsorption process.

Discussion

BiVO nanosheets are effective adsorbents for malachite green removal, demonstrating high sorption capacity and resilience to Na+ and tannic acid interference. However, the presence of Ca2+ significantly reduces removal efficiency, highlighting the need for further optimization in practical applications.

Conclusion

BiVO nanosheets offer high sorption capacity and structural stability, environment friendly synthesis procedure, making them feasible for small-scale or pre-treatment applications.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110385399250806161005
2025-08-18
2025-10-29
Loading full text...

Full text loading...

References

  1. Nazir M.A. Elsadek M.F. Ullah S. Hossain I. Najam T. Ullah S. Muhammad N. Shah S.S.A. Rehman A. Synthesis of bimetallic Mn@ZIF–8 nanostructure for the adsorption removal of methyl orange dye from water. Inorg. Chem. Commun. 2024 165 112294 10.1016/j.inoche.2024.112294
    [Google Scholar]
  2. Sharma Y.C. Upadhyay S.N. Removal of a cationic dye from wastewaters by adsorption on activated carbon developed from coconut coir. Energy Fuels 2009 23 6 2983 2988 10.1021/ef9001132
    [Google Scholar]
  3. Ali I. AL-Othman, Z.A.; Alwarthan, A. Molecular uptake of congo red dye from water on iron composite nano particles. J. Mol. Liq. 2016 224 171 176 10.1016/j.molliq.2016.09.108
    [Google Scholar]
  4. Rajeshkannan R. Rajasimman M. Rajamohan N. Decolourization of malachite green using tamarind seed: Optimization, isotherm and kinetic studies. Chem. Ind. Chem. Eng. Q. 2011 17 1 67 79 10.2298/CICEQ100716056R
    [Google Scholar]
  5. Yin G. Sun Z. Gao Y. Xu S. Preparation of expanded graphite for malachite green dye removal from aqueous solution. Microchem. J. 2021 166 106190 10.1016/j.microc.2021.106190
    [Google Scholar]
  6. Adebayo M.A. Prola L.D.T. Lima E.C. Puchana-Rosero M.J. Cataluña R. Saucier C. Umpierres C.S. Vaghetti J.C.P. da Silva L.G. Ruggiero R. Adsorption of procion blue MX-R dye from aqueous solutions by lignin chemically modified with aluminium and manganese. J. Hazard. Mater. 2014 268 43 50 10.1016/j.jhazmat.2014.01.005 24462989
    [Google Scholar]
  7. Abdalkareem Jasim S. Kamolova N.I. Yasin G. Abdelbasset W.K. Altimari U.S. Ahmed Y.M. Liu P. The possibility of Eriochrome black T dye removal from wastewater by using BC3 nanotube; quantum chemical study. Inorg. Chem. Commun. 2022 139 109309 10.1016/j.inoche.2022.109309
    [Google Scholar]
  8. Buvaneswari K. Singanan M. Removal of malachite green dye in synthetic wastewater using Zingiber officinale plant leaves biocarbon. Mater. Today Proc. 2022 55 274 279 10.1016/j.matpr.2021.07.137
    [Google Scholar]
  9. Mu Y. Ma H. NaOH-modified mesoporous biochar derived from tea residue for methylene Blue and Orange II removal. Chem. Eng. Res. Des. 2021 167 129 140 10.1016/j.cherd.2021.01.008
    [Google Scholar]
  10. Pandey D. Daverey A. Dutta K. Arunachalam K. Bioremoval of toxic malachite green from water through simultaneous decolorization and degradation using laccase immobilized biochar. Chemosphere 2022 297 134126 10.1016/j.chemosphere.2022.134126 35247449
    [Google Scholar]
  11. Ye M. Wen X. Wang M. Iocozzia J. Zhang N. Lin C. Lin Z. Recent advances in dye-sensitized solar cells: From photoanodes, sensitizers and electrolytes to counter electrodes. Mater. Today 2015 18 3 155 162 10.1016/j.mattod.2014.09.001
