Skip to content
2000
image of GC-MS Profiling and In vitro Assessment of the Antimicrobial and Anticancer Potential of the Methanolic Extract of Strychnos chromatoxylon L. Leaves

Abstract

Introduction

Medicinal plants have long served as a foundation for therapeutic development, offering a vast repository of bioactive compounds. This study examines the phytochemical composition and potential pharmacological properties of L. leaves, aiming to identify natural compounds that may contribute to sustainable and effective healthcare solutions.

Methods

Methanolic extraction was performed using maceration followed by evaporation to optimize the yield of phytochemicals. The extract was then subjected to qualitative phytochemical screening, Thin-Layer Chromatography (TLC), Gas Chromatography-Mass Spectrometry (GC-MS) analysis, and assays, including the MTT assay, to evaluate its antioxidant, antimicrobial, and anticancer activities.

Results

The methanolic extract of revealed a diverse array of phytochemicals, including alkaloids, carbohydrates, glycosides, phenolics, flavonoids, and phytosterols. GC-MS profiling identified several bioactive compounds. The extract exhibited promising antimicrobial activity and demonstrated cytotoxic effects in MTT assays, indicating its potential anticancer properties.

Discussion

The presence of a broad spectrum of phytochemicals supports the traditional use of in herbal medicine. The observed bioactivities, particularly antimicrobial and anticancer effects, are likely attributed to the synergistic actions of its constituents. While the findings are promising, further investigation, including studies and compound isolation, is needed to validate therapeutic potential and ensure safety.

Conclusion

This study highlights as a promising source of natural bioactive agents with antimicrobial and anticancer potential. By integrating traditional medicinal knowledge with contemporary scientific approaches, we can advance the search for novel and sustainable therapeutic agents.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110352570250718053235
2025-07-28
2025-10-29
Loading full text...

Full text loading...

