
Full text loading...
Inflammatory disorders profoundly affect quality of life, with existing treatments often limited by resistance, adverse effects, and administration challenges. Andrographis paniculata, highly esteemed for its potent anti-inflammatory efficacy, harbors andrographolide, a pharmacologically active compound whose clinical utilization is impeded by its limited aqueous solubility and reduced oral bioavailability.
To address these limitations, we synthesized a mixture of andrographolide sulfonated derivatives to improve solubility. The major derivatives were isolated and analyzed qualitatively by NMR and UHPLC-Q/TOF-MS. Their anti-inflammatory effects were evaluated using a zebrafish inflammation model, and the most active derivatives were further analyzed through network pharmacological analysis to uncover the underlying anti-inflammatory mechanisms.
The synthesis of andrographolide sulfonate derivatives enhanced andrographolide’s solubility. Structural characterization of the seven predominant derivatives was performed. Testing in a zebrafish model revealed that andrographolide and three sulfonated derivatives substantially reduced inflammation. Network pharmacology analysis identified significant connections in the “active compounds-inflammation targets-pathways-therapeutic effects” network, highlighting important biological processes and six key molecular targets (PRKCA, PRKCB, MAPK14, IL6, CASP3, and CDK4) associated with the anti-inflammatory actions of these derivatives.
This integrative chemical–bioinformatic workflow significantly enhances the solubility of andrographolide while preserving its anti-inflammatory potency and identifying six key inflammatory targets. It therefore provides a transferable blueprint for optimising hydrophobic natural products and accelerating anti-inflammatory drug discovery.
Overall, this study not only improves the solubility and maintains the anti-inflammatory efficacy of andrographolide through sulfonation but also elucidates the underlying potential mechanisms of action of its sulfonated derivative mixture.