    [Google Scholar]
  12. Guendouz S. Khellaf N. Zerdaoui M. Ouchefoun M. Biosorption of synthetic dyes (Direct Red 89 and Reactive Green 12) as an ecological refining step in textile effluent treatment. Environ. Sci. Pollut. Res. Int. 2013 20 6 3822 3829 10.1007/s11356‑012‑1314‑1 23179220
    [Google Scholar]
  13. Attri P. Garg S. Ratan J.K. Giri A.S. Comparative study using advanced oxidation processes for the degradation of model dyes mixture: Reaction kinetics and biodegradability assay. Mater. Today Proc. 2022 57 1533 1538 10.1016/j.matpr.2021.12.063
    [Google Scholar]
  14. Khalil A. Nazir M.A. Salem M.A. Ragab S. El Nemr A. Magnetic pomegranate peels activated carbon (MG-PPAC) composite for Acid Orange 7 dye removal from wastewater. Appl. Water Sci. 2024 14 8 178 10.1007/s13201‑024‑02225‑z
    [Google Scholar]
  15. Song J. Han G. Wang Y. Jiang X. Zhao D. Li M. Yang Z. Ma Q. Parales R.E. Ruan Z. Mu Y. Pathway and kinetics of malachite green biodegradation by Pseudomonas veronii. Sci. Rep. 2020 10 1 4502 10.1038/s41598‑020‑61442‑z 32161360
    [Google Scholar]
  16. Chen S.H. Cheow Y.L. Ng S.L. Ting A.S.Y. Biodegradation of triphenylmethane dyes by non-white rot fungus Penicillium simplicissimum: Enzymatic and toxicity studies. Int. J. Environ. Res. 2019 13 2 273 282 10.1007/s41742‑019‑00171‑2
    [Google Scholar]
  17. Ren Q. Kong C. Chen Z. Zhou J. Li W. Li D. Cui Z. Xue Y. Lu Y. Ultrasonic assisted electrochemical degradation of malachite green in wastewater. Microchem. J. 2021 164 106059 10.1016/j.microc.2021.106059
    [Google Scholar]
  18. Stammati A. Nebbia C. Angelis I.D. Albo A.G. Carletti M. Rebecchi C. Zampaglioni F. Dacasto M. Effects of malachite green (MG) and its major metabolite, leucomalachite green (LMG), in two human cell lines. Toxicol. In Vitro 2005 19 7 853 858 10.1016/j.tiv.2005.06.021 16061355
    [Google Scholar]
  19. Zhang Y. Huang Y. Kang Y. Miao J. Lai K. Selective recognition and determination of malachite green in fish muscles via surface-enhanced Raman scattering coupled with molecularly imprinted polymers. Food Control 2021 130 108367 10.1016/j.foodcont.2021.108367
    [Google Scholar]
  20. Sartape A.S. Mandhare A.M. Jadhav V.V. Raut P.D. Anuse M.A. Kolekar S.S. Removal of malachite green dye from aqueous solution with adsorption technique using Limonia acidissima (wood apple) shell as low cost adsorbent. Arab. J. Chem. 2017 10 S3229 S3238 10.1016/j.arabjc.2013.12.019
    [Google Scholar]
  21. Hameed B.H. El-Khaiary M.I. Batch removal of malachite green from aqueous solutions by adsorption on oil palm trunk fibre: Equilibrium isotherms and kinetic studies. J. Hazard. Mater. 2008 154 1-3 237 244 10.1016/j.jhazmat.2007.10.017 18022316
    [Google Scholar]
  22. Srivastava S. Sinha R. Roy D. Toxicological effects of malachite green. Aquat. Toxicol. 2004 66 3 319 329 10.1016/j.aquatox.2003.09.008 15129773
    [Google Scholar]
  23. Altintig E. Onaran M. Sarı A. Altundag H. Tuzen M. Preparation, characterization and evaluation of bio-based magnetic activated carbon for effective adsorption of malachite green from aqueous solution. Mater. Chem. Phys. 2018 220 313 321 10.1016/j.matchemphys.2018.05.077
