Skip to content
2000
image of Persistent Organic Pollutants in Smoked Meat: A Review of their Levels, Mechanisms of Formation, and Analytical Methods

Abstract

Introduction

Polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) are persistent organic pollutants (POPs) with known toxicity and bioaccumulation potential. Smoked meat, a widely consumed food, has been identified as a major dietary source of these contaminants as they are generated due to the incomplete combustion of fuels used in the smoking process. This review examines existing studies on the occurrence of PAHs, PCBs, and PCDD/Fs in smoked meat, with particular attention to the influence of smoking conditions. Factors such as smoking methods, temperature, fuel type, and co-combustion materials, including plastics and chlorine-containing compounds, are analyzed for their role in the formation and accumulation of these pollutants.

Methods

A literature search across databases including PubMed, Scopus, ScienceDirect, and Google Scholar for studies published (2010 – 2024) identified relevant studies based on predefined inclusion criteria emphasizing POP levels, formation mechanisms, and analytical methods in smoked meat and related products. Key data were synthesized thematically to identify research trends and gaps.

Results

PAHs have been the most extensively studied in smoked meat, whereas research on PCBs and PCDD/Fs remains limited despite their toxicological significance. The smoking process, particularly the type of fuel and additional materials used, plays a crucial role in the generation of these contaminants. Enhanced analytical techniques have improved detection capabilities, supporting more accurate risk assessments.

Discussion

Traditional smoking methods are linked to higher POP contamination, especially with chlorine-rich or plastic-containing fuels. Despite advances in analytical techniques, gaps remain in standardizing methods and understanding halogenated POP formation, underscoring the need for harmonized protocols and targeted research on PCBs and PCDD/Fs under practical conditions.

Conclusion

Significant knowledge gaps remain, emphasizing the need for further research to refine smoking practices and enhance food safety standards while preserving the cultural and culinary value of smoked foods.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110395454250730174901
2025-08-08
2025-09-13
Loading full text...

Full text loading...

References

  1. Köse S. Sciences A. Evaluation of seafood safety health hazards for traditional fish products: Preventive measures and monitoring issues. Turk J. Fish. 2010 10 1 139 160
    [Google Scholar]
  2. Maas-van Berkel B. Preservation of fish and meat. Agromisa Foundation 2004
    [Google Scholar]
  3. Tóth L. Potthast K. Chemical Aspects of the Smoking of Meat and Meat Products. Advances in Food. Research. Chichester C.O. Mrak E.M. Schweigert B.S. Cambridge, Massachusetts Academic Press 1984 87 158
    [Google Scholar]
  4. Ciecierska M. Obiedziński M. Influence of smoking process on polycyclic aromatic hydrocarbons’ content in meat products. Acta Sci. Pol. Technol. Aliment. 2007 6 4 12
    [Google Scholar]
  5. Igwegbe A. Negbenebor C. Chibuzo E. Badau M. Agbara G. Effects of season and fish smoking on heavy mental contents of elected fish species from three locations in Borno State of Nigeria. Asian J. Sci. Technol 2015 6 2 1010 1019
    [Google Scholar]
  6. Stołyhwo A. Sikorski Z.E. Polycyclic aromatic hydrocarbons in smoked fish – A critical review. Food Chem. 2005 91 2 303 311 10.1016/j.foodchem.2004.06.012
    [Google Scholar]
  7. Lee R.G.M. Coleman P. Jones J.L. Jones K.C. Lohmann R. Emission factors and importance of PCDD/Fs, PCBs, PCNs, PAHs and PM10 from the domestic burning of coal and wood in the U.K. Environ. Sci. Technol. 2005 39 6 1436 1447 10.1021/es048745i 15819195
    [Google Scholar]
  8. Zhang C. Bai L. Yao Q. Li J. Wang H. Shen L. Sippula O. Yang J. Zhao J. Liu J. Wang B. Emission characteristics of polychlorinated dibenzo-p-dioxins and dibenzofurans from industrial combustion of biomass fuels. Environ. Pollut. 2022 292 Pt A 118265 10.1016/j.envpol.2021.118265 34601032
    [Google Scholar]
  9. Jones K.C. de Voogt P. Persistent organic pollutants (POPs): State of the science. Environ. Pollut. 1999 100 1-3 209 221 10.1016/S0269‑7491(99)00098‑6 15093119
    [Google Scholar]