References

  1. Nagesh; Ahad, H.A.; Pilli, Y. Phytochemical and hypoglycemic evaluation of Gynandropsis gynandra root extract. J. Biolog Act. Prod Nat. 2012 2 1 38 45 10.1080/22311866.2012.10719106
    [Google Scholar]
  2. Ahad H.A. Haranath C. Kondaveeti S. Konjeti S. Gangireddy S. Ibrahim O. Herbs in dentifrices for dental care and hygiene: A comprehensive review. Res. J. Pharm. Tech. 2020 13 10 5052 5054 10.5958/0974‑360X.2020.00885.9
    [Google Scholar]
  3. Souza T.A.A. Menezes A.C.S. Santos C.K.G. Jesus F.G. Rocha E.C. Araújo M.S. Toxicity of bioactive compounds of Strychnos pseudoquina (Loganiaceae) in spodoptera frugiperda (Noctuidae). Sustainability 2024 16 11 4430 10.3390/su16114430
    [Google Scholar]
  4. Ukwubile C.A. Malgwi T.S. Menkiti N.D. Examining the isolation of bioactive compounds, antinociceptive, and anti-inflammatory activities of Strychnos Spinosa Lam. (Loganiaceae) stembark extract. Pharma Biomed. Res. 2024 10 1 23 32 10.32598/PBR.10.1.1162.1
    [Google Scholar]
  5. Elijah Zharare G. Lukawu Akweni A. Mostert M. Rowland Opoku A. The potential of Strychnos madagascariensis (Poir.) as a source of vegetable oil. Food Biosci. 2022 48 101719 10.1016/j.fbio.2022.101719
    [Google Scholar]
  6. Mbhele Z. Zharare G.E. Zimudzi C. Mchunu C.N. Ntuli N.R. Variation in nutritional composition of Strychnos spinosa Lam. morphotypes in KwaZulu-Natal. Genet. Resour. Crop Evol. 2024 72 359 373 10.1007/s10722‑024‑01982‑9
    [Google Scholar]
  7. Maroyi A. Evaluation of medicinal uses, phytochemistry and pharmacological properties of Strychnos madagascariensis Poir. Medic Plants Inter J. Phytomed Relat Indust 2021 13 3 369 377 10.5958/0975‑6892.2021.00043.5
    [Google Scholar]
  8. Mbhele Z. Zharare G.E. Zimudzi C. Ntuli N.R. Assessing genetic variation among Strychnos spinosa Lam. morphotypes using simple sequence repeat markers. Plants 2023 12 15 2810 10.3390/plants12152810 37570964
    [Google Scholar]
  9. Chemane S.S.I. Ribeiro M. Pinto E. Pinho S.C.M. Martins Z.S. Almeida A. Ferreira I.M.P.L.V.O. Khan M. Pinho O. Casal S. Viegas O. Nutritional characterization of strychnos madagascariensis fruit flour produced by mozambican communities and evaluation of its contribution to nutrient adequacy. Foods 2022 11 4 616 10.3390/foods11040616 35206092
    [Google Scholar]
  10. Khasanah U. Shalas A.F. Pratita Ihsan B.R. Wulandari L.A.A. Nurtyas N.C. Waril W. Alipiani I. Sholiha U.M. Evaluation of selectivity index and phytoconstituents profile of various extracts from the stem of Strychnos lucida R. Br. as anti-malarial. Pharmacognosy Res. 2023 15 4 733 750 10.5530/pres.15.4.078
    [Google Scholar]
  11. Egea G. Jiménez-Altayó F. Campuzano V. Reactive oxygen species and oxidative stress in the pathogenesis and progression of genetic diseases of the connective tissue. Antioxidants 2020 9 10 1013 10.3390/antiox9101013 33086603
    [Google Scholar]
  12. Khasanah U. Nurrahmah Q.I. Amalia T. Putri Z.N. Imrokatul mufidah; Napik, R.; Lyrawati, D.; Pratita Ihsan, B.R.; Febrianti, M.E. Oral acute toxicity study and in vivo antimalarial activity of Strychnos lucida R. Br. tablet. J. Ethnopharmacol. 2024 330 118200 10.1016/j.jep.2024.118200 38621467
    [Google Scholar]
  13. Mashau M.E. Tshishonge P. Impact of ripening stages on the physicochemical and antioxidant properties of Monkey orange (Strychnos spinosa) fruit. Food Res. 2024 8 2 31 40 10.26656/fr.2017.8(2).070
    [Google Scholar]
  14. Mbhele Z. Zharare G.E. Zimudzi C. Ntuli N.R. Morphological variation of Strychnos spinosa lam. Morphotypes: A case study at bonamanzi game reserve, KwaZulu-natal, South Africa. Diversity (Basel) 2022 14 12 1094 10.3390/d14121094
    [Google Scholar]
  15. Akbar S. Akbar S. Strychnos nux-vomica L. (Loganiaceae) (Syn.: S. spireana Dop.). Handbook of 200 Medicinal Plants: A Comprehensive Review of Their Traditional Medical Uses and Scientific Justifications. Cham Springer 2020 1689 1697 10.1007/978‑3‑030‑16807‑0_175
    [Google Scholar]
  16. Alagbe J.O. Bioactive compounds in ethanolic extract of Strychnos innocua root using gas chromatography and mass spectrometry (GC-MS). Drug Disc 2023 17 39 1 6 10.54905/disssi.v17i39.e4dd1005
