Skip to content
2000
image of Development of an Adhesive Solution for a Modified ISFET with a Traditional Ion-selective PVC Membrane

Abstract

Introduction

Ion-sensitive field-effect transistors (ISFETs) can measure the concentration of specific ions in solutions, by attaching ion-sensing membranes proposed for ion-selective electrodes (ISEs) to their gate surfaces. Numerous organic ion-sensing membranes for ISEs have been developed. However, the adhesion between the ion-sensing membranes and the gate surfaces is poor, therefore, adversely affecting the potential responses of ISFETs.

Methods

New adhesive solutions to attach the ion-sensing polyvinyl chloride (PVC) membranes to the gate surfaces of ISFETs have been developed. The proposed adhesive solutions were made in tetrahydrofuran (THF) from polymer blends containing PVC and paraloid B-72 in different ratios.

Results

It was found that the adhesive solution with a composition ratio of PVC: Paraloid B-72 = 10:90 provided particularly good adhesion and the best slope of the potential response to Na+-activity change. The best ion selectivity for the Na+ ion was exhibited by ISFET with the adhesive solution having a composition ratio of PVC: Paraloid B-72 = 20:80.

Discussion

The results of the tensile test indicated that the PVC components in the adhesive solutions may not be directly involved in adhesion to the gate surface of the ISEFTs. The adhesive solution consisting of only PVC content provided the worst slope of the potential response to Na+-activity change.

Conclusion

The ion-sensing PVC membranes were stably attached using the proposed adhesive solutions on the gate surfaces of the ISFETs. By using the proposed adhesive solution, the ISFETs with the ion-sensing PVC membranes showed good potential responses.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110367634250507033212
2025-05-12
2025-09-04
Loading full text...

Full text loading...