  10. Lallas P.L. The Stockholm Convention on persistent organic pollutants. Am. J. Int. Law 2001 95 3 692 708 10.2307/2668517
    [Google Scholar]
  11. Guillotin S. Delcourt N. Studying the impact of persistent organic pollutants exposure on human health by proteomic analysis: A systematic review. Int. J. Mol. Sci. 2022 23 22 14271 10.3390/ijms232214271 36430748
    [Google Scholar]
  12. Sau T.K. Temporal variations in airborne PCDD/F and dl-PCB concentrations surrounding the dioxin-remediated areas in Da Nang, Vietnam, and health risk assessments. Environ. Sci. Pollut. Res. Int. 2024 31 44 56130 56139 10.1007/s11356‑024‑34818‑1 39256336
    [Google Scholar]
  13. Stephens V.R. Horner K.B. Avila W.M. Spicer S.K. Chinni R. Bernabe E.B. Hinton A.O. Damo S.M. Eastman A.J. McCallister M.M. Osteen K.G. Gaddy J.A. The impact of persistent organic pollutants on fertility: Exposure to the environmental toxicant 2,3,7,8-tetrachlorodibenzo-p-dioxin alters reproductive tract immune responses. Front. Immunol. 2024 15 1497405 10.3389/fimmu.2024.1497405 39720712
    [Google Scholar]
  14. Reizer E. Viskolcz B. Fiser B. Formation and growth mechanisms of polycyclic aromatic hydrocarbons: A mini-review. Chemosphere 2022 291 Pt 1 132793 10.1016/j.chemosphere.2021.132793 34762891
    [Google Scholar]
  15. Kirkok S.K. Kibet J.K. Kinyanjui T.K. Okanga F.I. A review of persistent organic pollutants: Dioxins, furans, and their associated nitrogenated analogues. SN Appl. Sci. 2020 2 10 1729 10.1007/s42452‑020‑03551‑y
    [Google Scholar]
  16. Zhang H. Zhang X. Wang Y. Bai P. Hayakawa K. Zhang L. Tang N. Characteristics and influencing factors of polycyclic aromatic hydrocarbons emitted from open burning and stove burning of biomass: A brief review. Int. J. Environ. Res. Public Health 2022 19 7 3944 10.3390/ijerph19073944 35409624
    [Google Scholar]
  17. Jiang X. Liu G. Wang M. Zheng M. Formation of polychlorinated biphenyls on secondary copper production fly ash: Mechanistic aspects and correlation to other persistent organic pollutants. Sci. Rep. 2015 5 1 13903 10.1038/srep13903 26374495
    [Google Scholar]
  18. Guo W. Pan B. Sakkiah S. Yavas G. Ge W. Zou W. Tong W. Hong H. Persistent organic pollutants in food: Contamination sources, health effects and detection methods. Int. J. Environ. Res. Public Health 2019 16 22 4361 10.3390/ijerph16224361 31717330
    [Google Scholar]
  19. Weber R. Watson A. Forter M. Oliaei F. Review Article: Persistent organic pollutants and landfills - A review of past experiences and future challenges. Waste Manag. Res. 2011 29 1 107 121 10.1177/0734242X10390730 21224404
    [Google Scholar]
  20. Matei M. Zaharia R. Petrescu S.I. Radu-Rusu C.G. Simeanu D. Mierliță D. Pop I.M. Persistent organic pollutants (POPs): A review focused on occurrence and incidence in animal feed and cow milk. Agriculture 2023 13 4 873 10.3390/agriculture13040873
    [Google Scholar]
  21. Guardans R. Global monitoring of persistent organic pollutants (POPs) in biota, water and sediments: Its role in screening for unregulated POPs, in compiling time trends of regulated POPs under the Stockholm Convention (SC) and their relevance for biodiversity in a changing climate. Environ. Sci. Adv. 2024 3 8 1111 1123 10.1039/D4VA00023D
    [Google Scholar]
  22. Safitri D. Edelwis T.W. Pardi H. Persistent organic pollutants (POPs) in the sea: A review. BIO Web Conf 2023 70 03008 10.1051/bioconf/20237003008
    [Google Scholar]
  23. Rostami I. Juhasz A.L. Assessment of persistent organic pollutant (POP) bioavailability and bioaccessibility for human health exposure assessment: A critical review. Crit. Rev. Environ. Sci. Technol. 2011 41 7 623 656 10.1080/10643380903044178
    [Google Scholar]
  24. Sun B. Li Q. Zheng M. Su G. Lin S. Wu M. Li C. Wang Q. Tao Y. Dai L. Qin Y. Meng B. Recent advances in the removal of persistent organic pollutants (POPs) using multifunctional materials:A review. Environ. Pollut. 2020 265 Pt A 114908 10.1016/j.envpol.2020.114908 32540566
    [Google Scholar]
  25. Rodríguez-Hernández Á. Camacho M. Boada L.D. Ruiz-Suarez N. Almeida-González M. Henríquez-Hernández L.A. Zumbado M. Luzardo O.P. Daily intake of anthropogenic pollutants through yogurt consumption in the Spanish population. J. Appl. Anim. Res. 2015 43 4 373 383 10.1080/09712119.2014.978777
    [Google Scholar]
  26. Abdel-Shafy H.I. Mansour M.S.M. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt J. Pet 2016 25 1 107 123 10.1016/j.ejpe.2015.03.011
    [Google Scholar]
