Skip to content
2000
image of Cost-effective Paper-microfluidics Technology for the Assessment of Diverse Milk Adulterations

Abstract

Introduction

In developing countries, food adulteration is a significant issue that can lead to potentially fatal diseases. This work introduces approaches to this problem—the lab-on-a-chip concept—that use paper-fluidics systems to yield a viable solution that provides a more straightforward, reasonably priced, and portable platform capable of carrying out a wide range of analytical tests.

Methods

The device used for assessment was first fabricated by 3D printing of wax on Whatman filter paper of the desired pattern, and the quantities of heavy metals, starch, urea, soap, sodium hydroxide, hydrogen peroxide, lead, cadmium, and zinc in milk samples were assessed colorimetric detection. The images were processed using the Python application OpenCV

Result

The colored product is developed based on the presence of the analyte; once the colored product is produced, the image captured RGB values are extracted, and one may determine the image's overall color distribution, color dominance, and color fluctuations and, hence, coloured reaction products and evaluate the analyte concentration by comparing the relative brightness of the red, green, and blue values. The simple procedure allowed us to detect ~1ppm of milk impurities.

Discussion

This study endeavor can facilitate the expansion and advancement of quality confirmation and food safety testing. The results show how reliable and effective the paper-based microfluidic device is for quantitatively assessing adulterants in milk through Python image processing. Future applications of this created paper-based microfluidics device and image processing methods may include the separation of various contaminants in various kinds of samples.

Conclusion

This study creates a number of opportunities for further investigation and advancement in the quantitative analysis of paper-based microfluidic devices, as it detected the seven analytes that might offer thorough analytical and diagnostic methods. In order to ensure the paper-based microfluidic device's consistent quality, robustness, and accuracy in practical scenarios, extensive field testing and approval evaluation should be conducted.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110373562250727021217
2025-08-06
2025-09-13
Loading full text...

Full text loading...