References

  1. Buck R.P. Ion selective electrodes. Anal. Chem. 1976 48 5 23 39 10.1021/ac60369a004 22401014
    [Google Scholar]
  2. Bakker E. Pretsch E. Bühlmann P. Selectivity of potentiometric ion sensors. Anal. Chem. 2000 72 6 1127 1133 10.1021/ac991146n 10740849
    [Google Scholar]
  3. Bakker E. Telting-Diaz M. Electrochemical sensors. Anal. Chem. 2002 74 12 2781 2800 10.1021/ac0202278 12090665
    [Google Scholar]
  4. Bereczki R. Takács B. Langmaier J. Neely M. Gyurcsányi R.E. Tóth K. Nagy G. Lindner E. How to assess the limits of ion-selective electrodes: Method for the determination of the ultimate span, response range, and selectivity coefficients of neutral carrier-based cation selective electrodes. Anal. Chem. 2006 78 3 942 950 10.1021/ac050614s 16448072
    [Google Scholar]
  5. Bakker E. Pretsch E. Modern potentiometry. Angew. Chem. Int. Ed. 2007 46 30 5660 5668 10.1002/anie.200605068 17457791
    [Google Scholar]
  6. Zdrachek E. Bakker E. Potentiometric sensing. Anal. Chem. 2019 91 1 2 26 10.1021/acs.analchem.8b04681 30335354
    [Google Scholar]
  7. Cattrall R.W. Chemical Sensors (Oxford Chemistry Primers, 52). Oxford University Press 1997
    [Google Scholar]
  8. Bakker E. Bühlmann P. Pretsch E. Carrier-based ion-selective electrodes and bulk optodes. 1. General characteristics. Chem. Rev. 1997 97 8 3083 3132 10.1021/cr940394a 11851486
    [Google Scholar]
  9. Bühlmann P. Pretsch E. Bakker E. Carrier-based ion-selective electrodes and bulk optodes. 2. Ionophores for potentiometric and optical sensors. Chem. Rev. 1998 98 4 1593 1688 10.1021/cr970113+ 11848943
    [Google Scholar]
  10. Araki T. Tsukube H. Liquid membranes: Chemical applications. Florida CRC Press 1990
    [Google Scholar]
  11. Umezawa Y. CRC handbook of ion-selective electrodes: Selectivity coefficients. Boston CRC Press 1990
    [Google Scholar]
  12. Umezawa Y. Bühlmann P. Umezawa K. Tohda K. Amemiya S. Potentiometric selectivity coefficients of ion-selective electrodes. Part I. Inorganic cations (technical report). Pure Appl. Chem. 2000 72 10 1851 2082 10.1351/pac200072101851
    [Google Scholar]
  13. Umezawa Y. Umezawa K. Bühlmann P. Hamada N. Aoki H. Nakanishi J. Sato M. Xiao K.P. Nishimura Y. Potentiometric selectivity coefficients of ion-selective electrodes. Part II. Inorganic anions (IUPAC Technical Report). Pure Appl. Chem. 2002 74 6 923 994 10.1351/pac200274060923
    [Google Scholar]
  14. Joo S. Brown R.B. Chemical sensors with integrated electronics. Chem. Rev. 2008 108 2 638 651 10.1021/cr068113+ 18184017
    [Google Scholar]
  15. Bergveld P. Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans. Biomed. Eng. 1970 BME-17 1 70 71 10.1109/TBME.1970.4502688 5441220
    [Google Scholar]
  16. Thomas J.D.R. Devices for ion-sensing and pX measurements. Pure Appl. Chem. 2001 73 1 31 38 10.1351/pac200173010031
    [Google Scholar]
  17. Matsuo T. Wise K.D. An integrated field-effect electrode for biopotential recording. IEEE Trans. Biomed. Eng. 1974 BME-21 6 485 487 10.1109/TBME.1974.324338
    [Google Scholar]
  18. Van der Schoot B.H. Bergveld P. Bos M. Bousse L.J. The isfet in analytical chemistry. Sens. Actuators 1983 4 267 272 10.1016/0250‑6874(83)85032‑X
    [Google Scholar]
  19. Ito Y. Stability of ISFET and its new measurement protocol. Sens. Actuators B Chem. 2000 66 1-3 53 55 10.1016/S0925‑4005(99)00443‑8
    [Google Scholar]
  20. Errachid A. Zine N. Samitier J. Bausells J. FET‐based chemical sensor systems fabricated with standard technologies. Electroanalysis 2004 16 22 1843 1851 10.1002/elan.200403072
    [Google Scholar]