  27. Bull K. Protocol to the 1979 convention on long-range transboundary air pollution on persistent organic pollutants: The 1998 agreement for the UNECE region. The Handbook of Environmental Chemistry : Persistent Organic Pollutants Springer-Verlag: Berlin Heidelberg 2003 3 495 495 10.1007/10751132_1
    [Google Scholar]
  28. Gaur N. Narasimhulu, K.; y, P.S. Recent advances in the bio-remediation of persistent organic pollutants and its effect on environment. J. Clean. Prod. 2018 198 1602 1631 10.1016/j.jclepro.2018.07.076
    [Google Scholar]
  29. Altarawneh M. Dlugogorski B.Z. Kennedy E.M. Mackie J.C. Mechanisms for formation, chlorination, dechlorination and destruction of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Pror. Energy Combust. Sci. 2009 35 3 245 274 10.1016/j.pecs.2008.12.001
    [Google Scholar]
  30. Zieliński M. Kamińska J. Czerska M. Ligocka D. Urbaniak M. Levels and sources of PCDDs, PCDFs and dl-PCBs in the water ecosystems of central Poland — A mini review. Int. J. Occup. Med. Environ. Health 2014 27 6 902 918 10.2478/s13382‑014‑0336‑y 25575869
    [Google Scholar]
  31. Sampaio G.R. Guizellini G.M. da Silva S.A. de Almeida A.P. Pinaffi-Langley A.C.C. Rogero M.M. de Camargo A.C. Torres E.A.F.S. Polycyclic aromatic hydrocarbons in foods: Biological effects, legislation, occurrence, analytical methods, and strategies to reduce their formation. Int. J. Mol. Sci. 2021 22 11 6010 10.3390/ijms22116010 34199457
    [Google Scholar]
  32. Vassilev S.V. Baxter D. Vassileva C.G. An overview of the behaviour of biomass during combustion: Part I. Phase-mineral transformations of organic and inorganic matter. Fuel 2013 112 391 449 10.1016/j.fuel.2013.05.043
    [Google Scholar]
  33. Zhang M. Buekens A. Li X. Dioxins from biomass combustion: An overview. Waste Biomass Valoriz. 2017 8 1 1 20 10.1007/s12649‑016‑9744‑5
    [Google Scholar]
  34. Mitra T. Zhang T. Sediako A.D. Thomson M.J. Understanding the formation and growth of polycyclic aromatic hydrocarbons (PAHs) and young soot from n-dodecane in a sooting laminar coflow diffusion flame. Combust. Flame 2019 202 33 42 10.1016/j.combustflame.2018.12.010
    [Google Scholar]
  35. Woods P.M. Millar T.J. Zijlstra A.A. Herbst E. The synthesis of benzene in the proto–planetary nebula CRL 618. Astrophys. J. 2002 574 2 L167 L170 10.1086/342503
    [Google Scholar]
  36. Georgievskii Y. Miller J.A. Klippenstein S.J. Association rate constants for reactions between resonance-stabilized radicals: C3H3 + C3H3, C3H3 + C3H5, and C3H5 + C3H5. Phys. Chem. Chem. Phys. 2007 9 31 4259 4268 10.1039/b703261g 17687474
    [Google Scholar]
  37. Wang E. Ding J. Reaction between the i-C4H5 radical and propargyl radical (C3H3): A theoretical study. Chem. Phys. Lett. 2021 768 138407 10.1016/j.cplett.2021.138407
    [Google Scholar]
  38. Mebel A.M. Georgievskii Y. Jasper A.W. Klippenstein S.J. Temperature- and pressure-dependent rate coefficients for the HACA pathways from benzene to naphthalene. Proc. Combust. Inst. 2017 36 1 919 926 10.1016/j.proci.2016.07.013
    [Google Scholar]
  39. Mebel A.M. Landera A. Kaiser R.I. Formation mechanisms of naphthalene and indene: From the interstellar medium to combustion flames. J. Phys. Chem. A 2017 121 5 901 926 10.1021/acs.jpca.6b09735 28072538
    [Google Scholar]
  40. Dyan O.T. Borodkin G.I. Zaikin P.A. The diels–alder reaction for the synthesis of polycyclic aromatic compounds. Eur. J. Org. Chem. 2019 2019 44 7271 7306 10.1002/ejoc.201901254
    [Google Scholar]
  41. Shukla B. Miyoshi A. Koshi M. Role of methyl radicals in the growth of PAHs. J. Am. Soc. Mass Spectrom. 2010 21 4 534 544 10.1016/j.jasms.2009.12.019 20149680
    [Google Scholar]
  42. Reizer E. Csizmadia I.G. Nehéz K. Viskolcz B. Fiser B. Theoretical investigation of benzo(a)pyrene formation. Chem. Phys. Lett. 2021 772 138564 10.1016/j.cplett.2021.138564
    [Google Scholar]
  43. Shukla B. Koshi M. A novel route for PAH growth in HACA based mechanisms. Combust. Flame 2012 159 12 3589 3596 10.1016/j.combustflame.2012.08.007
    [Google Scholar]
  44. Raj A. Al Rashidi M.J. Chung S.H. Sarathy S.M. PAH growth initiated by propargyl addition: Mechanism development and computational kinetics. J. Phys. Chem. A 2014 118 16 2865 2885 10.1021/jp410704b 24650362
    [Google Scholar]
  45. Wang X. Yang Z. Liu X. Huang G. Xiao W. Han L. The composition characteristics of different crop straw types and their multivariate analysis and comparison. Waste Manag. 2020 110 87 97 10.1016/j.wasman.2020.05.018 32460108