References

  1. Kavitt R.T. Lipowska A.M. Anyane-Yeboa A. Gralnek I.M. Diagnosis and treatment of peptic ulcer disease. Am. J. Med. 2019 132 4 447 456 10.1016/j.amjmed.2018.12.009 30611829
    [Google Scholar]
  2. Lanas A. Chan F.K.L. Peptic ulcer disease. Lancet 2017 390 10094 613 624 10.1016/S0140‑6736(16)32404‑7 28242110
    [Google Scholar]
  3. Yuan S. Larsson S.C. Adiposity, diabetes, lifestyle factors and risk of gastroesophageal reflux disease: A Mendelian randomization study. Eur. J. Epidemiol. 2022 37 7 747 754 10.1007/s10654‑022‑00842‑z 35119566
    [Google Scholar]
  4. Herdiana Y. Functional food in relation to gastroesophageal reflux disease (GERD). Nutrients 2023 15 16 3583 10.3390/nu15163583 37630773
    [Google Scholar]
  5. Tytgat G.N.J. Etiopathogenetic principles and peptic ulcer disease classification. Dig. Dis. 2011 29 5 454 458 10.1159/000331520 22095009
    [Google Scholar]
  6. Roy A.J. Maut C. Gogoi H.K. Ahmed S.I. Kashyap A. A review on herbal drugs used in the treatment of peptic ulcer. Curr. Drug Discov. Technol. 2023 20 3 e121222211869 10.2174/1570163820666221212142221 36515023
    [Google Scholar]
  7. Søreide K. Thorsen K. Harrison E.M. Bingener J. Møller M.H. Ohene-Yeboah M. Søreide J.A. Perforated peptic ulcer. Lancet 2015 386 10000 1288 1298 10.1016/S0140‑6736(15)00276‑7 26460663
    [Google Scholar]
  8. Zhang B.B. Li Y. Liu X.Q. Wang P.J. Yang B. Bian D.L. Association between vacA genotypes and the risk of duodenal ulcer: A meta-analysis. Mol. Biol. Rep. 2014 41 11 7241 7254 10.1007/s11033‑014‑3610‑y 25063579
    [Google Scholar]
  9. Strand D.S. Kim D. Peura D.A. 25 years of proton pump inhibitors: A comprehensive review. Gut Liver 2017 11 1 27 37 10.5009/gnl15502 27840364
    [Google Scholar]
  10. Hunt R. Armstrong D. Katelaris P. Afihene M. Bane A. Bhatia S. Chen M.H. Choi M.G. Melo A.C. Fock K.M. Ford A. Hongo M. Khan A. Lazebnik L. Lindberg G. Lizarzabal M. Myint T. Moraes-Filho J.P. Salis G. Lin J.T. Vaidya R. Abdo A. LeMair A. World gastroenterology organisation global guidelines: GERD global perspective on gastroesophageal reflux disease. J. Clin. Gastroenterol. 2017 51 6 467 478 10.1097/MCG.0000000000000854 28591069
    [Google Scholar]
  11. Johnson T.J. Hedge D.D. Esomeprazole: A clinical review. Am. J. Health Syst. Pharm. 2002 59 14 1333 1339 10.1093/ajhp/59.14.1333 12132559
    [Google Scholar]
  12. Allen J.I. Katzka D. Robert M. Leontiadis G.I. American gastroenterological association institute technical review on the role of upper gastrointestinal biopsy to evaluate dyspepsia in the adult patient in the absence of visible mucosal lesions. Gastroenterology 2015 149 4 1088 1118 10.1053/j.gastro.2015.07.040 26278504
    [Google Scholar]
  13. Talley N.J. Vakil N.B. Moayyedi P. American gastroenterological association technical review on the evaluation of dyspepsia. Gastroenterology 2005 129 5 1756 1780 10.1053/j.gastro.2005.09.020 16285971
    [Google Scholar]
  14. Sheen E. Triadafilopoulos G. Adverse effects of long-term proton pump inhibitor therapy. Dig. Dis. Sci. 2011 56 4 931 950 10.1007/s10620‑010‑1560‑3 21365243
    [Google Scholar]
  15. Freedberg D.E. Kim L.S. Yang Y.X. The risks and benefits of long-term use of proton pump inhibitors: Expert review and best practice advice from the american gastroenterological association. Gastroenterology 2017 152 4 706 715 10.1053/j.gastro.2017.01.031 28257716
    [Google Scholar]
  16. Guslandi M. Proton pump inhibitors and mucus secretion. Dig. Dis. Sci. 2010 55 1 217 10.1007/s10620‑009‑1028‑5 19882247
    [Google Scholar]
  17. Nair R. Antibacterial activities of some medicinal plants of the western region of India. Turk. J. Biol. 2007 31 4 231 236