    [Google Scholar]
  24. Awual M.R. Innovative composite material for efficient and highly selective Pb(II) ion capturing from wastewater. J. Mol. Liq. 2019 284 502 510 10.1016/j.molliq.2019.03.157
    [Google Scholar]
  25. Salman M.S. Hasan M.N. Kubra K.T. Hasan M.M. Optical detection and recovery of Yb(III) from waste sample using novel sensor ensemble nanomaterials. Microchem. J. 2021 162 105868 10.1016/j.microc.2020.105868
    [Google Scholar]
  26. Znad H. Al-Mohammedawi H. Awual M.R. Integrated pre-treatment stage of biosorbent – sonication for mixed brewery and restaurant effluents to enhance the photo-fermentative hydrogen production. Biomass Bioenergy 2021 144 105899 10.1016/j.biombioe.2020.105899
    [Google Scholar]
  27. Vishnu D. Dhandapani B. Authilingam S. Sivakumar S.V. A comprehensive review of effective adsorbents used for the removal of dyes from wastewater. Curr. Anal. Chem. 2021 18 3 255 268 10.2174/1573411016999200831111155
    [Google Scholar]
  28. You X. Zhou R. Zhu Y. Bu D. Cheng D. Adsorption of dyes methyl violet and malachite green from aqueous solution on multi-step modified rice husk powder in single and binary systems: Characterization, adsorption behavior and physical interpretations. J. Hazard. Mater. 2022 430 128445 10.1016/j.jhazmat.2022.128445 35150995
    [Google Scholar]
  29. Das L. Saha N. Ganguli A. Das P. Bhowal A. Bhattacharjee C. Calcium alginate–bentonite/activated biochar composite beads for removal of dye and Biodegradation of dye-loaded composite after use: Synthesis, removal, mathematical modeling and biodegradation kinetics. Enviro Tech. Inno 2021 24 101955 10.1016/j.eti.2021.101955
    [Google Scholar]
  30. Kaur K. Jindal R. Synergistic effect of organic-inorganic hybrid nanocomposite ion exchanger on photocatalytic degradation of Rhodamine-B dye and heavy metal ion removal from industrial effluents. J. Environ. Chem. Eng. 2018 6 6 7091 7101 10.1016/j.jece.2018.09.065
    [Google Scholar]
  31. de Souza S.M.A.G.U. Bonilla K.A.S. de Souza A.A.U. Removal of COD and color from hydrolyzed textile azo dye by combined ozonation and biological treatment. J. Hazard. Mater. 2010 179 1-3 35 42 10.1016/j.jhazmat.2010.02.053 20227826
    [Google Scholar]
  32. Januário E.F.D. Vidovix T.B. Bergamasco R. Vieira A.M.S. Performance of a hybrid coagulation/flocculation process followed by modified microfiltration membranes for the removal of solophenyl blue dye. Chem. Eng. Process. 2021 168 108577 10.1016/j.cep.2021.108577
    [Google Scholar]
  33. Yin Y. Li C. Song C. Tao P. Sun M. Pan Z. Wang T. Shao M. The design of coal-based carbon membrane coupled with the electric field and its application on the treatment of malachite green (MG) aqueous solution. Colloids Surf. A Physicochem. Eng. Asp. 2016 506 629 636 10.1016/j.colsurfa.2016.07.038
    [Google Scholar]
  34. Sunil K. Sherugar P. Rao S. Lavanya C. Balakrishna G.R. Arthanareeswaran G. Padaki M. Prolific approach for the removal of dyes by an effective interaction with polymer matrix using ultrafiltration membrane. J. Environ. Chem. Eng. 2021 9 6 106328 10.1016/j.jece.2021.106328
    [Google Scholar]
  35. Zhao K. Zhao G. Li P. Gao J. Lv B. Li D. A novel method for photodegradation of high-chroma dye wastewater via electrochemical pre-oxidation. Chemosphere 2010 80 4 410 415 10.1016/j.chemosphere.2010.04.019 20434754
