Skip to content
2000
image of Hydrogels Doped with Inorganic Ammonium Chloride Salt for Fuel Cell Applications

Abstract

Introduction

Inorganic ammonium salts, such as ammonium chloride (NHCl), can form electrolytes due to their protonated ammonium ions acting as proton carriers. This study investigates the use of NHCl-doped polyacrylamide hydrogel as a flexible proton conductor for fuel cell applications.

Methods

A freestanding hydrogel membrane was fabricated through polymerization of ethylene glycol dimethacrylate and acrylamide within aqueous NHCl. The hydrogel's mechanical and conductive properties were characterized, and it was assembled into a fuel cell to evaluate its performance.

Results

The NHCl-doped hydrogel exhibited a fracture tensile stress of 90 kPa at 462% elongation. The conductivity measurements, which varied with temperature, revealed that proton conduction primarily followed a vehicle mechanism, showcasing an impressive ionic conductivity of 119 mS cm−1. The fuel cell achieved a maximum power density of 31.9 mW cm-2, marking a solid performance.

Discussion

The “structure-performance” relationship of inorganic ammonium salt-doped hydrogels is clarified through multi-scale characterization. The dual influence mechanism of NH+ concentration on proton conduction has been revealed. The developed HGA-n material combines excellent mechanical strength and proton conductivity, and its power density provides a new option for gel electrolytes used in fuel cells.

Conclusion

A flexible proton conductor is prepared by doping ammonium chloride (NHCl) into polyacrylamide hydrogel for the first time and is successfully assembled into a fuel cell. This work demonstrates a novel approach for utilizing inorganic ammonium salts in electrochemical applications, offering a promising route for developing flexible proton-conducting materials for fuel cells.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110385450250730112440
2025-08-08
2025-10-29
Loading full text...

Full text loading...