  21. Ohta Y. Shoji S. Esahi M. Matsuo T. Prototype sodium and potassium sensitive micro ISFETS. Sens. Actuators 1981–1982 2 387 397 10.1016/0250‑6874(81)80059‑5
    [Google Scholar]
  22. Miyahara Y. Simon W. Comparative studies between ion-selective field effect transistors and ion-selective electrodes with polymeric membranes. Electroanalysis. 1991 3 4-5 287 292 10.1002/elan.1140030408
    [Google Scholar]
  23. Cao S. Sun P. Xiao G. Tang Q. Sun X. Zhao H. Zhao S. Lu H. Yue Z. ISFET‐based sensors for (bio)chemical applications: A review. Electrochem. Sci. Adv. 2023 3 4 e2100207 10.1002/elsa.202100207
    [Google Scholar]
  24. Moss S.D. Janata J. Johnson C.C. Potassium ion-sensitive field effect transistor. Anal. Chem. 1975 47 13 2238 2243 10.1021/ac60363a005
    [Google Scholar]
  25. Mcbride P.T. Janata J. Comte P.A. Moss S.D. Johnson C.C. Ion-selective field effect transistors with polymeric membranes. Anal. Chim. Acta 1978 101 2 239 245 10.1016/S0003‑2670(01)93360‑4
    [Google Scholar]
  26. Pijanowska D.G. Luboch E. Biernat J.F. Dawgul M. Torbicz W. Na+-selective ChemFETs based on a novel ionophore: bis(phenylbenzo)-13-azocrown-5. Sens. Actuators B Chem. 1999 58 1-3 384 388 10.1016/S0925‑4005(99)00101‑X
    [Google Scholar]
  27. Wakida S-i. Okumura T. Shibutani Y. Liu J. Highly sensitive nitrate-sensing materials for ion-selective field-effect transistors for single-drop rain analysis. Sens. Mater. 2007 19 4 235 247
    [Google Scholar]
  28. G R. Microelectronic ion-selective electrodes. Proc. Anal. Div. Chem. Soc. 1977 14 338 340
    [Google Scholar]
  29. Lai C.S. Lue C.E. Yang C.M. Dawgul M. Pijanowska D.G. Optimization of a PVC membrane for reference field effect transistors. Sensors 2009 9 3 2076 2087 10.3390/s90302076 22574001
    [Google Scholar]
  30. Faridbod F. Norouzi P. Dinarvand R. Ganjali M.R. Developments in the field of conducting and non-conducting polymer based potentiometric membrane sensors for ions over the past decade. Sensors 2008 8 4 2331 2412 10.3390/s8042331 27879825
    [Google Scholar]
  31. Chandra M. Vinod K. Ion-selective electrodes based on pvc membranes for potentiometric sensor applications: A review. Int. J. Membr. Sci. Technol. 2021 8 2 76 84 10.15379/2410‑1869.2021.08.02.06
    [Google Scholar]
  32. Tsukada K. Sebata M. Miyahara Y. Miyagi H. Long-life multiple-ISFETS with polymeric gates. Sens Actuators. 1989 18 3-4 329 336 10.1016/0250‑6874(89)87039‑8
    [Google Scholar]
  33. Burdallo I. Jimenez-Jorquera C. Fernández-Sánchez C. Baldi A. Integration of microelectronic chips in microfluidic systems on printed circuit board. J. Micromech. Microeng. 2012 22 10 105022 10.1088/0960‑1317/22/10/105022
    [Google Scholar]
  34. Abramova N. Bratov A. ISFET‐based ion sensors with photopolymerizable membranes. Electrochem. Sci. Adv. 2022 2 5 e2100145 10.1002/elsa.202100145
    [Google Scholar]
  35. Shibutani Y. Mino S. Long S.S. Moriuchi-Kawakami T. Yakabe K. Shono T. Chiral Bis(12-crown-4)-based electrodes for sodium ion. Chem. Lett. 1997 26 1 49 50 10.1246/cl.1997.49
    [Google Scholar]
  36. Shono T. Okahara M. Ikeda I. Kimura K. Tamura H. Sodium-selective PVC membrane electrodes based on bis(12-crowns-4)s. J. Electroanal. Chem. Interfacial Electrochem. 1982 132 99 105 10.1016/0022‑0728(82)85009‑2
    [Google Scholar]
  37. Tamura H. Kumami K. Kimura K. Shono T. Simultaneous determination of sodium and potassium in human urine or serum using coated-wire ion-selective electrodes based on bis(crown ether)s. Mikrochim. Acta 1983 80 3-4 287 296 10.1007/BF01213123
    [Google Scholar]
  38. Moody G.J. Saad B.B. Thomas J.D.R. Studies on bis(crown ether)-based ion-selective electrodes for the potentiometric determination of sodium and potassium in serum. Analyst 1989 114 1 15 20 10.1039/an9891400015 2523676