    [Google Scholar]
  18. Wang Y.F. Wang X.Y. Ren Z. Qian C.W. Li Y.C. Kaio K. Wang Q.D. Zhang Y. Zheng L.Y. Jiang J.H. Yang C.R. Liu Q. Zhang Y.J. Wang Y.F. Phyllaemblicin B inhibits Coxsackie virus B3 induced apoptosis and myocarditis. Antiviral Res. 2009 84 2 150 158 10.1016/j.antiviral.2009.08.004 19699238
    [Google Scholar]
  19. Kunchana K. Jarisarapurin W. Chularojmontri L. Wattanapitayakul S.K. Potential use of amla (Phyllanthus emblica L.) fruit extract to protect skin keratinocytes from inflammation and apoptosis after UVB irradiation. Antioxidants 2021 10 5 703 10.3390/antiox10050703 33946757
    [Google Scholar]
  20. Prakash D. Upadhyay G. Gupta C. Pushpangadan P. Singh K.K. Antioxidant and free radical scavenging activities of some promising wild edible fruits. Int. Food Res. J. 2012 19 3
    [Google Scholar]
  21. Chaudhary A. kumari, N.; kumar, M.; Margoob Ahmad, M.; Ola, M.S.; Haque, R. Reactive oxygen species mediated apoptosis induction in human liver cancer cells by Emblica officinalis (Amla): A new trend in liver cancer treatment. Toxicol. Environ. Health Sci. 2024 16 2 161 169 10.1007/s13530‑024‑00209‑9
    [Google Scholar]
  22. Pal D. Mukherjee S. Role of amla (Emblica officinalis) in peptic ulcer. In:Herbs, Spices, and Medicinal Plants for Human Gastrointestinal Disorders. Apple Academic Press 2022 219 226
    [Google Scholar]
  23. Majeed M. Narayanan N.K. Mundkur L. Prakasan P. Nagabhushanam K. Super fruit Amla (Emblica officinalis, Gaertn) in diabetes management and ensuing complications: A concise review. Nutraceuticals 2023 3 3 329 352 10.3390/nutraceuticals3030026
    [Google Scholar]
  24. Javed S Nasim T Zia-Ul-Haq M. Amla Essentials of Medicinal and Aromatic Crops, 2023 53 81
  25. Modi R. Sahota P. Singh N.D. Garg M. Hepatoprotective and hypoglycemic effect of lactic acid fermented Indian Gooseberry-Amla beverage on chronic alcohol-induced liver damage and diabetes in rats. Food. Hydrocolloids for Health. 2023 4 100155 10.1016/j.fhfh.2023.100155
    [Google Scholar]
  26. Santoshkumar J. Devarmani M.S. Sajjanar M. Pranavakumar M.S. Dass P.J. A study of anti-inflammatory activity of fruit of Emblica officinalis (Amla) in albino rats. Medica Innov. 2013 2 1 17 26
    [Google Scholar]
  27. Chatterjee A. Chattopadhyay S. Bandyopadhyay, SK Biphasic effect of Phyllanthus emblica L. extract on NSAID-induced ulcer: An antioxidative trail weaved with immunomodulatory effect. Evid. Based Complement. Alternat. Med. 2011 2011 146808 10.1155/2011/146808
    [Google Scholar]
  28. Gopinathan S. Rameela N. Anti-ulcer activity of Aloe vera juice and Aloe vera and amla fruit combined juice in ethanol induced ulcerated rats. Int. J. Pharm. Pharm. Sci. 2014 6 6 190 197
    [Google Scholar]
  29. Murakami S. Isobe Y. Kijima H. Nagai H. Muramatu M. Otomo S. Inhibition of gastric H+, K(+)-ATPase and acid secretion by ellagic acid. Planta Med. 1991 57 4 305 308 10.1055/s‑2006‑960103 1663631
    [Google Scholar]
  30. Chung J.G. Chen G.W. Wu L.T. Chang H.L. Lin J.G. Yeh C.C. Wang T.F. Effects of garlic compounds diallyl sulfide and diallyl disulfide on arylamine N-acetyltransferase activity in strains of Helicobacter pylori from peptic ulcer patients. Am. J. Chin. Med. 1998 26 03n04 353 364
    [Google Scholar]
  31. Verma A. Dubey J. Hegde R.R. Rastogi V. Pandit J.K. Helicobacter pylori: Past, current and future treatment strategies with gastroretentive drug delivery systems. J. Drug Target. 2016 24 10 897 915 10.3109/1061186X.2016.1171326 27027827
    [Google Scholar]