References

  1. Morelle X.P. Illeperuma W.R. Tian K. Bai R. Suo Z. Vlassak J.J. Highly stretchable and tough hydrogels below waterfreezing temperature. Adv. Mater. 2018 30 35 1801541 10.1002/adma.201801541 29989671
    [Google Scholar]
  2. Akamatsu T. Kasuga T. Proton conductivities of zinc phosphate glass-derived hydrogels controlled by water content. J. Electrochem. Soc. 2007 154 2 B258 B262 10.1149/1.2405846
    [Google Scholar]
  3. Wang Z. Li H. Tang Z. Liu Z. Ruan Z. Ma L. Yang Q. Wang D. Zhi C. Hydrogel electrolytes for flexible aqueous energy storage devices. Adv. Funct. Mater. 2018 28 48 1804560 10.1002/adfm.201804560
    [Google Scholar]
  4. Illeperuma W.R.K. Rothemund P. Suo Z. Vlassak J.J. Fire-resistant hydrogel-fabric laminates: A simple concept that may save lives. ACS Appl. Mater. Interfaces 2016 8 3 2071 2077 10.1021/acsami.5b10538 26716351
    [Google Scholar]
  5. Larson C. Peele B. Li S. Robinson S. Totaro M. Beccai L. Mazzolai B. Shepherd R. Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science 2016 351 6277 1071 1074 10.1126/science.aac5082 26941316
    [Google Scholar]
  6. Chen M.H. Hou J. Hong Z. Yang G. Sista S. Chen L-M. Yang Y. Efficient polymer solar cells with thin active layers based on alternating polyfluorene copolymer/fullerene bulk heterojunctions. Adv. Mater. 2009 21 42 4238 4242 10.1002/adma.200900510
    [Google Scholar]
  7. Zhai D. Liu B. Shi Y. Pan L. Wang Y. Li W. Zhang R. Yu G. Highly sensitive glucose sensor based on pt nanoparticle/polyaniline hydrogel heterostructures. ACS Nano 2013 7 4 3540 3546 10.1021/nn400482d 23472636
    [Google Scholar]
  8. Qin Y.C. Yang J. Xin J. Hydrogels for biomedical applications: Their characteristics and the mechanisms behind them. Gels 2017 3 1 6 10.3390/gels3010006 30920503
    [Google Scholar]
  9. Li X. Wang D. Ran F. Key approaches and challenges in fabricating advanced flexible zinc-ion batteries with functional hydrogel electrolytes. Energy Storage Mater. 2023 56 351 393 10.1016/j.ensm.2023.01.034
    [Google Scholar]
  10. Zhang Q. Zhao L. Ran F. Reducible, recyclable and reusable (3R) hydrogel electrolyte membrane based on Physical&Chemical Bi-networks and reversible sol-gel transition. Renew. Energy 2022 194 80 88 10.1016/j.renene.2022.05.072
    [Google Scholar]
  11. Bin X. Sheng M. Que W. Highly conductive V 4 C 3 T xMXene-enhanced polyvinyl alcohol hydrogel electrolytes for flexible all-solid-state supercapacitors. Front Chem. 2024 12 1482072 10.3389/fchem.2024.1482072 39444634
    [Google Scholar]
  12. Sari N. Nurnoto T. Widiyastuti W. Cellulose-based hydrogel polymer electrolyte derived from coir fiber for high-performance lead-acid batteries. Energy Technol. 2024 13 1 2401307 10.1002/ente.202401307
    [Google Scholar]
  13. Keplinger C. Sun J.Y. Foo C.C. Rothemund P. Whitesides G.M. Suo Z. Stretchable, transparent, ionic conductors. Science 2013 341 6149 984 987 10.1126/science.1240228 23990555
    [Google Scholar]
  14. Sun J.Y. Keplinger C. Whitesides G.M. Suo Z. Ionic skin. Adv. Mater. 2014 26 45 7608 7614 10.1002/adma.201403441 25355528
    [Google Scholar]
  15. Hema M. Selvasekarapandian S. Nithya H. Sakunthala A. Arunkumar D. Structural and ionic conductivity studies on proton conducting polymer electrolyte based on polyvinyl alcohol. Ionics 2009 15 4 487 491 10.1007/s11581‑008‑0254‑8
    [Google Scholar]
  16. Radha K.P. Selvasekarapandian S. Karthikeyan S. Hema M. Sanjeeviraja C. Synthesis and impedance analysis of proton-conducting polymer electrolyte PVA:NH 4 F. Ionics 2013 19 10 1437 1447 10.1007/s11581‑013‑0866‑5
    [Google Scholar]
  17. Mohapatra P. Barick A.K. Ionic liquids based polymer electrolytes for supercapacitor applications. J. Power Sources 2025 626 235749 10.1016/j.jpowsour.2024.235749
    [Google Scholar]
  18. Lan S. Yu C. Yu J. Zhang X. Liu Y. Xie Y. Wang J. Qiu J. Recent advances in low‐temperature liquid electrolyte for supercapacitors. Small 2024 2024 2309286 10.1002/smll.202309286 38453682
    [Google Scholar]
  19. Wanyan H. Li Q. Huang H. Li J. Huang L. Chen L. Wei J. Zhou X. Tang Z. Wu H. Flexible high electrochemical active hydrogel for wearable sensors and supercapacitor electrolytes. Int. J. Biol. Macromol. 2024 277 Pt 2 134356 10.1016/j.ijbiomac.2024.134356 39089551
    [Google Scholar]