    [Google Scholar]
  36. Oloo C.M. Onyari J.M. Wanyonyi W.C. Wabomba J.N. Muinde V.M. Adsorptive removal of hazardous crystal violet dye form aqueous solution using Rhizophora mucronata stem-barks: Equilibrium and kinetics studies. Environ. Chem. Ecot 2020 2 64 72 10.1016/j.enceco.2020.05.001
    [Google Scholar]
  37. Ngoc P.K. Mac T.K. Nguyen H.T. Viet D.T. Thanh T.D. Van Vinh P. Phan B.T. Duong A.T. Das R. Superior organic dye removal by CoCr2O4 nanoparticles: Adsorption kinetics and isotherm. J. Sci. Adv. Mater. Devices 2022 7 2 100438 10.1016/j.jsamd.2022.100438
    [Google Scholar]
  38. Litchfield D.W. Baird D.G. The role of nanoclay in the generation of poly(ethylene terephthalate) fibers with improved modulus and tenacity. Polymer 2008 49 23 5027 5036 10.1016/j.polymer.2008.08.064
    [Google Scholar]
  39. Umapathi R. Raju C.V. Safarkhani M. Haribabu J. Lee H.U. Rani G.M. Huh Y.S. Versatility of MXene based materials for the electrochemical detection of phenolic contaminants. Coord. Chem. Rev. 2025 525 216305 10.1016/j.ccr.2024.216305
    [Google Scholar]
  40. Dehghan Abkenar S. Ganjali M.R. Hosseini M. Sadeghpour Karimi M. Application of copper vanadate nanoparticles for removal of methylene blue from aqueous solution: Kinetics, equilibrium and thermodynamic studies. Iran J. Chem. Chem. Eng. 2019 38 83 92 10.30492/IJCCE.2019.32990
    [Google Scholar]
  41. Dehghan Abkenar S. Hosseini M. Sadeghpour Karimi M. Ganjali M.R. Efficient removal of methylene blue from aqueous solution by adsorption on cerium vanadate nanoparticles. Pollution 2019 5 339 349 10.22059/poll.2018.268208.531
    [Google Scholar]
  42. Abd El-Latif M.M. Elkady M.F. Equilibrium isotherms for harmful ions sorption using nano zirconium vanadate ion exchanger. Desalination 2010 255 1-3 21 43 10.1016/j.desal.2010.01.020
    [Google Scholar]
  43. Lagashetty A. Ganiger S.K. Reddy S. Microwave derived nano sized zirconium vanadate as an adsorbent for heavy metal ions. Lett Appl. NanoBioSci 2020 9 3 1420 1426 10.33263/LIANBS93.14201426
    [Google Scholar]
  44. Chen X. Liu J. Wang H. Ding Y. Sun Y. Yan H. One-step approach to novel Bi4V2O11 hierarchical hollow microspheres with high visible-light-driven photocatalytic activities. J. Mater. Chem. A Mater. Energy Sustain. 2013 1 3 877 883 10.1039/C2TA00312K
    [Google Scholar]
  45. Hupp J.T. Poeppelmeier K.R. Chemistry. Better living through nanopore chemistry. Science 2005 309 5743 2008 2009 10.1126/science.1117808
    [Google Scholar]
  46. Kostić M. Najdanović S. Radović Vučić M. Velinov N. Bojić D. Nikolić G. Bojić A. A new catalyst with the superior performance for treatment of water polluted by anthraquinone compounds. Bull. Mater. Sci. 2021 44 3 219 10.1007/s12034‑021‑02504‑4
    [Google Scholar]
  47. Ibrahim W.M. Saeed I.Q. Muhammad H.Y. Jabbar H.S. Aluminum oxide nanoparticles from aluminum door and window factory wastes for the removal of methyl green dye from wastewater: A comparative study. Curr. Anal. Chem. 2023 19 10 732 742 10.2174/0115734110281748231204062132
    [Google Scholar]
  48. Qiao L. Zhu A. Liu W. Chu D. Pan J. Novel two-dimensional Bi4V2O11 nanosheets: Controllable synthesis, characterization and insight into the band structure. CrystEngComm 2018 20 8 1116 1122 10.1039/C7CE02151H