  32. Collett J. Moreton C. Modified-release peroral dosage forms. In:Pharmaceutics: the science of dosage form design. Aulton M.E. New York Churchill Livingstone 2001 289 305
    [Google Scholar]
  33. Tang E.S.K. Chan L.W. Heng P.W.S. Coating of multiparticulates for sustained release. Am. J. Drug Deliv. 2005 3 1 17 28 10.2165/00137696‑200503010‑00003
    [Google Scholar]
  34. Collett J. Moreton C. Modified-release peroral dosage forms. Pharmaceutics–the Science of Dosage Form Design 2002 289 305
    [Google Scholar]
  35. Robota M. Hofmann F. Pistner M. Polymethacrylates for modified‐release formulations. Oral Drug Delivery for Modified Release Formulations 2022 215 234 10.1002/9781119772729.ch12
    [Google Scholar]
  36. Ratnaparkhi M.P. Gupta Jyoti P. Sustained release oral drug delivery system-an overview. Terminology 2013 3 4 10 22270
    [Google Scholar]
  37. Yadav D. Survase S. Kumar N. Dual coating of swellable and rupturable polymers on Glipizide loaded MCC pellets for pulsatile delivery: Formulation design and in vitro evaluation. Int. J. Pharm. 2011 419 1-2 121 130 10.1016/j.ijpharm.2011.07.026 21807081
    [Google Scholar]
  38. Stankovic MS Total phenolic content, flavonoid concentration and antioxidant activity of Marrubium peregrinum L. extracts. Kragujevac J. Sci. 2011 33 63 72
    [Google Scholar]
  39. Siddiqui N. Rauf A. Latif A. Mahmood Z. Spectrophotometric determination of the total phenolic content, spectral and fluorescence study of the herbal Unani drug Gul-e-Zoofa (Nepeta bracteata Benth). J. Taibah Univ. Med. Sci. 2017 12 4 360 363 10.1016/j.jtumed.2016.11.006 31435264
    [Google Scholar]
  40. Periasamy S.M. Baskar R. Assessment of the influence of graphene nanoparticles on thermal conductivity of graphene/water nanofluids using factorial design of experiments. Period. Polytech. Chem. Eng. 2018 62 3 317 322 10.3311/PPch.11676
    [Google Scholar]
  41. Manikandan D.A.S.P. Akila S. Prabu D.K. Production of polyphenol from Phyllanthus emblica using soxhlet extraction process. Int. J. Recent Technol Eng. 2019 8 4 5010 5012 10.35940/ijrte.D8170.118419
    [Google Scholar]
  42. Singleton V.L. Orthofer R. Lamuela-Raventós R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999 299 152 178 10.1016/S0076‑6879(99)99017‑1
    [Google Scholar]
  43. Mbaebie B.O. Edeoga H.O. Afolayan A.J. Phytochemical analysis and antioxidants activities of aqueous stem bark extract of Schotia latifolia Jacq. Asian Pac. J. Trop. Biomed. 2012 2 2 118 124 10.1016/S2221‑1691(11)60204‑9 23569880
    [Google Scholar]
  44. Chouhan K.B.S. Tandey R. Sen K.K. Mehta R. Mandal V. Extraction of phenolic principles: Value addition through effective sample pretreatment and operational improvement. J. Food Meas. Charact. 2019 13 1 177 186 10.1007/s11694‑018‑9931‑0
    [Google Scholar]
  45. Cui F. Yang M. Jiang Y. Cun D. Lin W. Fan Y. Kawashima Y. Design of sustained-release nitrendipine microspheres having solid dispersion structure by quasi-emulsion solvent diffusion method. J. Control. Release 2003 91 3 375 384 10.1016/S0168‑3659(03)00275‑X 12932715
    [Google Scholar]
  46. Patel K. Shah S. Patel J. Solid dispersion technology as a formulation strategy for the fabrication of modified release dosage forms: A comprehensive review. Daru 2022 30 1 165 189 10.1007/s40199‑022‑00440‑0 35437630
    [Google Scholar]
  47. Fu M. Blechar J.A. Sauer A. Al-Gousous J. Langguth P. In vitro evaluation of enteric-coated HPMC capsules—effect of formulation factors on product performance. Pharmaceutics 2020 12 8 696 10.3390/pharmaceutics12080696 32717908
    [Google Scholar]
  48. Jedinger N. Schrank S. Mohr S. Feichtinger A. Khinast J. Roblegg E. Alcohol dose dumping: The influence of ethanol on hot-melt extruded pellets comprising solid lipids. Eur. J. Pharm. Biopharm. 2015 92 83 95 10.1016/j.ejpb.2015.02.022 25733499