    [Google Scholar]
  46. Singh D.P. Gadi R. Mandal T.K. Saud T. Saxena M. Sharma S.K. Emissions estimates of PAH from biomass fuels used in rural sector of Indo-Gangetic Plains of India. Atmos. Environ. 2013 68 120 126 10.1016/j.atmosenv.2012.11.042
    [Google Scholar]
  47. Hays M.D. Fine P.M. Geron C.D. Kleeman M.J. Gullett B.K. Open burning of agricultural biomass: Physical and chemical properties of particle-phase emissions. Atmos. Environ. 2005 39 36 6747 6764 10.1016/j.atmosenv.2005.07.072
    [Google Scholar]
  48. Riojas-Rodriguez H. Schilmann A. Marron-Mares A.T. Masera O. Li Z. Romanoff L. Sjödin A. Rojas-Bracho L. Needham L.L. Romieu I. Impact of the improved patsari biomass stove on urinary polycyclic aromatic hydrocarbon biomarkers and carbon monoxide exposures in rural Mexican women. Environ. Health Perspect. 2011 119 9 1301 1307 10.1289/ehp.1002927 21622083
    [Google Scholar]
  49. Munyeza C.F. Osano A.M. Maghanga J.K. Forbes P.B.C. Polycyclic aromatic hydrocarbon gaseous emissions from household cooking devices: A Kenyan case study. Environ. Toxicol. Chem. 2019 39 3 538 547 10.1002/etc.4648 31837036
    [Google Scholar]
  50. Zhang Y. Dou H. Chang B. Wei Z. Qiu W. Liu S. Liu W. Tao S. Emission of polycyclic aromatic hydrocarbons from indoor straw burning and emission inventory updating in China. Ann. N. Y. Acad. Sci. 2008 1140 1 218 227 10.1196/annals.1454.006 18991920
    [Google Scholar]
  51. Kuskowska K. Rogula-Kozłowska W. Seasonal variation in health exposure to PM-bound Polycyclic Aromatic Hydrocarbons in selected sport facility. MATEC Web Conf 2018 247 00047 10.1051/matecconf/201824700047
    [Google Scholar]
  52. Hue N.T. Thuy N.T.T. Tung N.H. Polychlorobenzenes and polychlorinated biphenyls in ash and soil from several industrial areas in North Vietnam: Residue concentrations, profiles and risk assessment. Environ. Geochem. Health 2016 38 2 399 411 10.1007/s10653‑015‑9726‑8 26049895
    [Google Scholar]
  53. Wang H. Frenklach M. Calculations of rate coefficients for the chemically activated reactions of acetylene with vinylic and aromatic radicals. J. Phys. Chem. 1994 98 44 11465 11489 10.1021/j100095a033
    [Google Scholar]
  54. Liu W. Zheng M. Wang D. Xing Y. Zhao X. Ma X. Qian Y. Formation of PCDD/Fs and PCBs in the process of production of 1,4-dichlorobenzene. Chemosphere 2004 57 10 1317 1323 10.1016/j.chemosphere.2004.09.024 15519376
    [Google Scholar]
  55. Liu P.Y. Zheng M.H. Zhang B. Xu X.B. Mechanism of PCBs formation from the pyrolysis of chlorobenzenes. Chemosphere 2001 43 4-7 783 785 10.1016/S0045‑6535(00)00434‑3 11372866
    [Google Scholar]
  56. Stanmore B.R. The formation of dioxins in combustion systems. Combust. Flame 2004 136 3 398 427 10.1016/j.combustflame.2003.11.004
    [Google Scholar]
  57. Yang Y. Mulholland J.A. Akki U. Formation of furans by gas-phase reactions of chlorophenols. Symp Int. Combust 1998 27 2 1761 1768 10.1016/S0082‑0784(98)80017‑9
    [Google Scholar]
  58. Fueno H. Tanaka K. Sugawa S. Theoretical study of the dechlorination reaction pathways of octachlorodibenzo-p-dioxin. Chemosphere 2002 48 8 771 778 10.1016/S0045‑6535(02)00141‑8 12222770
    [Google Scholar]
  59. Ding S. Dong F. Wang B. Chen S. Zhang L. Chen M. Gao M. He P. Polychlorinated biphenyls and organochlorine pesticides in atmospheric particulate matter of Northern China: Distribution, sources, and risk assessment. Environ. Sci. Pollut. Res. Int. 2015 22 21 17171 17181 10.1007/s11356‑015‑4949‑x 26139408
    [Google Scholar]
  60. Themba N. Sibali L.L. Chokwe T.B. A review on the formation and remediations of polychlorinated dibenzo p-dioxins and dibenzo-furans (PCDD/Fs) during thermal processes with a focus on MSW process. Air Qual. Atmos. Health 2023 16 10 2115 2132 10.1007/s11869‑023‑01394‑1
    [Google Scholar]
  61. Zhang Y. Zhang D. Gao J. Zhan J. Liu C. New understanding of the formation of PCDD/Fs from chlorophenol precursors: A mechanistic and kinetic study. J. Phys. Chem. A 2014 118 2 449 456 10.1021/jp410077g 24364591
    [Google Scholar]
  62. Nganai S. Lomnicki S. Surface catalysed PCDD/F formation from precursors - High PCDF yield does not indicate de novo mechanism! Int. J. Environ. Pollut. 2017 61 3/4 208 222 10.1504/IJEP.2017.087761 30147247
    [Google Scholar]