    [Google Scholar]
  39. Tamura H. Kimura K. Shono T. Coated wire sodium- and potassium-selective electrodes based on bis(crown ether) compounds. Anal. Chem. 1982 54 7 1224 1227 10.1021/ac00244a055
    [Google Scholar]
  40. Wakida S. Masadome T. Imato T. Shibutani Y. Yakabe K. Shono T. Asano Y. Additive-salt effect on low detection limit and slope sensitivity in response of potassium- and sodium-selective neutral carrier based electrodes and their liquid-membrane based ion-sensitive field-effect transistor. Anal. Sci. 1999 15 1 47 51 10.2116/analsci.15.47
    [Google Scholar]
  41. Moriuchi-Kawakami T. Sekiguchi Y. Hattori S. Otsuki T. Fujimori K. Moriuchi T. Urahama Y. Proton spin relaxation study with pulsed NMR on the plasticization of Na + ion-selective electrode membranes prepared from PVCs with different degrees of polymerization. Analyst 2020 145 11 3832 3838 10.1039/C9AN02355K 32441713
    [Google Scholar]
  42. Tsuge S. Sonoda N. Comparative Analysis of Old and New “Paraloid B-72”. Senri Ethnological Reports 2003 36 183 194 10.15021/00001963
    [Google Scholar]
  43. Nakamura Y. Polymer adhesives for restoration of cultural properties. Semawy Menu 2011 2 111 118 10.32286/0002000196
    [Google Scholar]
  44. Nakamura Y. Coagulation Strength of Some Adhesives for Conservation of Cultural Heritage. Center for the Global Study of Cultural Heritage and Culture, Kansai University Japan 2018 1 333
    [Google Scholar]
  45. Pechenkina I.A. Mikhelson K.N. Materials for the ionophore-based membranes for ion-selective electrodes: Problems and achievements (review paper). Russ. J. Electrochem. 2015 51 2 93 102 10.1134/S1023193515020111
    [Google Scholar]
  46. Tamura H. Kimura K. Shono T. Effect of plasticizer on the selectivity of potassium-selective PVC membrane electrodes based on bis(crown ether)s. Bull. Chem. Soc. Jpn. 1980 53 2 547 548 10.1246/bcsj.53.547
    [Google Scholar]
  47. Ishibashi N. Masadome T. Imato T. Surfactant-selective electrode based on polyvinyl chloride) membrane plasticized with o-nitrophenyl octyl ether. Anal. Sci. 1986 2 5 487 488 10.2116/analsci.2.487
    [Google Scholar]
  48. Masadome T. Imato T. Ishibashi N. Surfactant-selective electrode based on plasticized poly(vinyl chloride) membrane and its application. Anal. Sci. 1987 3 2 121 124 10.2116/analsci.3.121
    [Google Scholar]
  49. Jyo A. Minakami R. Kanda Y. Egawa H. Role of membrane media in potentiometric selectivity of anion carrier-based ion-selective electrodes. Sens. Actuators B Chem. 1993 13 1-3 200 204 10.1016/0925‑4005(93)85361‑D
    [Google Scholar]
  50. Eugster R. Rosatzin T. Rusterholz B. Aebersold B. Pedrazza U. Rüegg D. Schmid A. Spichiger U.E. Simon W. Plasticizers for liquid polymeric membranes of ion-selective chemical sensors. Anal. Chim. Acta 1994 289 1 1 13 10.1016/0003‑2670(94)80001‑4
    [Google Scholar]
  51. Pérez M.A.A. Marín L.P. Quintana J.C. Yazdani-Pedram M. Infuence of different plasticizers on the response of chemical sensors based on polymeric membranes for nitrate ion determination. Sens. Actuators B Chem. 2003 89 262 268 10.1016/S0925‑4005(02)00475‑6
    [Google Scholar]
  52. Zahran E.M. New A. Gavalas V. Bachas L.G. Polymeric plasticizer extends the lifetime of PVC-membrane ion-selective electrodes. Analyst 2014 139 4 757 763 10.1039/C3AN01963B 24352534
    [Google Scholar]
  53. Sakač N. Madunić-Čačić D. Karnaš M. Đurin B. Kovač I. Jozanović M. The Influence of plasticizers on the response characteristics of the surfactant sensor for cationic surfactant determination in disinfectants and antiseptics. Sensors 2021 21 10 3535 10.3390/s21103535 34069524
