Skip to content
2000
image of Designing of Peptide Vaccine by Investigating Monkeypox Virus Membrane Glycoprotein: An Integrated In Silico and Immunoinformatics Approach

Abstract

Background

In 2022, the World Health Organisation (WHO) announced new cases of the developing Monkeypox Virus (MPXV), a zoonotic orthopoxvirus viral infection that mimics smallpox signs. Despite the ongoing infection, no proper medication is available to completely overcome this infection.

Aim

The study aims to construct a multi-epitope vaccine targeting Monkeypox Virus (MPXV) membrane glycoprotein to provoke robust immune responses.

Objective

To construct a potential immuno-dominant epitope vaccine to combat MPXV.

Methods

The target sequence, sourced from the UAE-to-India travel case, was analyzed to identify potential B-cell and T-cell epitopes (MHC-I and MHC-II). Immunodominant epitopes were selected and fused with β-defensin-I and PADRE to increase immunogenicity. The vaccine was modeled, docked with TLR3, and subjected to a 500 ns molecular dynamics simulation for stability analysis. Immune responses and bacterial expression were also evaluated.

Results

The vaccine, comprising 230 amino acids, demonstrated antigenicity (0.6620), non-allergenicity, and broad population coverage. Selected epitopes included 3 B-cells, 4 MHC-I, and 2 MHC-II, ensuring a potent immunodominant profile. Docking with TLR3 revealed a binding affinity of -17.2 kcal/mol, while simulations confirmed their stability. Cloning (pET28a (+)) and immune response analyses showed a strong immunogenic profile, including elevated IgG1, IgM, and antigen levels, supported by a Codon Adaptation Index (CAI) of 1.0.

Conclusion

The proposed multi-epitope vaccine shows promise against MPXV. However, further and investigations are essential to confirm its immune efficacy.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673374742250327041841
2025-07-09
2025-12-16
Loading full text...

Full text loading...