  20. Abdurrahmanoglu S. Okay O. Preparation of homogeneous hydrogels by controlling the crosslinker reactivity and availability. J. Macromol Sci. 2008 45 9 769 775 10.1080/10601320802223176
    [Google Scholar]
  21. Wang X. You J. Wu Y. In situgelation of aqueous sulfuric acid solution for fuel cells. RSC Advances 2021 11 36 22461 22466 10.1039/D1RA02629A 35480806
    [Google Scholar]
  22. Zhang Q. Liu X. Zhang J. Duan L. Gao G. A highly conductive hydrogel driven by phytic acid towards a wearable sensor with freezing and dehydration resistance. J. Mater. Chem. A Mater. Energy Sustain. 2021 9 39 22615 22625 10.1039/D1TA06408H
    [Google Scholar]
  23. Yu G. Yang C. Dan N. Dan W. Chen Y. Polyglutamic acid grafted dopamine modified collagen-polyvinyl alcohol hydrogel for a potential wound dressing. Des. Monomers Polym. 2021 24 1 293 304 10.1080/15685551.2021.1984007 34602850
    [Google Scholar]
  24. Wang C. Guan X. Yuan Y. Wu Y. Tan S. Polyacrylamide crosslinked by bis-vinylimidazolium bromide for high elastic and stable hydrogels. RSC Advances 2019 9 47 27640 27645 10.1039/C9RA05201A 35529219
    [Google Scholar]
  25. Pourjavadi A. Fakoorpoor S.M. Hosseini S.H. Novel cationic-modified salep as an efficient flocculating agent for settling of cement slurries. Carbohydr. Polym. 2013 93 2 506 511 10.1016/j.carbpol.2012.12.049 23499090
    [Google Scholar]
  26. Chattopadhyay D.K. Mishra A.K. Sreedhar B. Raju K.V.S.N. Thermal and viscoelastic properties of polyurethane-imide/clay hybrid coatings. Polym. Degrad. Stabil. 2006 91 8 1837 1849 10.1016/j.polymdegradstab.2005.11.004
    [Google Scholar]
  27. Luo J. You J. Tan S. Wang C. Wu Y. Lamellar lyotropic liquid crystal superior to micellar solution for proton conduction in an aqueous solution of 1-tetradecyl-3-methylimidazolium hydrogen sulfate. ACS Appl. Mater. Interfaces 2020 12 40 45611 45617 10.1021/acsami.0c13349 32929954
    [Google Scholar]
  28. Rakhman D. Batyrbekuly D. Myrzakhmetov B. Zhumagali K. Issabek K. Sultan-Akhmetov O. Umirov N. Konarov A. Bakenov Z. Polyacrylamide-based hydrogel electrolyte for modulating water activity in aqueous hybrid batteries. RSC Advances 2024 14 54 40222 40233 10.1039/D4RA07551J 39717802
    [Google Scholar]
  29. Li C. Zhu X. Wang D. Yang S. Zhang R. Li P. Fan J. Li H. Zhi C. Fine tuning water states in hydrogels for high voltage aqueous batteries. ACS Nano 2024 18 4 3101 3114 10.1021/acsnano.3c08398 38236764
    [Google Scholar]
  30. Yoopensuk W. Suppanucroa N. Pimoei J. Kao-Ian W. Pakawanit P. Rukkachat K. Wu H-L. Kheawhom S. Somwangthanaroj A. Optimizing ionic conductivity and ion selectivity in zinc-polyiodide flow batteries with composite polyamide-porous separators. J. Energy Storage 2024 86 111362 10.1016/j.est.2024.111362
    [Google Scholar]
  31. Chen Y. Zhao J. Wang Y. Quasi-solid-state zinc ion rechargeable batteries for subzero temperature applications. ACS Appl. Energy Mater. 2020 3 9 9058 9065 10.1021/acsaem.0c01452
    [Google Scholar]
  32. Zuo Y. Wang K. Wei M. Zhao S. Zhang P. Pei P. Starch gel for flexible rechargeable zinc-air batteries. Cell. Rep Phys. Sci. 2022 3 1 100687 10.1016/j.xcrp.2021.100687
    [Google Scholar]
  33. Huang J. Chi X. Yang J. Liu Y. An ultrastable Na–Zn solid-state hybrid battery enabled by a robust dual-cross-linked polymer electrolyte. ACS Appl. Mater. Interfaces 2020 12 15 17583 17591 10.1021/acsami.0c01990 32195564
    [Google Scholar]
  34. Karimi M.B. Mohammadi F. Hooshyari K. Non-humidified fuel cells using a deep eutectic solvent (DES) as the electrolyte within a polymer electrolyte membrane (PEM): the effect of water and counterions. Phys. Chem. Chem. Phys. 2020 22 5 2917 2929 10.1039/C9CP06207F 31951238
    [Google Scholar]
  35. Ajith C. Deshpande A.P. Varughese S. Proton conductivity in crosslinked hydrophilic ionic polymer system: Competitive hydration, crosslink heterogeneity, and ineffective domains. J. Polym. Sci., B, Polym. Phys. 2016 54 11 1087 1101 10.1002/polb.24012
    [Google Scholar]
  36. Lee S.Y. Ogawa A. Kanno M. Nakamoto H. Yasuda T. Watanabe M. Nonhumidified intermediate temperature fuel cells using protic ionic liquids. J. Am. Chem. Soc. 2010 132 28 9764 9773 10.1021/ja102367x 20578771
    [Google Scholar]
/content/journals/cac/10.2174/0115734110385450250730112440
Loading
/content/journals/cac/10.2174/0115734110385450250730112440
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test