    [Google Scholar]
  49. Zhao Y. Liu X. Gu S. Liu J. Enhanced photocatalytic performance of rhodamine B and enrofloxacin by Pt loaded Bi4V2O11: Boosted separation of charge carriers, additional superoxide radical production, and the photocatalytic mechanism. RSC Advances 2021 11 16 9746 9755 10.1039/D1RA00055A 35423437
    [Google Scholar]
  50. Krishna D.N.G. Philip J. Review on surface-characterization applications of X-ray photoelectron spectroscopy (XPS): Recent developments and challenges. Appl. Surf Sci. Adv. 2022 12 100332 10.1016/j.apsadv.2022.100332
    [Google Scholar]
  51. Naqvi F.K. Anwar K. Beg S. Ex situ method for photoreduction of the cadmium ion from terbium-loaded bismuth vanadium oxide. ACS Omega 2021 6 47 31716 31726 10.1021/acsomega.1c04400 34869995
    [Google Scholar]
  52. Ri C.N. Kim S.G. Ju K.S. Ryo H.S. Mun C.H. Kim U.H. The synthesis of a Bi2MoO6/Bi4V2O11 heterojunction photocatalyst with enhanced visible-light-driven photocatalytic activity. RSC Advances 2018 8 10 5433 5440 10.1039/C7RA12766A 35542393
    [Google Scholar]
  53. Jiang Z. Liu Y. Li M. Jing T. Huang B. Zhang X. Qin X. Dai Y. One-pot solvothermal synthesis of bi4v2o11 as a new solar water oxidation photocatalyst. Sci. Rep. 2016 6 1 22727 10.1038/srep22727 26947126
    [Google Scholar]
  54. Solly M.M. Ramasamy M. Poobalan R. Ramanathan R. Spin‐coated bismuth vanadate thin film as an alternative electron transport layer for light‐emitting diode application. Phys. Status Solidi., A Appl. Mater. Sci. 2021 218 9 2000735 10.1002/pssa.202000735
    [Google Scholar]
  55. Kazansky L.P. Pronin Y.E. Arkhipushkin I.A. XPS study of adsorption of 2-mercaptobenzothiazole on a brass surface. Corros. Sci. 2014 89 21 29 10.1016/j.corsci.2014.07.055
    [Google Scholar]
  56. Glaser T. Meinecke J. Länger C. Luy J.N. Tonner R. Koert U. Dürr M. Combined XPS and DFT investigation of the adsorption modes of methyl enol ether functionalized cyclooctyne on Si(001). ChemPhysChem 2021 22 4 404 409 10.1002/cphc.202000870 33259128
    [Google Scholar]
  57. Qiao W. Liu H. Enhanced decolorization of malachite green by a magnetic graphene oxide-CotA laccase composite. Int. J. Biol. Macromol. 2019 138 1 12 10.1016/j.ijbiomac.2019.07.077 31302127
    [Google Scholar]
  58. Beg S. Al-Areqi A.S. Composition dependence of polymorphism and electrical conductivity in Ce(IV)-Doped Bi4V2O11. Philos. Mag. 2009 89 1279 1294 10.1080/14786430902939396
    [Google Scholar]
  59. Özdemir V.T. Tuğaç H.M. Arar Ö. Two-pot oxidative preparation of dicarboxylic acid containing cellulose for the removal of beryllium (Be2+) from aqueous solution. Curr. Anal. Chem. 2021 18 3 360 369 10.2174/1573411016999200719232310
    [Google Scholar]
  60. Kostić M. Najdanović S. Velinov N. Radović Vučić M. Petrović M. Mitrović J. Bojić A. Ultrasound-assisted synthesis of a new material based on MgCoAl-LDH: Characterization and optimization of sorption for progressive treatment of water. Environ. Tech. Inno 2022 26 102358 10.1016/j.eti.2022.102358
    [Google Scholar]
  61. Ho Y.S. McKay G. Pseudo-second order model for sorption processes. Process Biochem. 1999 34 5 451 465 10.1016/S0032‑9592(98)00112‑5
    [Google Scholar]