References

  1. Bhattacharya M. Chatterjee S. Nag S. Dhama K. Chakraborty C. Designing, characterization, and immune stimulation of a novel multi-epitopic peptide-based potential vaccine candidate against monkeypox virus through screening its whole genome encoded proteins: An immunoinformatics approach. Travel Med. Infect. Dis. 2022 50 102481 10.1016/j.tmaid.2022.102481 36265732
    [Google Scholar]
  2. Alakunle E. Moens U. Nchinda G. Okeke M.I. Monkeypox virus in Nigeria: Infection biology, epidemiology, and evolution. Viruses 2020 12 11 1257 10.3390/v12111257 33167496
    [Google Scholar]
  3. Sklenovská N. Van Ranst M. Emergence of monkeypox as the most important orthopoxvirus infection in humans. Front. Public Health 2018 6 241 10.3389/fpubh.2018.00241 30234087
    [Google Scholar]
  4. Aiman S. Alhamhoom Y. Ali F. Rahman N. Rastrelli L. Khan A. Farooq Q.A. Ahmed A. Khan A. Li C. Multi-epitope chimeric vaccine design against emerging Monkeypox virus via reverse vaccinology techniques- A bioinformatics and immunoinformatics approach. Front. Immunol. 2022 13 985450 10.3389/fimmu.2022.985450 36091024
    [Google Scholar]
  5. Rizk J.G. Lippi G. Henry B.M. Forthal D.N. Rizk Y. Prevention and treatment of monkeypox. Drugs 2022 82 9 957 963 10.1007/s40265‑022‑01742‑y 35763248
    [Google Scholar]
  6. Shafaati M. Zandi M. State-of-the-art on monkeypox virus: An emerging zoonotic disease. Infection 2022 50 6 1425 1430 10.1007/s15010‑022‑01935‑3 36192607
    [Google Scholar]
  7. Wolff Sagy Y. Zucker R. Hammerman A. Markovits H. Arieh N.G. Abu Ahmad W. Battat E. Ramot N. Carmeli G. Mark-Amir A. Wagner-Kolasko G. Duskin-Bitan H. Yaron S. Peretz A. Arbel R. Lavie G. Netzer D. Real-world effectiveness of a single dose of mpox vaccine in males. Nat. Med. 2023 29 3 748 752 10.1038/s41591‑023‑02229‑3 36720271
    [Google Scholar]
  8. Wang Y. Yang K. Zhou H. Immunogenic proteins and potential delivery platforms for mpox virus vaccine development: A rapid review. Int. J. Biol. Macromol. 2023 245 125515 10.1016/j.ijbiomac.2023.125515 37353117
    [Google Scholar]
  9. Mishra S. Rout M. Panda S. Singh S.K. Sinha R. Dehury B. Pati S. An immunoinformatic approach towards development of a potent and effective multi-epitope vaccine against monkeypox virus (MPXV). J. Biomol. Struct. Dyn. 2023 41 21 11714 11727 10.1080/07391102.2022.2163426 36591724
    [Google Scholar]
  10. Mishra S.K. Priya P. Rai G.P. Haque R. Shanker A. Coevolution based immunoinformatics approach considering variability of epitopes to combat different strains: A case study using spike protein of SARS-CoV-2. Comput. Biol. Med. 2023 163 107233 10.1016/j.compbiomed.2023.107233 37422941
    [Google Scholar]
  11. Pritam M. Exploring the whole proteome of monkeypox virus to design B cell epitope-based oral vaccines using immunoinformatics approaches. Int. J. Biol. Macromol. 2023 252 126498 10.1016/j.ijbiomac.2023.126498 37640189
    [Google Scholar]
  12. Bhattacharya M. Sharma A.R. Mallick B. Sharma G. Lee S.S. Chakraborty C. Immunoinformatics approach to understand molecular interaction between multi-epitopic regions of SARS-CoV-2 spike-protein with TLR4/MD-2 complex. Infect. Genet. Evol. 2020 85 104587 10.1016/j.meegid.2020.104587 33039603
    [Google Scholar]
  13. Bhattacharya M. Sharma A.R. Patra P. Ghosh P. Sharma G. Patra B.C. Lee S.S. Chakraborty C. Development of epitope-based peptide vaccine against novel coronavirus 2019 (SARS-COV-2): Immunoinformatics approach. J. Med. Virol. 2020 92 6 618 631 10.1002/jmv.25736 32108359
    [Google Scholar]