  63. Cains P.W. McCausland L.J. Fernandes A.R. Dyke P. Polychlorinated Dibenzo- p -dioxins and dibenzofurans formation in incineration: Effects of fly ash and carbon source. Environ. Sci. Technol. 1997 31 3 776 785 10.1021/es960468v
    [Google Scholar]
  64. Addink R. Olie K. Mechanisms of formation and destruction of polychlorinated dibenzo-p-dioxins and dibenzofurans in heterogeneous systems. Environ. Sci. Technol. 1995 29 6 1425 1435 10.1021/es00006a002 22276861
    [Google Scholar]
  65. Ghorishi S.B. Altwicker E.R. Rapid formation of polychlorinated dioxins/furans during the heterogeneous combustion of 1,2-dichlorobenzene and 2,4-dichlorophenol. Chemosphere 1996 32 1 133 144 10.1016/0045‑6535(95)00239‑1
    [Google Scholar]
  66. Stumpe-Vīksna I. Bartkevičs V. Kukāre A. Morozovs A. Polycyclic aromatic hydrocarbons in meat smoked with different types of wood. Food Chem. 2008 110 3 794 797 10.1016/j.foodchem.2008.03.004
    [Google Scholar]
  67. Saarikoski S. Sillanpää M. Sofiev M. Timonen H. Saarnio K. Teinilä K. Karppinen A. Kukkonen J. Hillamo R. Chemical composition of aerosols during a major biomass burning episode over northern Europe in spring 2006: Experimental and modelling assessments. Atmos. Environ. 2007 41 17 3577 3589 10.1016/j.atmosenv.2006.12.053
    [Google Scholar]
  68. Shih S.I. Lee W.J. Lin L.F. Huang J.Y. Su J.W. Chang-Chien G.P. Significance of biomass open burning on the levels of polychlorinated dibenzo-p-dioxins and dibenzofurans in the ambient air. J. Hazard. Mater. 2008 153 1-2 276 284 10.1016/j.jhazmat.2007.08.048 17897777
    [Google Scholar]
  69. Piao M. Chu S. Zheng M. Xu X. Characterization of the combustion products of polyethylene. Chemosphere 1999 39 9 1497 1512 10.1016/S0045‑6535(99)00054‑5
    [Google Scholar]
  70. Tomsej T. Horak J. Tomsejova S. Krpec K. Klanova J. Dej M. Hopan F. The impact of co-combustion of polyethylene plastics and wood in a small residential boiler on emissions of gaseous pollutants, particulate matter, PAHs and 1,3,5- triphenylbenzene. Chemosphere 2018 196 18 24 10.1016/j.chemosphere.2017.12.127 29289847
    [Google Scholar]
  71. Hoffer A. Jancsek-Turóczi B. Tóth Á. Kiss G. Naghiu A. Levei E.A. Marmureanu L. Machon A. Gelencsér A. Emission factors for PM 10 and polycyclic aromatic hydrocarbons (PAHs) from illegal burning of different types of municipal waste in households. Atmos. Chem. Phys. 2020 20 24 16135 16144 10.5194/acp‑20‑16135‑2020
    [Google Scholar]
  72. Kwon E. Castaldi M.J. Investigation of mechanisms of polycyclic aromatic hydrocarbons (PAHs) initiated from the thermal degradation of styrene butadiene rubber (SBR) in N2 atmosphere. Environ. Sci. Technol. 2008 42 6 2175 2180 10.1021/es7026532 18409655
    [Google Scholar]
  73. Lithner D. Larsson Å. Dave G. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Sci. Total Environ. 2011 409 18 3309 3324 10.1016/j.scitotenv.2011.04.038 21663944
    [Google Scholar]
  74. Wheatley L. Levendis Y.A. Vouros P. Exploratory study on the combustion and PAH emissions of selected municipal waste plastics. Environ. Sci. Technol. 1993 27 13 2885 2895 10.1021/es00049a032
    [Google Scholar]
  75. Lauby-Secretan B. Loomis D. Grosse Y. Ghissassi F.E. Bouvard V. Benbrahim-Tallaa L. Guha N. Baan R. Mattock H. Straif K. Carcinogenicity of polychlorinated biphenyls and polybrominated biphenyls. Lancet Oncol. 2013 14 4 287 288 10.1016/S1470‑2045(13)70104‑9 23499544
    [Google Scholar]
  76. Yasuhara A. Katami T. Okuda T. Shibamoto T. Role of inorganic chlorides in formation of PCDDs, PCDFs, and coplanar PCBs from combustion of plastics, newspaper, and pulp in an incinerator. Environ. Sci. Technol. 2002 36 18 3924 3927 10.1021/es020602d 12269744
    [Google Scholar]
  77. Huang H. Buekens A. On the mechanisms of dioxin formation in combustion processes. Chemosphere 1995 31 9 4099 4117 10.1016/0045‑6535(95)80011‑9
    [Google Scholar]
  78. Tame N.W. Dlugogorski B.Z. Kennedy E.M. Conversion of wood pyrolysates to PCDD/F. Proc. Combust. Inst. 2009 32 1 665 671 10.1016/j.proci.2008.07.022
    [Google Scholar]
  79. Lemieux P. Lee C. Kilgroe J. Ryan J. Emissions of polychlorinated biphenyls as products of incomplete combustion from incinerators. International Conference on Incineration and Thermal Treatment Technologies Orlando, FL May 10-14, 1999 1 11
    [Google Scholar]
  80. Wilhelm J. Stieglitz L. Dinjus E. Will R. Mechanistic studies on the role of PAHs and related compounds in PCDD/F formation on model fly ashes. Chemosphere 2001 42 5-7 797 802 10.1016/S0045‑6535(00)00253‑8 11219705
