Skip to content
2000
image of Characterization of Tragacanth Gum as Biomedical and Food Adjuvant: Determination of Temperature-Dependent Coefficients of Viscosity and Surface Tension

Abstract

Introduction

Gum tragacanth is used as a substance to increase viscosity, stabilize, emulsify, and suspend other substances. In recent years, it has emerged as a promising therapeutic agent for tissue engineering, regenerative medicine, cosmetics, and food adjuvants. Therefore, characterizing its temperature-dependent viscosity is crucial for its pilot-scale applications. Therefore, the main objective of the present work is the characterization of the temperature dependent coefficient of viscosity and surface tension of gum tragacanth to establish it as an alternative source of natural gums for commercial applications.

Method

The effect of temperature on the rheological behaviours of the polymeric solution was studied. Furthermore, the Arrhenius, Gibbs–Helmholtz, Frenkel–Eyring, and Eotvos equations were utilized to compute the temperature coefficient, viscosity, surface tension, activation energy, Gibbs free energy, Reynolds number, and entropy of fusion, respectively.

Results

It was determined that the activation energy of gum tragacanth was 1559.70 kJ/mol. Changes in entropy and enthalpy were found to be 56.34 and 1122.80 kJ/mol, respectively. The Reynold number's computed value was 0.0053.

Discussion: As the temperature increased, there was a noticeable decrease in both surface tension as well as apparent viscosity. In contrast to Albizia lebbac gum, the current study found that solutions made from Gum Tragacanth seed polymers had a smaller impact by changes in temperature.

Conclusion

Gum tragacanth polymer's exceptional physicochemical qualities make it a promising excipient for drug formulation in the years to come, paving the way for its widespread use in food, cosmetics, and pharmaceutical industries.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110375432250512093313
2025-05-15
2025-09-08
Loading full text...

Full text loading...