  14. Ahmadi M.R.H. Mamizadeh M. Siamian D. Touyeh M.A.A. Shams M. Rashidi Y. Immunoinformatic analysis of leishmania major gp46 protein and potential targets for vaccination against Leishmaniasis. Recent Adv. Inflamm. Allergy Drug Discov. 2024 18 2 129 139 10.2174/0127722708283588240124095057 38318831
    [Google Scholar]
  15. Oli A.N. Obialor W.O. Ifeanyichukwu M.O. Odimegwu D.C. Okoyeh J.N. Emechebe G.O. Adejumo S.A. Ibeanu G.C. Immunoinformatics and vaccine development: An overview. Immuno Targets Ther. 2020 9 13 30 10.2147/ITT.S241064 32161726
    [Google Scholar]
  16. Akhtar N. Kaushik V. Grewal R.K. Wani A.K. Suwattanasophon C. Choowongkomon K. Oliva R. Shaikh A.R. Cavallo L. Chawla M. Immunoinformatics-aided design of a peptide based multiepitope vaccine targeting glycoproteins and membrane proteins against monkeypox virus. Viruses 2022 14 11 2374 10.3390/v14112374 36366472
    [Google Scholar]
  17. Doytchinova I.A. Flower D.R. VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics 2007 8 1 4 10.1186/1471‑2105‑8‑4 17207271
    [Google Scholar]
  18. Dimitrov I. Bangov I. Flower D.R. Doytchinova I. AllerTOP v.2—a server for in silico prediction of allergens. J. Mol. Model. 2014 20 6 2278 10.1007/s00894‑014‑2278‑5 24878803
    [Google Scholar]
  19. Jespersen M.C. Peters B. Nielsen M. Marcatili P. BepiPred-2.0: Improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res. 2017 45 W1 W24 W29 10.1093/nar/gkx346 28472356
    [Google Scholar]
  20. Saha S. Raghava G.P.S. Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins 2006 65 1 40 48 10.1002/prot.21078 16894596
    [Google Scholar]
  21. Gupta S. Kapoor P. Chaudhary K. Gautam A. Kumar R. Raghava G.P.S. Raghava G.P. In silico approach for predicting toxicity of peptides and proteins. PLoS One 2013 8 9 e73957 10.1371/journal.pone.0073957 24058508
    [Google Scholar]
  22. Reynisson B. Alvarez B. Paul S. Peters B. Nielsen M. NetMHCpan-4.1 and NetMHCIIpan-4.0: Improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res. 2020 48 W1 W449 W454 10.1093/nar/gkaa379 32406916
    [Google Scholar]
  23. Nguyen T.L. Lee Y. Kim H. Immunogenic epitope-based vaccine prediction from surface glycoprotein of MERS-CoV by deploying immunoinformatics approach. Int. J. Pept. Res. Ther. 2022 28 3 77 10.1007/s10989‑022‑10382‑5 35313444
    [Google Scholar]
  24. Kim Y. Ponomarenko J. Zhu Z. Tamang D. Wang P. Greenbaum J. Lundegaard C. Sette A. Lund O. Bourne P.E. Nielsen M. Peters B. Immune epitope database analysis resource. Nucleic Acids Res. 2012 40 W525 W530 10.1093/nar/gks438
    [Google Scholar]
  25. Thevenet P. Shen Y. Maupetit J. Guyon F. Derreumaux P. Tuffery P. PEP-FOLD: An updated de novo structure prediction server for both linear and disulfide bonded cyclic peptides. Nucleic Acids Res. 2012 40 W288 W293 10.1093/nar/gks419 22581768
    [Google Scholar]
  26. Kozakov D. Hall D.R. Xia B. Porter K.A. Padhorny D. Yueh C. Beglov D. Vajda S. The ClusPro web server for protein–protein docking. Nat. Protoc. 2017 12 2 255 278 10.1038/nprot.2016.169 28079879
    [Google Scholar]
  27. Xue L.C. Rodrigues J.P. Kastritis P.L. Bonvin A.M. Vangone A. PRODIGY: A web server for predicting the binding affinity of protein–protein complexes. Bioinformatics 2016 32 23 3676 3678 10.1093/bioinformatics/btw514 27503228
    [Google Scholar]
  28. Bui H.H. Sidney J. Dinh K. Southwood S. Newman M.J. Sette A. Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinformatics 2006 7 1 153 10.1186/1471‑2105‑7‑153 16545123
    [Google Scholar]
  29. Chen X. Zaro J.L. Shen W.C. Fusion protein linkers: Property, design and functionality. Adv. Drug Deliv. Rev. 2013 65 10 1357 1369 10.1016/j.addr.2012.09.039 23026637
    [Google Scholar]