    [Google Scholar]
  81. Song S. Zhou X. Guo C. Zhang H. Zeng T. Xie Y. Liu J. Zhu C. Sun X. Emission characteristics of polychlorinated, polybrominated and mixed polybrominated/chlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs, PBDD/Fs, and PBCDD/Fs) from waste incineration and metallurgical processes in China. Ecotoxicol. Environ. Saf. 2019 184 109608 10.1016/j.ecoenv.2019.109608 31505407
    [Google Scholar]
  82. Kartalović B. Mastanjević K. Novakov N. Vranešević J. Ljubojević Pelić D. Puljić L. Habschied K. Organochlorine pesticides and pcbs in traditionally and industrially smoked pork meat products from bosnia and herzegovina. Foods 2020 9 1 97 10.3390/foods9010097 31963424
    [Google Scholar]
  83. Witczak A. Ciereszko W. Changes in total PCB content in selected fish products during hot- and cold smoking. Acta Ichthyol. Piscat. 2006 36 1 11 16 10.3750/AIP2006.36.1.02
    [Google Scholar]
  84. Yang X. Chen W. Jin J. Hu J. Levels, enrichment characteristics and dietary intake risk of polychlorinated dibenzo-p-dioxin/furans in traditional smoked pork. Environ. Pollut. 2023 328 121657 10.1016/j.envpol.2023.121657 37075920
    [Google Scholar]
  85. Lund M. Duedahl-Olesen L. Christensen J.H. Extraction of polycyclic aromatic hydrocarbons from smoked fish using pressurized liquid extraction with integrated fat removal. Talanta 2009 79 1 10 15 10.1016/j.talanta.2009.02.048 19376336
    [Google Scholar]
  86. Racovita R.C. Secuianu C. Ciuca M.D. Israel-Roming F. Effects of smoking temperature, smoking time, and type of wood sawdust on polycyclic aromatic hydrocarbon accumulation levels in directly smoked pork sausages. J. Agric. Food Chem. 2020 68 35 9530 9536 10.1021/acs.jafc.0c04116 32786847
    [Google Scholar]
  87. Babić J. Vidaković S. Bošković M. Glišić M. Kartalović B. Škaljac S. Nikolić A. Ćirković M. Teodorović V. Content of polycyclic aromatic hydrocarbons in smoked common Carp (Cyprinus Carpio) in direct conditions using different filters vs indirect conditions. Polycycl. Aromat. Compd. 2020 40 3 889 897 10.1080/10406638.2018.1506991
    [Google Scholar]
  88. Essumang D.K. Dodoo D.K. Adjei J.K. Effect of smoke generation sources and smoke curing duration on the levels of polycyclic aromatic hydrocarbon (PAH) in different suites of fish. Food Chem. Toxicol. 2013 58 86 94 10.1016/j.fct.2013.04.014 23603007
    [Google Scholar]
  89. Hitzel A. Pöhlmann M. Schwägele F. Speer K. Jira W. Polycyclic aromatic hydrocarbons (PAH) and phenolic substances in meat products smoked with different types of wood and smoking spices. Food Chem. 2013 139 1-4 955 962 10.1016/j.foodchem.2013.02.011 23561196
    [Google Scholar]
  90. Roseiro L.C. Gomes A. Santos C. Influence of processing in the prevalence of polycyclic aromatic hydrocarbons in a Portuguese traditional meat product. Food Chem. Toxicol. 2011 49 6 1340 1345 10.1016/j.fct.2011.03.017 21419819
    [Google Scholar]
  91. Škaljac S. Petrović L. Tasić T. Ikonić P. Jokanović M. Tomović V. Džinić N. Šojić B. Tjapkin A. Škrbić B. Influence of smoking in traditional and industrial conditions on polycyclic aromatic hydrocarbons content in dry fermented sausages (Petrovská klobása) from Serbia. Food Control 2014 40 12 18 10.1016/j.foodcont.2013.11.024
    [Google Scholar]
  92. Mastanjević K. Kartalović B. Petrović J. Novakov N. Puljić L. Kovačević D. Jukić M. Lukinac J. Mastanjević K. Polycyclic aromatic hydrocarbons in the traditional smoked sausage Slavonska kobasica. J. Food Compos. Anal. 2019 83 103282 10.1016/j.jfca.2019.103282
    [Google Scholar]
  93. Hokkanen M. Luhtasela U. Kostamo P. Ritvanen T. Peltonen K. Jestoi M. Critical effects of smoking parameters on the levels of polycyclic aromatic hydrocarbons in traditionally smoked fish and meat products in Finland. J. Chem. 2018 2018 1 1 14 10.1155/2018/2160958
    [Google Scholar]
  94. Malarut J. Vangnai K. Influence of wood types on quality and carcinogenic polycyclic aromatic hydrocarbons (PAHs) of smoked sausages. Food Control 2018 85 98 106 10.1016/j.foodcont.2017.09.020
    [Google Scholar]
  95. Salama A.A. Mohamed M.A.M. Duval B. Potter T.L. Levin R.E. Polychlorinated Biphenyl concentration in raw and cooked north atlantic bluefish (Pomatomus saltatrix) fillets. J. Agric. Food Chem. 1998 46 4 1359 1362 10.1021/jf9707142
    [Google Scholar]