    [Google Scholar]
  54. Carey C. Plasticizer effects in the PVC membrane of the dibasic phosphate selective electrode. Chemosensors 2015 3 4 284 294 10.3390/chemosensors3040284 27347487
    [Google Scholar]
  55. Schaller U. Bakker E. Spichiger U.E. Pretsch E. Ionic additives for ion-selective electrodes based on electrically charged carriers. Anal. Chem. 1994 66 3 391 398 10.1021/ac00075a013
    [Google Scholar]
  56. Petković B.B. Sovilj S.P. Budimir M.V. Simonović R.M. Jovanović V.M. A Copper(II) ion‐selective potentiometric sensor based on N, N ′, N ″, N ′′′‐Tetrakis(2‐pyridylmethyl)‐1,4,8,11‐tetraazacyclotetradecane in PVC matrix. Electroanalysis 2010 22 16 1894 1900 10.1002/elan.201000053
    [Google Scholar]
  57. Nakamura Y. Fukuoka Y. Iida T. Tensile test of poly(vinyl chloride) filled with ground calcium carbonate particles. J. Appl. Polym. Sci. 1998 70 2 311 316 10.1002/(SICI)1097‑4628(19981010)70:2<311::AID‑APP11>3.0.CO;2‑6
    [Google Scholar]
  58. Nakamura Y. Azuma F. Iida T. Tensile properties of poly(vinyl chloride) filled with precipitated calcium carbonate. Polym. Polymer Compos. 1998 6 1 7 13 10.1177/147823919800600102
    [Google Scholar]
  59. Nakamura Y. Okabe S. Yoshimoto N. Iida T. Effect of particle shape on the mechanical properties of particle-filled PVC. Polym. Polymer Compos. 1998 6 6 407 414 10.1177/147823919800600605
    [Google Scholar]
  60. Nakamura Y. Ikeda H. Kanbe M. Okabe S. Iida T. Morphology and mechanical properties of poly(vinyl chloride)/ethylene-vinyl alcohol copolymer blends. Polym. Polymer Compos. 1999 7 3 187 193 10.1177/0967391119990703187
    [Google Scholar]
  61. Nakamura Y. Kanbe M. Takekuni E. Iida T. Effect of interfacial adhesion on the mechanical properties of poly(vinyl chloride) modified with cross-linked poly(methyl methacrylate) particles prepared by seeded emulsion polymerization. Colloid Polym. Sci. 2001 279 4 368 375 10.1007/s003960000432
    [Google Scholar]
  62. Nakamura Y. Harada A. Gotoh T. Yokouchi N. Iida T. Effect of silane chain length on the mechanical properties of silane-treated glass beads-filled PVC. Compos. Interfaces 2007 14 2 117 130 10.1163/156855407779819035
    [Google Scholar]
  63. Nakamura Y. Kanbe M. Takekuni E. Iida T. Effects of particle size and interfacial slope structure on the mechanical and fracture properties of PVC filled with crosslinked PMMA particles. Compos. Interfaces 2001 8 5 367 381 10.1163/156855401753255459
    [Google Scholar]
  64. Nakamura Y. Matsumoto T. Miyazaki K. Noda M. Takakura K. Tsutsumi R. Fujii S. Fujiwara K. Hikasa S. Sasaki M. Effect of the degree of crosslinking on the interfacial layer structure of poly(vinyl chloride) dispersed with crosslinked poly( n -butyl methacrylate) particles. Compos. Interfaces 2017 24 8 761 778 10.1080/09276440.2016.1270644
    [Google Scholar]
  65. Vorenkamp E.J. ten Brinke G. Meijer J.G. Jager H. Challa G. Influence of the tacticity of poly(methyl methacrylate) on the miscibility with poly(vinyl chloride). Polymer 1985 26 11 1725 1732 10.1016/0032‑3861(85)90293‑9
    [Google Scholar]
  66. Havriliak S. Jr Shortridge T.J. Effect of methylmethacrylate-butadiene-styrene modifiers on the viscoelastic beta process in poly(vinyl chloride). Polymer 1988 29 8 1507 1512 10.1016/0032‑3861(88)90317‑5
    [Google Scholar]
  67. Chee K.K. Determination of polymer-polymer miscibility by viscometry. Eur. Polym. J. 1990 26 4 423 426 10.1016/0014‑3057(90)90044‑5
    [Google Scholar]
  68. Flores R. Perez J. Cassagnau P. Michel A. Cavaillé J.Y. Dynamic mechanical behavior of poly(vinyl chloride)/poly(methyl methacrylate) polymer blend. J. Appl. Polym. Sci. 1996 60 9 1439 1453 10.1002/(SICI)1097‑4628(19960531)60:9<1439::AID‑APP19>3.0.CO;2‑X