  30. Suleman M. Rashid F. Ali S. Sher H. Luo S. Xie L. Xie Z. Immunoinformatic-based design of immune-boosting multiepitope subunit vaccines against monkeypox virus and validation through molecular dynamics and immune simulation. Front. Immunol. 2022 13 1042997 10.3389/fimmu.2022.1042997 36311718
    [Google Scholar]
  31. Singh S. Rao A. Kumar K. Mishra A. Prajapati V.K. Translational vaccinomics and structural filtration algorithm to device multiepitope vaccine for catastrophic monkeypox virus. Comput. Biol. Med. 2023 153 106497 10.1016/j.compbiomed.2022.106497 36599210
    [Google Scholar]
  32. Lahimchi M.R. Madanchi H. Ahmadi K. Shahbazi B. Yousefi B. In silico designing a novel TLR4-mediating multiepitope vaccine against monkeypox via advanced immunoinformatics and bioinformatics approaches. J. Biomol. Struct. Dyn. 2024 42 4 2094 2110 37129119
    [Google Scholar]
  33. Wilkins M.R. Gasteiger E. Bairoch A. Sanchez J.C. Williams K.L. Appel R.D. Hochstrasser D.F. Protein identification and analysis tools in the ExPASy server. Methods Mol. Biol. 1999 112 531 552 10027275
    [Google Scholar]
  34. Geourjon C. Deléage G. SOPMA: Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Bioinformatics 1995 11 6 681 684 10.1093/bioinformatics/11.6.681 8808585
    [Google Scholar]
  35. Roy A. Kucukural A. Zhang Y. I-TASSER: A unified platform for automated protein structure and function prediction. Nat. Protoc. 2010 5 4 725 738 10.1038/nprot.2010.5 20360767
    [Google Scholar]
  36. Heo L. Park H. Seok C. GalaxyRefine: Protein structure refinement driven by side-chain repacking. Nucleic Acids Res. 2013 41 w1 W384 W388 10.1093/nar/gkt458 23737448
    [Google Scholar]
  37. Wiederstein M. Sippl M.J. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007 35 Suppl-2 W407 W410 10.1093/nar/gkm290 17517781
    [Google Scholar]
  38. Laskowski R. Rullmann J.A.C. MacArthur M. Kaptein R. Thornton J. AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 1996 8 4 477 486 10.1007/BF00228148 9008363
    [Google Scholar]
  39. Kuriata A. Gierut A.M. Oleniecki T. Ciemny M.P. Kolinski A. Kurcinski M. Kmiecik S. CABS-flex 2.0: A web server for fast simulations of flexibility of protein structures. Nucleic Acids Res. 2018 46 W1 W338 W343 10.1093/nar/gky356 29762700
    [Google Scholar]
  40. Yousaf M. Ismail S. Ullah A. Bibi S. Immuno-informatics profiling of monkeypox virus cell surface binding protein for designing a next generation multi-valent peptide-based vaccine. Front. Immunol. 2022 13 1035924 10.3389/fimmu.2022.1035924 36405737
    [Google Scholar]
  41. Almanaa T.N. Mubarak A. Sajjad M. Ullah A. Hassan M. Waheed Y. Irfan M. Khan S. Ahmad S. Design and validation of a novel multi-epitopes vaccine against hantavirus. J. Biomol. Struct. Dyn. 2024 42 8 4185 14195 37261466
    [Google Scholar]
  42. Chen Y. Lin J. Zhao Y. Ma X. Yi H. Toll-like receptor 3 (TLR3) regulation mechanisms and roles in antiviral innate immune responses. J. Zhejiang Univ. Sci. B 2021 22 8 609 632 10.1631/jzus.B2000808 34414698
    [Google Scholar]
  43. Laskowski R.A. PDBsum: Summaries and analyses of PDB structures. Nucleic Acids Res. 2001 29 1 221 222 10.1093/nar/29.1.221 11125097
    [Google Scholar]
  44. Case, D.A.; Aktulga, H.M.; Belfon, K.; Ben-Shalom, I.Y.; Berryman, J.T.; Brozell, S.R.; Cerutti, D.S.; Cheatham III, T.E.; Cisneros, G.A.; Cruzeiro, V.W.D. Amber 2023. University of California, San Francisco, 2023.
    [Google Scholar]
  45. Maier J.A. Martinez C. Kasavajhala K. Wickstrom L. Hauser K.E. Simmerling C. ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 2015 11 8 3696 3713 10.1021/acs.jctc.5b00255 26574453
    [Google Scholar]