  96. Nguyen Thu U. Do Hoang G. Le Minh T. Nguyen Thi X. Nguyen Thi Thu M. Hoang Thuy D. Bui Thi Nhat L. Luu Hai N. Nguyen Thi Hong A. Nguyen Thi L. Bui Quang M. Vu Duc N. Nguyen Tien D. Effect of combustion material on the level of persistent organic pollutants in smoked pork. Curr. Anal. Chem. 2025 21 1 13
    [Google Scholar]
  97. Zabik M.E. Booren A. Zabik M.J. Welch R. Humphrey H. Pesticide residues, PCBs and PAHs in baked, charbroiled, salt boiled and smoked Great Lakes lake trout. Food Chem. 1996 55 3 231 239 10.1016/0308‑8146(95)00115‑8
    [Google Scholar]
  98. Pöhlmann M. Hitzel A. Schwägele F. Speer K. Jira W. Polycyclic aromatic hydrocarbons (PAH) and phenolic substances in smoked Frankfurter-type sausages depending on type of casing and fat content. Food Control 2013 31 1 136 144 10.1016/j.foodcont.2012.09.030
    [Google Scholar]
  99. Šimko P. Factors affecting elimination of polycyclic aromatic hydrocarbons from smoked meat foods and liquid smoke flavorings. Mol. Nutr. Food Res. 2005 49 7 637 647 10.1002/mnfr.200400091 15945119
    [Google Scholar]
  100. Ledesma E. Rendueles M. Díaz M. Contamination of meat products during smoking by polycyclic aromatic hydrocarbons: Processes and prevention. Food Control 2016 60 64 87 10.1016/j.foodcont.2015.07.016
    [Google Scholar]
  101. Hise R.G. Wright B.T. Swanson S.E. Formation of chlorinated dioxins and furans from lignin and lignin model compounds. Chemosphere 1990 20 10-12 1723 1730 10.1016/0045‑6535(90)90335‑Q
    [Google Scholar]
  102. Fagernäs L. Kuoppala E. Tiilikkala K. Oasmaa A. Chemical composition of birch wood slow pyrolysis products. Energy Fuels 2012 26 2 1275 1283 10.1021/ef2018836
    [Google Scholar]
  103. Pettersen R.C. The Chemical Composition of Wood. The Chemistry of Solid Wood. American Chemical Society 1984 57 126 10.1021/ba‑1984‑0207.ch002
    [Google Scholar]
  104. Guerrero F. Yáñez K. Vidal V. Cereceda-Balic F. Effects of wood moisture on emission factors for PM2.5, particle numbers and particulate-phase PAHs from Eucalyptus globulus combustion using a controlled combustion chamber for emissions. Sci. Total Environ. 2019 648 737 744 10.1016/j.scitotenv.2018.08.057 30130737
    [Google Scholar]
  105. Li X. Zhang J. Yan J. Chen T. Lu S. Cen K. Effect of water on catalyzed de novo formation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans. J. Hazard. Mater. 2006 137 1 57 61 10.1016/j.jhazmat.2006.01.068 16533559
    [Google Scholar]
  106. Dong S. Liu G. Hu J. Zheng M. Polychlorinated dibenzo-p-dioxins and dibenzofurans formed from sucralose at high temperatures. Sci. Rep. 2013 3 1 2946 10.1038/srep02946 24126490
    [Google Scholar]
  107. Alexander J. Benford D. Cockburn A. Cravedi J-P. Dogliotti E. Di Domenico A. Fernández-Cruz M. Fink-Gremmels J. Fürst P. Galli C. Grandjean P. Gzyl J. Polycyclic aromatic hydrocarbons in food 1 scientific opinion of the panel on contaminants in the food chain. EFSA J. 2008 724
    [Google Scholar]
  108. Duedahl-Olesen L. Christensen J.H. Højgård A. Granby K. Timm-Heinrich M. Influence of smoking parameters on the concentration of polycyclic aromatic hydrocarbons (PAHs) in Danish smoked fish. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2010 27 9 1294 1305 10.1080/19440049.2010.487074 20640961
    [Google Scholar]
  109. Min S. Patra J.K. Shin H.S. Factors influencing inhibition of eight polycyclic aromatic hydrocarbons in heated meat model system. Food Chem. 2018 239 993 1000 10.1016/j.foodchem.2017.07.020 28873662
    [Google Scholar]
  110. Sherer R.A. Price P.S. The effect of cooking processes on PCB levels in edible fish tissue. Qual. Assur. 1993 2 4 396 407 7952975
    [Google Scholar]
  111. Morita M. Nakagawa J. Rappe C. Polychlorinated dibenzofuran (PCDF) formation from PCB mixture by heat and oxygen. Bull. Environ. Contam. Toxicol. 1978 19 1 665 670 10.1007/BF01685855 98186
    [Google Scholar]
  112. Perelló G. Martí-Cid R. Castell V. Llobet J.M. Domingo J.L. Concentrations of polybrominated diphenyl ethers, hexachlorobenzene and polycyclic aromatic hydrocarbons in various foodstuffs before and after cooking. Food Chem. Toxicol. 2009 47 4 709 715 10.1016/j.fct.2008.12.030 19162122
    [Google Scholar]
  113. Reiner E.J. Jobst K.J. Megson D. Dorman F.L. Focant J-F. Analytical Methodology of POPs. Environmental Forensics for Persistent Organic Pollutants. O’Sullivan G. Sandau C. Amsterdam Elsevier 2014 59 139 10.1016/B978‑0‑444‑59424‑2.00003‑7
    [Google Scholar]