    [Google Scholar]
  49. Nguyen M.N.U. Tran P.H.L. Tran T.T.D. A single-layer film coating for colon-targeted oral delivery. Int. J. Pharm. 2019 559 402 409 10.1016/j.ijpharm.2019.01.066 30738130
    [Google Scholar]
  50. Raval M. Sheth N.R. Ramani R.V. Formulation and evaluation of sustained release enteric-coated pellets of budesonide for intestinal delivery. Int. J. Pharm. Investig. 2013 3 4 203 211 10.4103/2230‑973X.121294 24350040
    [Google Scholar]
  51. Shan R. Feng R. Huang Y. Huang G. Preparation and evaluation of dual–release esomeprazole magnesium pulsed capsules filled with two kinds of enteric-coated pellets. J. Pharm. Innov. 2023 18 3 851 860 10.1007/s12247‑022‑09683‑5
    [Google Scholar]
  52. Singh A. Mandal U.K. Narang R.K. Development and characterization of enteric coated pectin pellets containing mesalamine and Saccharomyces boulardii for specific inflamed colon: In vitro and in vivo evaluation. J. Drug Deliv. Sci. Technol. 2021 62 102393 10.1016/j.jddst.2021.102393
    [Google Scholar]
  53. Nyavanandi D. Narala S. Mandati P. Alzahrani A. Kolimi P. Almotairy A. Repka M.A. Twin screw melt granulation: Alternative approach for improving solubility and permeability of a non-steroidal anti-inflammatory drug ibuprofen. AAPS PharmSciTech 2023 24 1 47 10.1208/s12249‑023‑02512‑z 36703024
    [Google Scholar]
  54. Hazarika N. Singh H.K. Roy R.K. Bezboruah T. 2022 On the use of computer vision to estimate chemical concentration based on colorimetric analysis. In:2022 IEEE North Karnataka Subsection Flagship International Conference (NKCon) 1 5 IEEE 10.1109/NKCon56289.2022.10126999
    [Google Scholar]
  55. Wilson B. Babubhai P.P. Sajeev M.S. Jenita J.L. Priyadarshini S.R.B. Sustained release enteric coated tablets of pantoprazole: Formulation, in vitro and in vivo evaluation. Acta Pharm. 2013 63 1 131 140 10.2478/acph‑2013‑0002 23482318
    [Google Scholar]
  56. Mehta A.M. Evaluation and characterization of pellets. In:Pharmaceutical Pelletization Technology. CRC Press 2022 241 265 10.1201/9781003066231‑11
    [Google Scholar]
  57. Subrahmanyam C.V.S. Textbook of Physical Pharmaceutics. Hyderabad, India Vallabh Prakashan 2015
    [Google Scholar]
  58. Bahmani K. Bhatt D.C. Singla Y. Formulation, in-vitro and] in-vivo evaluation of enteric coated pellets of substituted benzimidazole proton pump inhibitor.
    [Google Scholar]
  59. Shin H.C. Alani A.W.G. Rao D.A. Rockich N.C. Kwon G.S. Multi-drug loaded polymeric micelles for simultaneous delivery of poorly soluble anticancer drugs. J. Control. Release 2009 140 3 294 300 10.1016/j.jconrel.2009.04.024 19409432
    [Google Scholar]
  60. Alkafajy A.M. Albayati T.M. High performance of magnetic mesoporous modification for loading and release of meloxicam in drug delivery implementation. Mater. Today Commun. 2020 23 100890 10.1016/j.mtcomm.2019.100890
    [Google Scholar]
  61. Pourtalebi Jahromi L. Ghazali M. Ashrafi H. Azadi A. A comparison of models for the analysis of the kinetics of drug release from PLGA-based nanoparticles. Heliyon 2020 6 2 e03451 10.1016/j.heliyon.2020.e03451 32140583
    [Google Scholar]
  62. Nazir S. Umar Aslam Khan M. Shamsan Al-Arjan W. Izwan Abd Razak S. Javed A. Rafiq Abdul Kadir M. Nanocomposite hydrogels for melanoma skin cancer care and treatment: In-vitro drug delivery, drug release kinetics and anti-cancer activities. Arab. J. Chem. 2021 14 5 103120 10.1016/j.arabjc.2021.103120
    [Google Scholar]