  46. Jorgensen W.L. Chandrasekhar J. Madura J.D. Impey R.W. Klein M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983 79 2 926 935 10.1063/1.445869
    [Google Scholar]
  47. Joung I.S. Cheatham T.E. III Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J. Phys. Chem. B 2008 112 30 9020 9041 10.1021/jp8001614 18593145
    [Google Scholar]
  48. Izaguirre J.A. Catarello D.P. Wozniak J.M. Skeel R.D. Langevin stabilization of molecular dynamics. J. Chem. Phys. 2001 114 5 2090 2098 10.1063/1.1332996
    [Google Scholar]
  49. Berendsen H.J.C. Postma J.P.M. van Gunsteren W.F. DiNola A. Haak J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984 81 8 3684 3690 10.1063/1.448118
    [Google Scholar]
  50. Darden T. York D. Pedersen L. Particle mesh Ewald: An N -log( N ) method for Ewald sums in large systems. J. Chem. Phys. 1993 98 12 10089 10092 10.1063/1.464397
    [Google Scholar]
  51. Roe D.R. Cheatham T.E. III PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 2013 9 7 3084 3095 10.1021/ct400341p 26583988
    [Google Scholar]
  52. Pant P. Pathak A. Jayaram B. Bicyclo-DNA mimics with enhanced protein binding affinities: Insights from molecular dynamics simulations. J. Biomol. Struct. Dyn. 2023 41 9 4040 4047 10.1080/07391102.2022.2061594 35403569
    [Google Scholar]
  53. Halim S.A. Waqas M. Asim A. Khan M. Khan A. Al-Harrasi A. Discovering novel inhibitors of P2Y12 receptor using structure-based virtual screening, molecular dynamics simulation and MMPBSA approaches. Comput. Biol. Med. 2022 147 105743 10.1016/j.compbiomed.2022.105743 35772327
    [Google Scholar]
  54. Miller B.R. III McGee T.D. Jr Swails J.M. Homeyer N. Gohlke H. Roitberg A.E. MMPBSA.py : An efficient program for end-state free energy calculations. J. Chem. Theory Comput. 2012 8 9 3314 3321 10.1021/ct300418h 26605738
    [Google Scholar]
  55. Bhardwaj V.K. Singh R. Sharma J. Rajendran V. Purohit R. Kumar S. Identification of bioactive molecules from tea plant as SARS-CoV-2 main protease inhibitors. J. Biomol. Struct. Dyn. 2021 39 10 3449 3458 10.1080/07391102.2020.1766572 32397940
    [Google Scholar]
  56. Grote A. Hiller K. Scheer M. Munch R. Nortemann B. Hempel D.C. Jahn D. JCat: A novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res. 2005 33 W526 W531 10.1093/nar/gki376 15980527
    [Google Scholar]
  57. Ullah A. Shahid F.A. Haq M.U. Tahir ul Qamar M. Irfan M. Shaker B. Ahmad S. Alrumaihi F. Allemailem K.S. Almatroudi A. An integrative reverse vaccinology, immunoinformatic, docking and simulation approaches towards designing of multi-epitopes based vaccine against monkeypox virus. J. Biomol. Struct. Dyn. 2023 41 16 7821 7834 10.1080/07391102.2022.2125441 36129135
    [Google Scholar]
  58. Rapin N. Lund O. Bernaschi M. Castiglione F. Computational immunology meets bioinformatics: The use of prediction tools for molecular binding in the simulation of the immune system. PLoS One 2010 5 4 e9862 10.1371/journal.pone.0009862 20419125
    [Google Scholar]
  59. Shantier S.W. Mustafa M.I. Abdelmoneim A.H. Fadl H.A. Elbager S.G. Makhawi A.M. Novel multi epitope-based vaccine against monkeypox virus: Vaccinomic approach. Sci. Rep. 2022 12 1 15983 10.1038/s41598‑022‑20397‑z 36156077
    [Google Scholar]
  60. Tosta S.F.O. Passos M.S. Kato R. Salgado Á. Xavier J. Jaiswal A.K. Soares S.C. Azevedo V. Giovanetti M. Tiwari S. Alcantara L.C.J. Multi-epitope based vaccine against yellow fever virus applying immunoinformatics approaches. J. Biomol. Struct. Dyn. 2021 39 1 219 235 10.1080/07391102.2019.1707120 31854239
    [Google Scholar]
  61. Chauhan V. Singh M.P. Immuno-informatics approach to design a multi-epitope vaccine to combat cytomegalovirus infection. Eur. J. Pharm. Sci. 2020 147 105279 10.1016/j.ejps.2020.105279 32119992