References

  1. Amiri M.S. Mohammadzadeh V. Yazdi M.E.T. Barani M. Rahdar A. Kyzas G.Z. Plant-based gums and mucilages applications in pharmacology and nanomedicine: A review. Molecules 2021 26 6 1770 10.3390/molecules26061770 33809917
    [Google Scholar]
  2. Kulkarni G.T. Gowthamarajan K. Satish K.M.N. Suresh B. Gums and mucilages: Therapeutic and pharmaceutical applications. Nat. Prod. Rad. 2002 1 3 10 17
    [Google Scholar]
  3. Malviya R. Jha S. Fuloria N.K. Subramaniyan V. Chakravarthi S. Sathasivam K. Kumari U. Meenakshi D.U. Porwal O. Sharma A. Kumar D.H. Fuloria S. Determination of temperature-dependent coefficients of viscosity and surface tension of tamarind seeds (Tamarindus indica L.) Polymer. Polymers 2021 13 4 610 10.3390/polym13040610 33670569
    [Google Scholar]
  4. Alonso-Sande M. Teijeiro-Osorio D. Remuñán-López C. Alonso M.J. Glucomannan, a promising polysaccharide for biopharmaceutical purposes. Eur. J. Pharm. Biopharm. 2009 72 2 453 462 10.1016/j.ejpb.2008.02.005 18511246
    [Google Scholar]
  5. Satturwar P.M. Fulzele S.V. Dorle A.K. Biodegradation and in vivo biocompatibility of rosin: A natural film-forming polymer. AAPS PharmSciTech 2003 4 4 434 439 10.1208/pt040455 15198550
    [Google Scholar]
  6. Chifiriuc M.C. Fufă O.M. Grumezescu V. Andronescu E. Grumezescu A.M. Holban A.M. Chapter 13 - PLA and PLGA nanoarchitectonics for improving anti-infective drugs efficiency. Nanobiomaterials in Antimicrobial Therapy William Andrew 2016 1 451 482 10.1016/B978‑0‑323‑42864‑4.00013‑0
    [Google Scholar]
  7. Saettone M.F. Burgalassi S. Giannaccini B. Boldrini E. Bianchini P. Luciani G. Ophthalmic solutions viscosified with tamarind seed polysaccharide. US Patent 6056950A 2000
  8. Nejatian M. Abbasi S. Azarikia F. Gum tragacanth: Structure, characteristics and applications in foods. Int. J. Biol. Macromol. 2020 160 846 860 10.1016/j.ijbiomac.2020.05.214
    [Google Scholar]
  9. Abdi G. Jain M. Patil N. Tariq M. Choudhary S. Kumar P. Raj N.S. Mohsen Ali S.S. Uthappa U.T. Tragacanth gum-based hydrogels for drug delivery and tissue engineering applications. Front. Mater. 2024 11 11 1296399 10.3389/fmats.2024.1296399
    [Google Scholar]
  10. Nazarzadeh Zare E. Makvandi P. Tay F.R. Recent progress in the industrial and biomedical applications of tragacanth gum: A review. Carbohydr. Polym. 2019 212 450 467 10.1016/j.carbpol.2019.02.076 30832879
    [Google Scholar]
  11. Balaghi S. Mohammadifar M.A. Zargaraan A. Gavlighi H.A. Mohammadi M. Compositional analysis and rheological characterization of gum tragacanth exudates from six species of Iranian Astragalus. Food Hydrocoll. 1784 2011 25 1775e
    [Google Scholar]
  12. Moreira R. Chenlo F. Silva C. Torres M.D. Díaz-Varela D. Hilliou L. Argence H. Surface tension and refractive index of guar and tragacanth gums aqueous dispersions at different polymer concentrations, polymer ratios and temperatures. Food Hydrocoll. 2012 28 2 284 290 10.1016/j.foodhyd.2012.01.007
    [Google Scholar]
  13. Chenlo F. Moreira R. Silva C. Rheological properties of aqueous dispersions of tragacanth and guar gums at different concentrations. J. Texture Stud. 2010 41 3 396 415 10.1111/j.1745‑4603.2010.00233.x
    [Google Scholar]
  14. Stephen A.M. Churms S.C. Food Polysaccharides and Their Applications Boca Raton CRC Press 2006
    [Google Scholar]
  15. Kandar C.C. Hasnain M.S. Nayak A.K. Natural polymers as useful pharmaceutical excipients. Advances and Challenges in Pharmaceutical Technology. Academic Press 2021 1 44 10.1016/B978‑0‑12‑820043‑8.00012‑8
    [Google Scholar]
  16. Bhasha S.A. Khalid S.A. Duraivel S. Bhowmik D. Kumar K.S. Recent trends in usage of polymers in the formulation of dermatological gels. Indian J. Res. Pharm. Biotechnol. 2013 1 2 161 168
    [Google Scholar]
  17. Taghavizadeh Yazdi M. Nazarnezhad S. Mousavi S. Sadegh Amiri M. Darroudi M. Baino F. Kargozar S. Gum tragacanth (GT): A versatile biocompatible material beyond borders. Molecules 2021 26 6 1510 10.3390/molecules26061510 33802011
    [Google Scholar]
  18. Dmour I. Taha M.O. Chapter 2 - Natural and semisynthetic polymers in pharmaceutical nanotechnology. Organic Materials as Smart Nanocarriers for Drug Delivery William Andrew 2018 35 100 10.1016/B978‑0‑12‑813663‑8.00002‑6