    [Google Scholar]
  69. Rajulu A.V. Reddy R.L. Raghavendra S.M. Ahmed S.A. Miscibility of PVC/PMMA blend by the ultrasonic and refractive index method. Eur. Polym. J. 1999 35 6 1183 1186 10.1016/S0014‑3057(98)00078‑0
    [Google Scholar]
  70. Aouachria K. Belhaneche-Bensemra N. Miscibility of PVC/PMMA blends by vicat softening temperature, viscometry, DSC and FTIR analysis. Polym. Test. 2006 25 8 1101 1108 10.1016/j.polymertesting.2006.07.007
    [Google Scholar]
  71. Ramesh S. Leen K.H. Kumutha K. Arof A.K. FTIR studies of PVC/PMMA blend based polymer electrolytes. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2007 66 4-5 1237 1242 10.1016/j.saa.2006.06.012 16919998
    [Google Scholar]
  72. Zhong Z. Cao Q. Wang X. Wu N. Wang Y. PVC–PMMA composite electrospun membranes as polymer electrolytes for polymer lithium-ion batteries. Ionics 2012 18 1-2 47 53 10.1007/s11581‑011‑0615‑6
    [Google Scholar]
  73. Utracki L.A. Interactions in Poly(vinyl chloride) solutions. Polym. J. 1972 3 5 551 562 10.1295/polymj.3.551
    [Google Scholar]
  74. Venkatram S. Kim C. Chandrasekaran A. Ramprasad R. Critical assessment of the hildebrand and hansen solubility parameters for polymers. J. Chem. Inf. Model. 2019 59 10 4188 4194 10.1021/acs.jcim.9b00656 31545900
    [Google Scholar]
  75. Nakamura Y. Takeuchi K. Kamaguchi A. Nabeta M. Iida T. Morphology and mechanical properties of PVC/PVA blend. J. Adhes. Soc. Japan. 2007 43 2 43 49 10.11618/adhesion.43.43
    [Google Scholar]
  76. Nakamura Y. Specific interaction between components in polymer blend. J. Adhes. Soc. Japan. 2007 43 7 285 290 10.11618/adhesion.43.285
    [Google Scholar]
  77. Barton A.F.M. Solubility parameters. Chem. Rev. 1975 75 6 731 753 10.1021/cr60298a003
    [Google Scholar]
  78. Davies C.W. 397. The extent of dissociation of salts in water. Part VIII. An equation for the mean ionic activity coefficient of an electrolyte in water, and a revision of the dissociation constants of some sulphates. J. Chem. Soc. 1938 2093 2098 10.1039/jr9380002093
    [Google Scholar]
  79. Chemical Analysis: A Series of Monographs on Analytical Chemistry and Its Applications. 1st ed Zolotov Y.A. Macrocyclic Compounds in Analytical Chemistry 143 New York, Chichester, Weinheim, Brisbane, Singapore, Toronto John Wiley & Sons, Inc. 1997 285 357
    [Google Scholar]
  80. Kimura K. Yoshinaga M. Funaki K. Shibutani Y. Yakabe K. Shono T. Kasai M. Mizufune H. Tanaka M. Effects of α-substituents on ion selectivity of bis(12-crown-4-methyl) malonates as neutral carriers for sodium ion-selective electrodes. Anal. Sci. 1996 12 1 67 70 10.2116/analsci.12.67
    [Google Scholar]
  81. Moriuchi-Kawakami T. Aoki R. Morita K. Tsujioka H. Fujimori K. Shibutani Y. Shono T. Conformational analysis of 12-crown-3 and sodium ion selectivity of electrodes based on bis(12-crown-3) derivatives with malonate spacers. Anal. Chim. Acta 2003 480 2 291 298 10.1016/S0003‑2670(03)00021‑7
    [Google Scholar]
  82. Joon N.K. He N. Ruzgas T. Bobacka J. Lisak G. PVC-based ion-selective electrodes with a silicone rubber outer coating with improved analytical performance. Anal. Chem. 2019 91 16 10524 10531 10.1021/acs.analchem.9b01490 31333015
    [Google Scholar]
  83. Craggs A. Moody G.J. Thomas J.D.R. PVC matrix membrane ion-selective electrodes. Construction and laboratory experiments. J. Chem. Educ. 1974 51 8 541 544 10.1021/ed051p541
    [Google Scholar]
/content/journals/cac/10.2174/0115734110367634250507033212
Loading
/content/journals/cac/10.2174/0115734110367634250507033212
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test