    [Google Scholar]
  62. Mir S.A. Alaidarous M. Alshehri B. Bin Dukhyil A.A. Banawas S. Madkhali Y. Alsagaby S.A. Al Othaim A. Immunoinformatics-based identification of B and T cell epitopes in RNA-dependent RNA polymerase of SARS-CoV-2. Vaccines 2022 10 10 1660 10.3390/vaccines10101660 36298525
    [Google Scholar]
  63. Khan S. Irfan M. Hameed A.R. Ullah A. Abideen S.A. Ahmad S. Haq M.U. El Bakri Y. Al-Harbi A.I. Ali M. Haleem A. Vaccinomics to design a multi-epitope-based vaccine against monkeypox virus using surface-associated proteins. J. Biomol. Struct. Dyn. 2023 41 20 10859 10868 36533379
    [Google Scholar]
  64. Fatima I. Ahmad S. Abbasi S.W. Ashfaq U.A. Shahid F. Tahir ul Qamar M. Rehman A. Allemailem K.S. Designing of a multi-epitopes-based peptide vaccine against rift valley fever virus and its validation through integrated computational approaches. Comput. Biol. Med. 2022 141 105151 10.1016/j.compbiomed.2021.105151 34942394
    [Google Scholar]
  65. Greenberg R.N. Kennedy J.S. ACAM2000: A newly licensed cell culture-based live vaccinia smallpox vaccine. Expert Opin. Investig. Drugs 2008 17 4 555 564 10.1517/13543784.17.4.555 18363519
    [Google Scholar]
  66. Zaib S. Rana N. Areeba Hussain N. Alrbyawi H. Dera A.A. Khan I. Khalid M. Khan A. Al-Harrasi A. Designing multi-epitope monkeypox virus-specific vaccine using immunoinformatics approach. J. Infect. Public Health 2023 16 1 107 116 10.1016/j.jiph.2022.11.033 36508944
    [Google Scholar]
  67. Yaseen A.R. Suleman M. Jabeen A. Nezami L. Qadri A.S. Arif A. Arshad I. Iqbal K. Yaqoob T. Khan Z. Design and computational evaluation of a novel multi-epitope hybrid vaccine against monkeypox virus: Potential targets and immunogenicity assessment for pandemic preparedness. Biologicals 2024 86 101770 10.1016/j.biologicals.2024.101770 38749079
    [Google Scholar]
  68. Rcheulishvili N. Mao J. Papukashvili D. Feng S. Liu C. Wang X. He Y. Wang P.G. Design, evaluation, and immune simulation of potentially universal multi-epitope mpox vaccine candidate: Focus on DNA vaccine. Front. Microbiol. 2023 14 1203355 10.3389/fmicb.2023.1203355 37547674
    [Google Scholar]
  69. Parnian R. Heydarifard F. Mousavi F.S. Heydarifard Z. Zandi M. Innate immune response to monkeypox virus infection: Mechanisms and immune escape. J. Innate Immun. 2024 16 1 413 424 39137733
    [Google Scholar]
  70. Aziz S. Almajhdi F.N. Waqas M. Ullah I. Salim M.A. Khan N.A. Ali A. Contriving multi-epitope vaccine ensemble for monkeypox disease using an immunoinformatics approach. Front. Immunol. 2022 13 1004804 10.3389/fimmu.2022.1004804 36311762
    [Google Scholar]
  71. Sanami S. Nazarian S. Ahmad S. Raeisi E. Tahir ul Qamar M. Tahmasebian S. Pazoki-Toroudi H. Fazeli M. Samani M.G. In silico design and immunoinformatics analysis of a universal multi-epitope vaccine against monkeypox virus. PLoS One 2023 18 5 e0286224 10.1371/journal.pone.0286224 37220125
    [Google Scholar]
  72. Waqas M. Aziz S. Bushra A. Halim S.A. Ali A. Ullah S. Khalid A. Abdalla A.N. Khan A. Al-Harrasi A. Employing an immunoinformatics approach revealed potent multi-epitope based subunit vaccine for lymphocytic choriomeningitis virus. J. Infect. Public Health 2023 16 2 214 232 10.1016/j.jiph.2022.12.023 36603375
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673374742250327041841
Loading
/content/journals/cmc/10.2174/0109298673374742250327041841
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: simulation ; Epitopes ; monkeypox ; immunoinformatics ; membrane glycoprotein ; peptide vaccine
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test