    [Google Scholar]
  17. Isa A.I. Awouafack M.D. Dzoyem J.P. Aliyu M. Magaji R.A. Ayo J.O. Eloff J.N. Some Strychnos spinosa (Loganiaceae) leaf extracts and fractions have good antimicrobial activities and low cytotoxicities. BMC Complement. Altern. Med. 2014 14 1 456 10.1186/1472‑6882‑14‑456 25428165
    [Google Scholar]
  18. Travasarou A. Angelopoulou M.T. Vougogiannopoulou K. Papadopoulou A. Aligiannis N. Cantrell C.L. Kletsas D. Fokialakis N. Pratsinis H. Bioactive metabolites of the stem bark of Strychnos aff. darienensis and evaluation of their antioxidant and UV protection activity in human skin cell cultures. Cosmetics 2019 6 1 7 10.3390/cosmetics6010007
    [Google Scholar]
  19. Ayo R.G. Achika J.I. Bolarin-Akinwande O.O. Fawole D. Phytochemical analysis, antibacterial and antioxidant activities of leaf extracts of strychnos innocua del. Tropical J. Nat. Prod Res. 2022 6 6 1 5 10.26538/tjnpr/v6i6.24
    [Google Scholar]
  20. Ahmad G. Muhammad A. Ahmad K.A. Gbeminiyi A. Phytochemical and antimicrobial studies of the root bark extracts of Strychnos spinosa Lam. Bayero J. Pure Appl. Sci. 2019 12 1 161 165
    [Google Scholar]
  21. Avakoudjo H.G.G. Hounkpèvi A. Idohou R. Koné M.W. Assogbadjo A.E. Local knowledge, uses, and factors determining the use of Strychnos spinosa organs in Benin (West Africa). Econ. Bot. 2020 74 1 15 31 10.1007/s12231‑019‑09481‑0
    [Google Scholar]
  22. Marenga W. Makhzoum A. Rantong G. Botany, phytochemistry, pharmacology, and toxicity of the southern african strychnos species. Applications in Plant. Biotechnology: Focus on Plant. Secondary Metabolism and Plant. Molecular Pharming. Boca Raton, Florida CRC Publisher 2022 91 118
    [Google Scholar]
  23. Sudhira L. Rao S.V. Kamakshamma J. Phytochemical Screening, antioxidant and antibacterial activity of Strychnos colubrina L. as an important endangered medicinal species in eastern Ghats. J. Pharm. Sci. Res. 2015 7 5 242 247
    [Google Scholar]
  24. Uttu A.J. Sallau M.S. Iyun O.R.A. Ibrahim H. In vitro antimicrobial studies of some major bioactive compounds isolated from Strychnos innocua (Delile) root bark. Steroids 2023 195 109241 10.1016/j.steroids.2023.109241 37068701
    [Google Scholar]
  25. Biswas A. Chatterjee S. Chowdhury R. Sen S. Sarkar D. Chatterjee M. Das J. Antidiabetic effect of seeds of Strychnos potatorum Linn. in a streptozotocin-induced model of diabetes. Acta Pol. Pharm. 2012 69 5 939 943 23061291
    [Google Scholar]
  26. Sarmento N.C. Worachartcheewan A. Pingaew R. Prachayasittikul S. Ruchirawat S. Prachayasittikul V. Antimicrobial, antioxidant and anticancer activities of Strychnos lucida R. Br. Afr. J. Tradit. Complement. Altern. Med. 2015 12 4 122 127 10.21010/ajtcam.v12i4.18
    [Google Scholar]
  27. Chaurasia S. Anti-inflammatory and antioxidant activity of Strychnos nux vomica Linn. Am Eurasian J. Sustain. Agric. 2009 3 244 252
    [Google Scholar]
  28. M, S.; Cv, G. Chemical characterization of Strychnos nux-vomica L. leaves for biopesticidal properties using GC-MS. Int. J. Chem. Stud. 2020 8 1 1112 1116 10.22271/chemi.2020.v8.i1o.8398
    [Google Scholar]
  29. Eldahshan O.A. Abdel-Daim M.M. Phytochemical study, cytotoxic, analgesic, antipyretic and anti-inflammatory activities of Strychnos nux-vomica. Cytotechnology 2015 67 5 831 844 10.1007/s10616‑014‑9723‑2 24711053
    [Google Scholar]
  30. Uttu A.J. Sallau M.S. Iyun O.R.A. Ibrahim H. Isolation, characterization and in silico molecular docking studies of two terpenoids from Strychnos innocua Delile root bark for antibacterial properties. Adv. J. Chem. Sect A 2022 5 241 252
    [Google Scholar]
  31. Aurlina R. Gopi R.R. Ebenezer T. Joy Prabu H. Johnson I. Antibacterial study of silver nanoparticles synthesized using Strychnos potatorum(linn) – Green synthesis method. Mater. Today Proc. 2022 68 448 453 10.1016/j.matpr.2022.07.118
    [Google Scholar]
  32. Jiang H. Ma S.G. Li Y. Liu Y.B. Li L. Qu J. Yu S.S. Spirobisnaphthalenes and lactones from the seeds of Strychnos angustiflora with potential anti-inflammatory activity. Bioorg. Med. Chem. Lett. 2016 26 19 4832 4836 10.1016/j.bmcl.2016.08.019 27592135