    [Google Scholar]
  19. ter Horst B. Moiemen N.S. Grover L.M. Natural polymers: Biomaterials for skin scaffolds. Biomaterials for skin repair and regeneration. Woodhead Publishing 2019 151 192 10.1016/B978‑0‑08‑102546‑8.00006‑6
    [Google Scholar]
  20. Singh D. Sharma Y. Dheer D. Shankar R. Stimuli responsiveness of recent biomacromolecular systems (concept to market): A review. Int. J. Biol. Macromol. 2024 261 Pt 2 129901 10.1016/j.ijbiomac.2024.129901 38316328
    [Google Scholar]
  21. Ozcan B.E. Tetik N. Aloglu H.S. Polysaccharides from fruit and vegetable wastes and their food applications: A review. Int. J. Biol. Macromol. 2024 276 Pt 2 134007 10.1016/j.ijbiomac.2024.134007 39032889
    [Google Scholar]
  22. Malviya R. Sharma P.K. Dubey S.K. Characterization of neem (Azadirachita indica) gum exudates using analytical tools and pharmaceutical approaches. Curr. Nutr. Food Sci. 2019 15 6 588 599 10.2174/1573401314666180821150254
    [Google Scholar]
  23. Silva C. Torres M.D. Chenlo F. Moreira R. Rheology of aqueous mixtures of tragacanth and guar gums: Effects of temperature and polymer ratio. Food Hydrocoll. 2017 69 69 293 300 10.1016/j.foodhyd.2017.02.018
    [Google Scholar]
  24. Gavlighi H.A. Meyer A.S. Mikkelsen J.D. Tragacanth gum: Functionality and prebiotic potential. Agro Food Ind. Hi-Tech 2013 24 46 48
    [Google Scholar]
  25. Balaghi S. Mohammadifar M.A. Zargaraan A. Physicochemical and rheological characterization of gum tragacanth exudates from six species of Iranian Astragalus. Food Biophys. 2010 5 1 59 71 10.1007/s11483‑009‑9144‑5
    [Google Scholar]
  26. Ghorbani Gorji S. Ghorbani Gorji E. Mohammadifar M.A. Zargaraan A. Complexation of sodium caseinate with gum tragacanth: Effect of various species and rheology of coacervates. Int. J. Biol. Macromol. 2014 67 503 511 10.1016/j.ijbiomac.2014.02.037 24565900
    [Google Scholar]
  27. Fattahi A. Sadrjavadi K. Golozar M.A. Varshosaz J. Fathi M.H. Mirmohammad-Sadeghi H. Preparation and characterization of oligochitosan–tragacanth nanoparticles as a novel gene carrier. Carbohydr. Polym. 2013 97 2 277 283 10.1016/j.carbpol.2013.04.098 23911446
    [Google Scholar]
  28. Kora A.J. Arunachalam J. Green fabrication of silver nanoparticles by gum tragacanth (Astragalus gummifer): A dual functional reductant and stabilizer. J. Nanomater. 2012 2012 1 869765 10.1155/2012/869765
    [Google Scholar]
  29. Anema S.G. Lowe E.K. Li Y. Effect of pH on the viscosity of heated reconstituted skim milk. Int. Dairy J. 2004 14 6 541 548 10.1016/j.idairyj.2003.10.007
    [Google Scholar]
  30. Lee D.W. Ruths M. Israelachvili J.N. Surface forces and nano rheology of molecularly thin films. Nanotribology and Nanomechanics. Cham, Switzerland Springer 2017 457 518 10.1007/978‑3‑319‑51433‑8_9
    [Google Scholar]
  31. Malviya R. Sharma P. Dubey S. Kheri (Acacia chundra, family: Mimosaceae) gum: Characterization using analytical, mathematical and pharmaceutical approaches. Polim. Med. 2017 47 2 65 76 10.17219/pim/76515 30009583
    [Google Scholar]
  32. de Paula R.C.M. Rodrigues J.F. Composition and rheological properties of cashew tree gum, the exudate polysaccharide from Anacardium occidentale L. Carbohydr. Polym. 1995 26 3 177 181 10.1016/0144‑8617(95)00006‑S
    [Google Scholar]
  33. Silva A.G. Rodrigues J.F. De Paula R.C.M. Structure-property relationships in food biopolymer gels and solutions. Polímeros 1998 2 34 39 10.1590/S0104‑14281998000200006
    [Google Scholar]
  34. Menon A.R.R. Melt rheology of ethylene propylene diene rubber modified with propylene phosphorylated cashew nut shell liquid prepolymer. Iran. Polym. J. 2003 12 305 313
    [Google Scholar]
  35. Shaikh M. Shafique M. Aggarwal B.R. Aeooqui M.F. Density, viscosity and activation parameters of viscous flow for cetrimide in the ethanol-water system at 301.5 K. Rasayan J. Chem. 2011 4 172 179
    [Google Scholar]
  36. Nair S.V. Oommen Z. Thomas S. Melt elasticity and flow activation energy of nylon 6/polystyrene blends. Mater. Lett. 2002 57 2 475 480 10.1016/S0167‑577X(02)00815‑7
