Skip to content
2000
image of From Synthesis and Structural Characterization to Anti-inflammatory Activity Evaluation and Network Pharmacology Analysis: Revealing the Potential Anti-inflammatory Mechanisms of Andrographolide Sulfonated Derivative Mixture

Abstract

Introduction

Inflammatory disorders profoundly affect quality of life, with existing treatments often limited by resistance, adverse effects, and administration challenges. , highly esteemed for its potent anti-inflammatory efficacy, harbors andrographolide, a pharmacologically active compound whose clinical utilization is impeded by its limited aqueous solubility and reduced oral bioavailability.

Methods

To address these limitations, we synthesized a mixture of andrographolide sulfonated derivatives to improve solubility. The major derivatives were isolated and analyzed qualitatively by NMR and UHPLC-Q/TOF-MS. Their anti-inflammatory effects were evaluated using a zebrafish inflammation model, and the most active derivatives were further analyzed through network pharmacological analysis to uncover the underlying anti-inflammatory mechanisms.

Results

The synthesis of andrographolide sulfonate derivatives enhanced andrographolide’s solubility. Structural characterization of the seven predominant derivatives was performed. Testing in a zebrafish model revealed that andrographolide and three sulfonated derivatives substantially reduced inflammation. Network pharmacology analysis identified significant connections in the “active compounds-inflammation targets-pathways-therapeutic effects” network, highlighting important biological processes and six key molecular targets (PRKCA, PRKCB, MAPK14, IL6, CASP3, and CDK4) associated with the anti-inflammatory actions of these derivatives.

Discussion

This integrative chemical–bioinformatic workflow significantly enhances the solubility of andrographolide while preserving its anti-inflammatory potency and identifying six key inflammatory targets. It therefore provides a transferable blueprint for optimising hydrophobic natural products and accelerating anti-inflammatory drug discovery.

Conclusion

Overall, this study not only improves the solubility and maintains the anti-inflammatory efficacy of andrographolide through sulfonation but also elucidates the underlying potential mechanisms of action of its sulfonated derivative mixture.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110333071250613041616
2025-06-19
2025-09-04
Loading full text...

Full text loading...