    [Google Scholar]
  33. Chen J. Wang X. Qu Y. Chen Z. Cai H. Liu X. Xu F. Lu T. Cai B. Analgesic and anti-inflammatory activity and pharmacokinetics of alkaloids from seeds of Strychnos nux-vomica after transdermal administration: Effect of changes in alkaloid composition. J. Ethnopharmacol. 2012 139 1 181 188 10.1016/j.jep.2011.10.038 22094056
    [Google Scholar]
  34. Ledoux A. Leka K. Bonnet O. Blanquer A. Alembert T.T. da Silva Mirowski P. de Oliveira Figueiredo P. Desmecht D. Garigliany M.M. Frédérich M. In vitro antiviral activity against SARS‐CoV‐2 of 28 Strychnos extracts. Phytother. Res. 2022 36 3 1061 1063 10.1002/ptr.7394 35080280
    [Google Scholar]
  35. Nhukarume L. Chikwambi Z. Muchuweti M. Chipurura B. Phenolic content and antioxidant capacities of Parinari curatelifolia, Strychnos spinosa and Adansonia digitata. J. Food Biochem. 2010 34 207 221 10.1111/j.1745‑4514.2009.00325.x
    [Google Scholar]
  36. Olujimi A.J. Bioactive compounds in ethanolic extract of Strychnos innocua root using gas chromatography and mass spectrometry (GC-MS). Inter J. Adv. Biochem. Res. 2022 7 1 39 43 10.33545/26174693.2023.v7.i1a.161
    [Google Scholar]
  37. Gathungu R.M. Kautz R. Kristal B.S. Bird S.S. Vouros P. The integration of LC‐MS and NMR for the analysis of low molecular weight trace analytes in complex matrices. Mass Spectrom. Rev. 2020 39 1-2 35 54 10.1002/mas.21575 30024655
    [Google Scholar]
  38. Abou Taleb S. Darwish A.B. Abood A. Mohamed A.M. Investigation of a new horizon antifungal activity with enhancing the antimicrobial efficacy of ciprofloxacin and its binary mixture via their encapsulation in nanoassemblies: in vitro and in vivo evaluation. Drug Dev. Res. 2020 81 3 374 388 10.1002/ddr.21632 31886590
    [Google Scholar]
  39. Thongphasuk P. Suttisri R. Bavovada R. Verpoorte R. Antioxidant lignan glucosides from Strychnos vanprukii. Fitoterapia 2004 75 7-8 623 628 10.1016/j.fitote.2004.04.013 15567235
    [Google Scholar]
  40. EL-Ghoul Y.; Al-Fakeh, M.S.; Al-Subaie, N.S. Synthesis and characterization of a new alginate/carrageenan crosslinked biopolymer and study of the antibacterial, antioxidant, and anticancer performance of its Mn(II), Fe(III), Ni(II), and Cu(II) polymeric complexes. Polymers 2023 15 11 2511 10.3390/polym15112511 37299310
    [Google Scholar]
  41. Rahman S.S. Pasupathi S. Venkatachalam P. Jothi A. Karuppiah S. Modeling, optimization, and characterization of polysaccharides from Strychnos Potatorum using microwave-assisted extraction. Biomass Convers. Biorefin. 2023 15 2 2111 2129 10.1007/s13399‑023‑04321‑7
    [Google Scholar]
  42. Deng X.K. Yin W. Li W.D. Yin F.Z. Lu X.Y. Zhang X.C. Hua Z.C. Cai B.C. The anti-tumor effects of alkaloids from the seeds of Strychnos nux-vomica on HepG2 cells and its possible mechanism. J. Ethnopharmacol. 2006 106 2 179 186 10.1016/j.jep.2005.12.021 16442763
    [Google Scholar]
  43. Aremu A.O. Moyo M. Health benefits and biological activities of spiny monkey orange (Strychnos spinosa Lam.): An African indigenous fruit tree. J. Ethnopharmacol. 2022 283 114704 10.1016/j.jep.2021.114704 34601082
    [Google Scholar]
  44. Sallau M.S. Iyun O.R. Ibrahim, Antimicrobial efficacy of selected strychnos species: A mini review. J. Chem. Rev. 2022 4 59 62
    [Google Scholar]
  45. Frédérich M. Jacquier M.J. Thépenier P. De Mol P. Tits M. Philippe G. Delaude C. Angenot L. Zèches-Hanrot M. Antiplasmodial activity of alkaloids from various strychnos species. J. Nat. Prod. 2002 65 10 1381 1386 10.1021/np020070e 12398531
    [Google Scholar]
  46. Jain A. Jangid T. Jangir R.N. Bhardwaj G. A comprehensive review on the antioxidant properties of green synthesized nanoparticles: In vitro and in vivo insights. Free Radic. Antioxid. 2025 14 2 34 61 10.5530/fra.2024.2.6
    [Google Scholar]
/content/journals/cac/10.2174/0115734110352570250718053235
Loading
/content/journals/cac/10.2174/0115734110352570250718053235
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test