  62. Ho Y.S. McKay G. Sorption of dye from aqueous solution by peat. Chem. Eng. J. 1998 70 2 115 124 10.1016/S0923‑0467(98)00076‑1
    [Google Scholar]
  63. Bandura L. Kołodyńska D. Franus W. Adsorption of BTX from aqueous solutions by Na-P1 zeolite obtained from fly ash. Process Saf. Environ. Prot. 2017 109 214 223 10.1016/j.psep.2017.03.036
    [Google Scholar]
  64. Schmuckler G. Goldstein S. Interphase mass transfer rates of chemical reactions with crosslinked polystyrene.pdf. In: Ion Exchange and Solvent Extraction: A Series of Advances; Marinsky, J.A.; Marcus, Y., Eds.; Dekker: New York 1977 7 1 28
    [Google Scholar]
  65. Caetano M. Valderrama C. Farran A. Cortina J.L. Phenol removal from aqueous solution by adsorption and ion exchange mechanisms onto polymeric resins. J. Colloid Interface Sci. 2009 338 2 402 409 10.1016/j.jcis.2009.06.062 19679317
    [Google Scholar]
  66. Azizian S. Kinetic models of sorption: A theoretical analysis. J. Colloid Interface Sci. 2004 276 1 47 52 10.1016/j.jcis.2004.03.048 15219428
    [Google Scholar]
  67. Erdem Yayayürük A. Yayayürük O. Adsorptive performance of nanosized zero‐valent iron for V(V) removal from aqueous solutions. J. Chem. Technol. Biotechnol. 2017 92 8 1891 1898 10.1002/jctb.5209
    [Google Scholar]
  68. Abbasi N. Azar P.A. Tehrani M.S. Aliabad J.M. Studying the adsorption process of cadmium ions by fe3o4/lmethionine/graphene oxide and graphene aerogel nanocomposites from aqueous environments. Curr. Anal. Chem. 2023 19 4 309 319 10.2174/1573411019666230427093802
    [Google Scholar]
  69. Kostić M.M. Hurt A.P. Milenković D.D. Velinov N.D. Petrović M.M. Bojić D.V. Marković-Nikolić D.Z. Bojić A.L. Effects of ultrasound on removal of ranitidine hydrochloride from water by activated carbon based on Lagenaria siceraria. Environ. Eng. Sci. 2019 36 2 237 248 10.1089/ees.2017.0539
    [Google Scholar]
  70. Arumugam T.K. Krishnamoorthy P. Rajagopalan N.R. Nanthini S. Vasudevan D. Removal of malachite green from aqueous solutions using a modified chitosan composite. Int. J. Biol. Macromol. 2019 128 655 664 10.1016/j.ijbiomac.2019.01.185 30708008
    [Google Scholar]
  71. Pradeep Sekhar C. Kalidhasan S. Rajesh V. Rajesh N. Bio-polymer adsorbent for the removal of malachite green from aqueous solution. Chemosphere 2009 77 6 842 847 10.1016/j.chemosphere.2009.07.068 19765795
    [Google Scholar]
  72. Gautam R.K. Rawat V. Banerjee S. Sanroman M.A. Soni S. Singh S.K. Chattopadhyaya M.C. Synthesis of bimetallic Fe–Zn nanoparticles and its application towards adsorptive removal of carcinogenic dye malachite green and Congo red in water. J. Mol. Liq. 2015 212 227 236 10.1016/j.molliq.2015.09.006
    [Google Scholar]
  73. Altıntıg E. Yenigun M. Sarı A. Altundag H. Tuzen M. Saleh T.A. Facile synthesis of zinc oxide nanoparticles loaded activated carbon as an eco-friendly adsorbent for ultra-removal of malachite green from water. Enviro Tech. Inno 2021 21 101305 10.1016/j.eti.2020.101305
    [Google Scholar]
  74. Doghmosh S.A. Lubbad S.H. Use of Used Cigarette Filters in Removal of Malachite Green Dye from Wastewater. Int. J. Environ. Stud. 2022 79 5 822 836 10.1080/00207233.2021.1965793
    [Google Scholar]
  75. Hameed B.H. El-Khaiary M.I. Kinetics and equilibrium studies of malachite green adsorption on rice straw-derived char. J. Hazard. Mater. 2008 153 1-2 701 708 10.1016/j.jhazmat.2007.09.019 17942219