  63. Malekjani N. Jafari S.M. Modeling the release of food bioactive ingredients from carriers/nanocarriers by the empirical, semiempirical, and mechanistic models. Compr. Rev. Food Sci. Food Saf. 2021 20 1 3 47 10.1111/1541‑4337.12660 33443795
    [Google Scholar]
  64. Sabahuddin S. Mohi I.M.A. Syed A.U.R. Durdana L. Anirbandeep B. Shubhasis D. Faraz, Development and execution of a novel strategic statistical tool to determine in-vitro in-vivo correlation for sustained release capsules of metoprolol tartrate in humans. Sci. Res. Essays 2019 14 1 1 8 10.5897/SRE2018.6595
    [Google Scholar]
  65. Percie du Sert N. Hurst V. Ahluwalia A. Alam S. Avey M.T. Baker M. Browne W.J. Clark A. Cuthill I.C. Dirnagl U. Emerson M. Garner P. Holgate S.T. Howells D.W. Karp N.A. Lazic S.E. Lidster K. MacCallum C.J. Macleod M. Pearl E.J. Petersen O.H. Rawle F. Reynolds P. Rooney K. Sena E.S. Silberberg S.D. Steckler T. Würbel H. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. J. Cereb. Blood Flow Metab. 2020 40 9 1769 1777 10.1177/0271678X20943823 32663096
    [Google Scholar]
  66. Underwood W. Anthony R. Cartner S. Corey D. Grandin T. Greenacre C. Gwaltney-Brant S. McCrackin M.A. Meyer R. Miller D. AVMA guidelines for the euthanasia of animals; American veterinary medical association Schaumburg, IL, 2013
    [Google Scholar]
  67. Singh S. Khajuria A. Taneja S.C. Khajuria R.K. Singh J. Johri R.K. Qazi G.N. The gastric ulcer protective effect of boswellic acids, a leukotriene inhibitor from Boswellia serrata, in rats. Phytomedicine 2008 15 6-7 408 415 10.1016/j.phymed.2008.02.017 18424019
    [Google Scholar]
  68. Zhou D. Yang Q. Tian T. Chang Y. Li Y. Duan L.R. Li H. Wang S.W. Gastroprotective effect of gallic acid against ethanol-induced gastric ulcer in rats: Involvement of the Nrf2/HO-1 signaling and anti-apoptosis role. Biomed. Pharmacother. 2020 126 110075 10.1016/j.biopha.2020.110075 32179202
    [Google Scholar]
  69. Saremi K. Rad S.K. Tayeby F. Abdulla M.A. Karimian H. Majid N.A. RETRACTED ARTICLE: Gastroprotective activity of a novel Schiff base derived dibromo substituted compound against ethanol-induced acute gastric lesions in rats. BMC Pharmacol. Toxicol. 2019 20 1 13 10.1186/s40360‑019‑0292‑z 30770761
    [Google Scholar]
  70. Patel S. Patel S. Kotadiya A. Patel S. Shrimali B. Joshi N. Patel T. Trivedi H. Patel J. Joharapurkar A. Jain M. Age-related changes in hematological and biochemical profiles of Wistar rats. Lab. Anim. Res. 2024 40 1 7 10.1186/s42826‑024‑00194‑7 38409070
    [Google Scholar]
  71. de Kort M. Weber K. Wimmer B. Wilutzky K. Neuenhahn P. Allingham P. Leoni A.L. Historical control data for hematology parameters obtained from toxicity studies performed on different Wistar rat strains: Acceptable value ranges, definition of severity degrees, and vehicle effects. Toxicology Research and Application 2020 4 2397847320931484 10.1177/2397847320931484
    [Google Scholar]
  72. Nazarbahjat N. Kadir F.A. Ariffin A. Abdulla M.A. Abdullah Z. Yehye W.A. Antioxidant properties and gastroprotective effects of 2-(ethylthio) benzohydrazones on ethanol-induced acute gastric mucosal lesions in rats. PLoS One 2016 11 6 e0156022 10.1371/journal.pone.0156022 27272221
    [Google Scholar]
  73. Ibrahim I.A.A. Hussein A.I. Muter M.S. Mohammed A.T. Al-Medhtiy M.H. Shareef S.H. Aziz P.Y. Agha N.F.S. Abdulla M.A. Effect of nano silver on gastroprotective activity against ethanol-induced stomach ulcer in rats. Biomed. Pharmacother. 2022 154 113550 10.1016/j.biopha.2022.113550 35994814
    [Google Scholar]
/content/journals/cac/10.2174/0115734110373562250727021217
Loading
/content/journals/cac/10.2174/0115734110373562250727021217
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test