References

  1. Medzhitov R. Origin and physiological roles of inflammation. Nature 2008 454 7203 428 435 10.1038/nature07201 18650913
    [Google Scholar]
  2. Nathan C. Points of control in inflammation. Nature 2002 420 6917 846 852 10.1038/nature01320 12490957
    [Google Scholar]
  3. Rajendran P. Chen Y.F. Chen Y.F. Chung L.C. Tamilselvi S. Shen C.Y. Day C.H. Chen R.J. Viswanadha V.P. Kuo W.W. Huang C.Y. The multifaceted link between inflammation and human diseases. J. Cell. Physiol. 2018 233 9 6458 6471 10.1002/jcp.26479 29323719
    [Google Scholar]
  4. Chatterjee S. Oxidative stress, inflammation, and disease Oxidative Stress and Biomaterials Academic Press Cambridge, Massachusetts 2016 35 58
    [Google Scholar]
  5. Furman D. Campisi J. Verdin E. Carrera-Bastos P. Targ S. Franceschi C. Ferrucci L. Gilroy D.W. Fasano A. Miller G.W. Miller A.H. Mantovani A. Weyand C.M. Barzilai N. Goronzy J.J. Rando T.A. Effros R.B. Lucia A. Kleinstreuer N. Slavich G.M. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 2019 25 12 1822 1832 10.1038/s41591‑019‑0675‑0 31806905
    [Google Scholar]
  6. Lu Q. Li R. Yang Y. Zhang Y. Zhao Q. Li J. Ingredients with anti-inflammatory effect from medicine food homology plants. Food Chem. 2022 368 130610 10.1016/j.foodchem.2021.130610 34419798
    [Google Scholar]
  7. Wang Q. Kuang H. Su Y. Sun Y. Feng J. Guo R. Chan K. Naturally derived anti-inflammatory compounds from Chinese medicinal plants. J. Ethnopharmacol. 2013 146 1 9 39 10.1016/j.jep.2012.12.013 23274744
    [Google Scholar]
  8. Nunes C.R. Barreto Arantes M. Menezes de Faria Pereira S. Leandro da Cruz L. de Souza Passos M. Pereira de Moraes L. Vieira I.J.C. Barros de Oliveira D. Plants as sources of anti-inflammatory agents. Molecules 2020 25 16 3726 10.3390/molecules25163726 32824133
    [Google Scholar]
  9. Li X. Yuan W. Wu J. Zhen J. Sun Q. Yu M. Andrographolide, a natural anti-inflammatory agent: An Update. Front. Pharmacol. 2022 13 920435 10.3389/fphar.2022.920435 36238575
    [Google Scholar]
  10. Tan W.S.D. Liao W. Zhou S. Wong W.S.F. Is there a future for andrographolide to be an anti-inflammatory drug? Deciphering its major mechanisms of action. Biochem. Pharmacol. 2017 139 71 81 10.1016/j.bcp.2017.03.024 28377280
    [Google Scholar]
  11. Chakravarti R.N. Chakravarti D. Andrographolide, the active constituent of Andrographis paniculata Nees; a preliminary communication. Ind. Med. Gaz. 1951 86 3 96 97 [J]. 14860885
    [Google Scholar]
  12. Kishore V. Yarla N. Bishayee A. Putta S. Malla R. Neelapu N. Challa S. Das S. Shiralgi Y. Hegde G. Dhananjaya B. Multi-targeting andrographolide and its natural analogs as potential therapeutic agents. Curr. Top. Med. Chem. 2017 17 8 845 857 10.2174/1568026616666160927150452 27697058
    [Google Scholar]
  13. Rahul M. Boini T. Lakshminarayana M. Radhakrishnan T. Kolangarakalam Sudayadas R. Approaches to improve solubility, stability and the clinical potential of andrographolide: A review. J. Young Pharm. 2022 14 1 15 20 [J]. 10.5530/jyp.2022.14.3
    [Google Scholar]
  14. Yen C.C. Chen Y.C. Wu M.T. Wang C.C. Wu Y.T. Nanoemulsion as a strategy for improving the oral bioavailability and anti-inflammatory activity of andrographolide. Int. J. Nanomedicine 2018 13 669 680 10.2147/IJN.S154824 29440893
    [Google Scholar]
  15. Ren K. Zhang Z. Li Y. Liu J. Zhao D. Zhao Y. Gong T. Physicochemical characteristics and oral bioavailability of andrographolide complexed with hydroxypropyl-β-cyclodextrin. Pharmazie 2009 64 8 515 520 [J]. 19746840
    [Google Scholar]
  16. Ye L. Wang T. Tang L. Liu W. Yang Z. Zhou J. Zheng Z. Cai Z. Hu M. Liu Z. Poor oral bioavailability of a promising anticancer agent andrographolide is due to extensive metabolism and efflux by P‐glycoprotein. J. Pharm. Sci. 2011 100 11 5007 5017 10.1002/jps.22693 21721007
    [Google Scholar]
  17. Daina A. Michielin O. Zoete V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019 47 W1 W357 W364 10.1093/nar/gkz382 31106366
    [Google Scholar]
  18. Stelzer G Rosen N Plaschkes I The GeneCards suite: From gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics 2016 54 1.30.1 1.30.33
    [Google Scholar]
  19. Wishart D.S. Feunang Y.D. Guo A.C. Lo E.J. Marcu A. Grant J.R. Sajed T. Johnson D. Li C. Sayeeda Z. Assempour N. Iynkkaran I. Liu Y. Maciejewski A. Gale N. Wilson A. Chin L. Cummings R. Le D. Pon A. Knox C. Wilson M. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res. 2018 46 D1 D1074 D1082 10.1093/nar/gkx1037 29126136
    [Google Scholar]
  20. Amberger J.S. Bocchini C.A. Scott A.F. Hamosh A. OMIM.org: Leveraging knowledge across phenotype–gene relationships. Nucleic Acids Res. 2019 47 D1 D1038 D1043 10.1093/nar/gky1151 30445645
    [Google Scholar]
  21. Szklarczyk D. Gable A.L. Lyon D. Junge A. Wyder S. Huerta-Cepas J. Simonovic M. Doncheva N.T. Morris J.H. Bork P. Jensen L.J. Mering C. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019 47 D1 D607 D613 10.1093/nar/gky1131 30476243
    [Google Scholar]
  22. Zhou Y. Zhou B. Pache L. Chang M. Khodabakhshi A.H. Tanaseichuk O. Benner C. Chanda S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019 10 1 1523 10.1038/s41467‑019‑09234‑6 30944313
    [Google Scholar]
  23. Wang Q. Wang Q. Huang Q. Zhang X. Qin Z. Yu Y. Dai Y. Han J. Yao X. He L. Lin P. Yao Z. Five-layer-funnel filtering mode discovers effective components of Chinese medicine formulas: Zhishi-Xiebai-Guizhi decoction as a case study. Phytomedicine 2024 129 155678 10.1016/j.phymed.2024.155678 38754214
    [Google Scholar]
  24. Navrotsky A. Progress and new directions in calorimetry: A 2014 perspective. J. Am. Ceram. Soc. 2014 97 11 3349 3359 [J]. 10.1111/jace.13278
    [Google Scholar]
  25. Spink C.H. Differential scanning calorimetry. Methods Cell Biol. 2008 84 115 141 10.1016/S0091‑679X(07)84005‑2 17964930
    [Google Scholar]
  26. Velázquez‐Campoy A Ohtaka H Nezami A Isothermal titration calorimetry Curr Protoc Cell Biol 2004
    [Google Scholar]
  27. Khan H. Ali J. UHPLC/Q-ToF-MS technique: Introduction and applications. Lett. Org. Chem. 2015 12 6 371 378 10.2174/1570178612666150331204147
    [Google Scholar]
/content/journals/cac/10.2174/0115734110333071250613041616
Loading
/content/journals/cac/10.2174/0115734110333071250613041616
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test