    [Google Scholar]
  76. Hussien Hamad M.T.M. Optimization study of the adsorption of malachite green removal by MgO nano-composite, nano-bentonite and fungal immobilization on active carbon using response surface methodology and kinetic study. Environ. Sci. Eur. 2023 35 1 26 10.1186/s12302‑023‑00728‑1
    [Google Scholar]
  77. Hojjati-Najafabadi A. Nasr Esfahani P. Davar F. Aminabhavi T.M. Vasseghian Y. Adsorptive removal of malachite green using novel GO@ZnO-NiFe2O4-αAl2O3 nanocomposites. Chem. Eng. J. 2023 471 144485 10.1016/j.cej.2023.144485
    [Google Scholar]
  78. Abewaa M. Mengistu A. Takele T. Fito J. Nkambule T. Adsorptive removal of malachite green dye from aqueous solution using Rumex abyssinicus derived activated carbon. Sci. Rep. 2023 13 1 14701 10.1038/s41598‑023‑41957‑x 37679475
    [Google Scholar]
  79. Alorabi A.Q. Effective removal of malachite green from aqueous solutions using magnetic nanocomposite: Synthesis, characterization, and equilibrium study. Adsorpt. Sci. Technol. 2021 2021 2359110 10.1155/2021/2359110
    [Google Scholar]
  80. Tsai C.Y. Lin P.Y. Hsieh S.L. Kirankumar R. Patel A.K. Singhania R.R. Dong C.D. Chen C.W. Hsieh S. Engineered mesoporous biochar derived from rice husk for efficient removal of malachite green from wastewaters. Bioresour. Technol. 2022 347 126749 10.1016/j.biortech.2022.126749 35066130
    [Google Scholar]
  81. Kurtulbaş E. Ciğeroğlu Z. Şahin S. El Messaoudi N. Mehmeti V. Monte Carlo, molecular dynamic, and experimental studies of the removal of malachite green using g-C3N4/ZnO/Chitosan nanocomposite in the presence of a deep eutectic solvent. Int. J. Biol. Macromol. 2024 274 Pt 1 133378 10.1016/j.ijbiomac.2024.133378 38914401
    [Google Scholar]
  82. Hammud H.H. El Hamaoui B. Noubani N.H. Feng X. Wu Z.S. Mullen K. Ayub K. Carbon-cobalt nanostructures as an efficient adsorbent of malachite green. Nanosci. Nanotechnol. Asia 2018 8 2 263 280 10.2174/2210681207666170509145222
    [Google Scholar]
  83. Nazir M.A. Bashir M.A. Najam T. Javed M.S. Suleman S. Hussain S. Kumar O.P. Shah S.S.A. Rehman A. Combining structurally ordered intermetallic nodes: Kinetic and isothermal studies for removal of malachite green and methyl orange with mechanistic aspects. Microchem. J. 2021 164 105973 10.1016/j.microc.2021.105973
    [Google Scholar]
  84. Raval N.P. Shah P.U. Shah N.K. Malachite green “a cationic dye” and its removal from aqueous solution by adsorption. Appl. Water Sci. 2017 7 7 3407 3445 10.1007/s13201‑016‑0512‑2
    [Google Scholar]
  85. Lima E.C. Hosseini-Bandegharaei A. Moreno-Piraján J.C. Anastopoulos I. A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J. Mol. Liq. 2019 273 425 434 10.1016/j.molliq.2018.10.048
    [Google Scholar]
  86. Velinov N. Radović Vučić M. Petrović M. Najdanović S. Kostić M. Mitrović J. Bojić A. The influence of various solvents’ polarity in the synthesis of wood biowaste sorbent: Evaluation of dye sorption. Biomass Convers. Biorefin. 2023 13 9 8139 8150 10.1007/s13399‑021‑01691‑8
    [Google Scholar]
/content/journals/cac/10.2174/0115734110385399250806161005
Loading
/content/journals/cac/10.2174/0115734110385399250806161005
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test