    [Google Scholar]
  37. Ameh P.O. Physicochemical properties and rheological behavior of Ficus glumosa gum in aqueous solution. Afr. J. Pure Appl. Chem 2013 7 35 43
    [Google Scholar]
  38. Eddy N.O. Udofia I. Uzairu A. Ongenyi A.O. Obadimu C. Physiochemical, spectroscopic and rheological studies on Eucalyptus citriodora (ec) gum. J. Polym. Biopolym. Phys. Chem 2014 2 12 24
    [Google Scholar]
  39. Acevedo I.L. Katz M. Viscosities and thermodynamics of viscous flow of some binary mixtures at different temperatures. J. Solution Chem. 1990 19 10 1041 1052 10.1007/BF00650507
    [Google Scholar]
  40. Salehi F. Kashaninejad M. Kinetics and thermodynamics of gum extraction from wild sage seed. Int. J. Food Eng. 2014 10 4 625 632 10.1515/ijfe‑2014‑0079
    [Google Scholar]
  41. Boruah A.K. Nath L.K. Extraction, purification and physicochemical evaluation of mucilage of Chrysophyllum lanceolatum (Blume) dc fruits: An investigation for bioadhesive property. Int. J. Pharm. Pharm. Sci. 2016 8 282 288
    [Google Scholar]
  42. Salehi F. Kashaninejad M. Tadayyon A. Arabameri F. Modeling of extraction process of crude polysaccharides from Basil seeds (Ocimum basilicum l.) as affected by process variables. J. Food Sci. Technol. 2015 52 8 5220 5227 10.1007/s13197‑014‑1614‑1 26243945
    [Google Scholar]
  43. Eddy N.O. Ameh P.O. Gimba C.E. Ebenso E.E. Rheological modeling and characterization of Ficus platyphylline gum exudates. J. Chem. 2013 2013 1 254347 10.1155/2013/254347
    [Google Scholar]
  44. Rott N. Note on the history of the Reynolds number. Annu. Rev. Fluid Mech. 1990 22 1 1 12 10.1146/annurev.fl.22.010190.000245
    [Google Scholar]
  45. Tu W. Chen Z. Gao Y. Li Z. Zhang Y. Liu R. Tian Y. Wang L.M. Glass transition and mixing thermodynamics of a binary eutectic system. Phys. Chem. Chem. Phys. 2014 16 8 3586 3592 10.1039/c3cp52868e 24413254
    [Google Scholar]
  46. Manjunath M. Anjali Gowda D.V. Kumar P. Srivastava A. Osmani R.A. Shinde C.G. Siddaramaiah Guar gum and its pharmaceutical and biomedical applications. Adv. Sci. Eng. Med. 2016 8 8 589 602 10.1166/asem.2016.1874
    [Google Scholar]
  47. Papon P. Leblond J. Meijer P.H. Gelation and transitions in biopolymers. Physics of Phase Transitions. Berlin, Heidelberg Springer 2002 185 209 10.1007/978‑3‑662‑04989‑1_6
    [Google Scholar]
  48. Nosonovsky M. Ramachandran R. Geometric interpretation of surface tension equilibrium in superhydrophobic systems. Entropy 2015 17 7 4684 4700 10.3390/e17074684
    [Google Scholar]
  49. Israelachvili J.N. Intermolecular and Surface Forces 3rd ed Waltham, MA, USA Academic Press 2011
    [Google Scholar]
  50. Palit S.R. Thermodynamic interpretation of the eötvös constant. Nature 1956 177 4521 1180 1180 10.1038/1771180a0
    [Google Scholar]
  51. de Paula R.C.M. Santana S.A. Rodrigues J.F. Composition and rheological properties of Albizia lebbeck gum exudate. Carbohydr. Polym. 2001 44 2 133 139 10.1016/S0144‑8617(00)00213‑7
    [Google Scholar]
  52. Varma C.A.K. Jayaram Kumar K. Formulation and optimization of pH sensitive drug releasing O/W emulsions using Albizia lebbeck L. seed polysaccharide. Int. J. Biol. Macromol. 2018 116 239 246 10.1016/j.ijbiomac.2018.04.150 29719218
    [Google Scholar]
  53. Wientjes R.H.W. Duits M.H.G. Jongschaap R.J.J. Mellema J. Linear rheology of guar gum solutions. Macromolecules 2000 33 26 9594 9605 10.1021/ma001065p
    [Google Scholar]
  54. Prajapati V.D. Jani G.K. Moradiya N.G. Randeria N.P. Pharmaceutical applications of various natural gums, mucilages and their modified forms. Carbohydr. Polym. 2013 92 2 1685 1699 10.1016/j.carbpol.2012.11.021 23399207
    [Google Scholar]
  55. Goswami S. Naik S. Natural gums and its pharmaceutical application. J. Scient. Innov. Res. 2014 3 1 112 121
    [Google Scholar]
/content/journals/cac/10.2174/0115734110375432250512093313
Loading
/content/journals/cac/10.2174/0115734110375432250512093313
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: pharmaceutical excipient ; temperature ; Gum tragacanth ; polysaccharide ; surface tension ; viscosity
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test