  114. Franchina F.A. Lazzari E. Scholl G. Focant J.F. Assessment of a New GC-MS/MS System for the Confirmatory Measurement of PCDD/Fs and (N)DL-PCBs in Food under EU Regulation. Foods 2019 8 8 302 10.3390/foods8080302 31374850
    [Google Scholar]
  115. Pissinatti R. Gloria M.M.M.F. Mota R.F. Rocha C.R. Nogueira R. Determination of Polychlorinated Dibenzo-p-Dioxins (PCDDs), Polychlorinated Dibenzofurans (PCDFs), and Dioxin-Like Polychlorinated Biphenyls (dl-PCBs) in Food by GC-MS/MS. Chemical Food. Contaminants Analysis. Hoff R. Molognoni L. New York, NY Springer US 2024 13 29 10.1007/978‑1‑0716‑3806‑4_2
    [Google Scholar]
  116. Tran-Lam T.T. Dao H. Y.; Kim Thi Nguyen, L.; Kim Ma, H.; Nguyen Tran, H.; Truong Le, G. Simultaneous determination of 18 polycyclic aromatic hydrocarbons in daily foods (Hanoi Metropolitan Area) by gas chromatography–tandem mass spectrometry. Foods 2018 7 12 201 10.3390/foods7120201 30544827
    [Google Scholar]
  117. Rodríguez-González P. García Alonso J.I. Mass Spectrometry | Isotope Dilution Mass Spectrometry. Encyclopedia of Analytical Science. 3rd ed Worsfold P. Oxford Academic Press 2019 411 420
    [Google Scholar]
  118. Chen B.H. Inbaraj B.S. Hsu K.C. Recent advances in the analysis of polycyclic aromatic hydrocarbons in food and water. Yao Wu Shi Pin Fen Xi 2022 30 4 494 522 10.38212/2224‑6614.3429 36753366
    [Google Scholar]
  119. Sun H. Wang P. Li H. Li Y. Zheng S. Matsiko J. Hao Y. Zhang W. Wang D. Zhang Q. Determination of PCDD/Fs and dioxin-like PCBs in food and feed using gas chromatography-triple quadrupole mass spectrometry. Sci. China Chem. 2017 60 5 670 677 10.1007/s11426‑016‑9017‑9
    [Google Scholar]
  120. Lacomba I. López A. Hervàs-Ayala R. Coscollà C. Development of a methodology for determination of dioxins and Dioxin-like PCBs in meconium by gas chromatography coupled to high-resolution mass spectrometry (GC-HRMS). Molecules 2023 28 13 5006 10.3390/molecules28135006 37446668
    [Google Scholar]
  121. Liem A.K.D. Basic aspects of methods for the determination of dioxins and PCBs in foodstuffs and human tissues. Trends Analyt. Chem. 1999 18 6 429 439 10.1016/S0165‑9936(99)00112‑0
    [Google Scholar]
  122. Kim L. Lee D. Cho H.K. Choi S.D. Review of the QuEChERS method for the analysis of organic pollutants: Persistent organic pollutants, polycyclic aromatic hydrocarbons, and pharmaceuticals. Trends Environ. Anal. Chem. 2019 22 00063 10.1016/j.teac.2019.e00063
    [Google Scholar]
  123. Smoker M. Tran K. Smith R.E. Determination of polycyclic aromatic hydrocarbons (PAHs) in shrimp. J. Agric. Food Chem. 2010 58 23 12101 12104 10.1021/jf1029652 21062062
    [Google Scholar]
  124. Patil S.H. Banerjee K. Dasgupta S. Oulkar D.P. Patil S.B. Jadhav M.R. Savant R.H. Adsule P.G. Deshmukh M.B. Multiresidue analysis of 83 pesticides and 12 dioxin-like polychlorinated biphenyls in wine by gas chromatography–time-of-flight mass spectrometry. J. Chromatogr. A 2009 1216 12 2307 2319 10.1016/j.chroma.2009.01.091 19215926
    [Google Scholar]
  125. Niessen W.W.A. Mass Spectrometry: Chromatography–MS, Methods. Encyclopedia of Spectroscopy and Spectrometry. 2nd ed Lindon J.C. Oxford Academic Press 1999 309 316 10.1016/B978‑0‑12‑374413‑5.00120‑2
    [Google Scholar]
  126. Purcaro G. Moret S. Conte L.S. Overview on polycyclic aromatic hydrocarbons: Occurrence, legislation and innovative determination in foods. Talanta 2013 105 292 305 10.1016/j.talanta.2012.10.041 23598022
    [Google Scholar]
  127. Poster D.L. Schantz M.M. Sander L.C. Wise S.A. Analysis of polycyclic aromatic hydrocarbons (PAHs) in environmental samples: A critical review of gas chromatographic (GC) methods. Anal. Bioanal. Chem. 2006 386 4 859 881 10.1007/s00216‑006‑0771‑0 17019586
    [Google Scholar]
  128. Veyrand B. Brosseaud A. Sarcher L. Varlet V. Monteau F. Marchand P. Andre F. Le Bizec B. Innovative method for determination of 19 polycyclic aromatic hydrocarbons in food and oil samples using gas chromatography coupled to tandem mass spectrometry based on an isotope dilution approach. J. Chromatogr. A 2007 1149 2 333 344 10.1016/j.chroma.2007.03.043 17395191
    [Google Scholar]
/content/journals/cac/10.2174/0115734110395454250730174901
Loading
/content/journals/cac/10.2174/0115734110395454250730174901
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: POP formation ; PCBs ; PAHs ; PCDD/Fs ; POP levels ; POP contamination ; smoked food
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test