Skip to content
2000
image of Static Magnetic Field Accelerates Wound Healing by Activation PI3K/AKT/mTOR Signaling Pathway

Abstract

Background

Wound healing is a complex and dynamic biological process involving overlapping phases such as inflammation, proliferation, and tissue remodeling. Chronic wounds, which fail to heal in a timely manner, pose significant challenges in clinical practice. Static magnetic fields (SMFs) have shown potential in wound healing, particularly in their anti-inflammatory effects and ability to promote cell proliferation. However, the precise mechanisms underlying their effects remain unclear.

Objective

This study aims to investigate the effects of SMFs on wound repair and to explore the molecular mechanisms involved, particularly the role of key signaling pathways.

Methods

A rabbit ear full-thickness wound model was used to evaluate the effects of SMFs (160 mT) on wound healing. Normal human dermal fibroblasts (NHDFs), normal human epidermal keratinocytes (NHEKs), and human umbilical vein endothelial cells (HUVECs) were cultured under SMF conditions to assess their proliferation, migration, and angiogenic activity. Tissue repair, angiogenesis, and cell proliferation were analyzed through histological and immunohistochemical methods. Transcriptome sequencing and Western blotting were performed to identify key pathways affected by SMFs.

Results

SMFs significantly accelerated wound healing in the rabbit ear model, as demonstrated by enhanced re-epithelialization, granulation tissue formation, and angiogenesis. , SMFs promoted the proliferation and migration of fibroblasts and keratinocytes, as well as tube formation in endothelial cells. Transcriptome and protein analyses revealed that SMFs activated the PI3K/AKT/mTOR signaling pathway, which played a critical role in regulating cell proliferation and angiogenesis.

Conclusion

This study demonstrates that SMFs promote wound healing by enhancing angiogenesis and cell proliferation through activation of the PI3K/AKT/mTOR signaling pathway. These findings provide a theoretical foundation for the application of SMFs as a non-invasive therapeutic approach for clinical wound management.

© 2025 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode.
Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673379670250703084615
2025-07-28
2025-11-06
Loading full text...

Full text loading...

/deliver/fulltext/cmc/10.2174/0109298673379670250703084615/BMS-CMC-2024-HT142-6137-8.html?itemId=/content/journals/cmc/10.2174/0109298673379670250703084615&mimeType=html&fmt=ahah

References

  1. Sorg H. Tilkorn D.J. Hager S. Hauser J. Mirastschijski U. Skin Wound Healing: An Update on the Current Knowledge and Concepts. Eur. Surg. Res. 2017 58 1-2 81 94 10.1159/000454919 27974711
    [Google Scholar]
  2. Minutti C.M. Knipper J.A. Allen J.E. Zaiss D.M.W. Tissue-specific contribution of macrophages to wound healing. Semin. Cell Dev. Biol. 2017 61 3 11 10.1016/j.semcdb.2016.08.006 27521521
    [Google Scholar]
  3. Gurtner G.C. Werner S. Barrandon Y. Longaker M.T. Wound repair and regeneration. Nature 2008 453 7193 314 321 10.1038/nature07039 18480812
    [Google Scholar]
  4. P, M. Wound healing-aiming for perfect skin regeneration. Science 1997 276
    [Google Scholar]
  5. Younesi F.S. Miller A.E. Barker T.H. Rossi F.M.V. Hinz B. Fibroblast and myofibroblast activation in normal tissue repair and fibrosis. Nat. Rev. Mol. Cell Biol. 2024 25 8 617 638 10.1038/s41580‑024‑00716‑0 38589640
    [Google Scholar]
  6. M, R.; N, K.; Ca, B.; Gc, G. Wound healing: A cellular perspective. Physiol. Rev. 2019 99
    [Google Scholar]
  7. Martin P. Nunan R. Cellular and molecular mechanisms of repair in acute and chronic wound healing. Br. J. Dermatol. 2015 173 2 370 378 10.1111/bjd.13954 26175283
    [Google Scholar]
  8. Martin P. Pardo-Pastor C. Jenkins R.G. Rosenblatt J. Imperfect wound healing sets the stage for chronic diseases. Science 2024 386 6726 eadp2974 10.1126/science.adp2974 39636982
    [Google Scholar]
  9. Eming S.A. Martin P. Tomic-Canic M. Wound repair and regeneration: Mechanisms, signaling, and translation. Sci. Transl. Med. 2014 6 265 265sr6 10.1126/scitranslmed.3009337 25473038
    [Google Scholar]
  10. Mamun A.A. Shao C. Geng P. Wang S. Xiao J. Recent advances in molecular mechanisms of skin wound healing and its treatments. Front. Immunol. 2024 15 1395479 10.3389/fimmu.2024.1395479 38835782
    [Google Scholar]
  11. Louiselle A.E. Niemiec S.M. Zgheib C. Liechty K.W. Macrophage polarization and diabetic wound healing. Transl. Res. 2021 236 109 116 10.1016/j.trsl.2021.05.006 34089902
    [Google Scholar]
  12. Conte M.S. Bradbury A.W. Kolh P. White J.V. Dick F. Fitridge R. Mills J.L. Ricco J.-B. Suresh K.R. Murad M.H. Aboyans V. Aksoy M. Alexandrescu V.-A. Armstrong D. Azuma N. Belch J. Bergoeing M. Bjorck M. Chakfé N. Cheng S. Dawson J. Debus E.S. Dueck A. Duval S. Eckstein H.H. Ferraresi R. Gambhir R. Gargiulo M. Geraghty P. Goode S. Gray B. Guo W. Gupta P.C. Hinchliffe R. Jetty P. Komori K. Lavery L. Liang W. Lookstein R. Menard M. Misra S. Miyata T. Moneta G. Munoa Prado J.A. Munoz A. Paolini J.E. Patel M. Pomposelli F. Powell R. Robless P. Rogers L. Schanzer A. Schneider P. Taylor S. De Ceniga M.V. Veller M. Vermassen F. Wang J. Wang S. Global vascular guidelines on the management of chronic limb-threatening ischemia. Eur J Vasc Endovasc Surg 2019 58 1S S1 S109 10.1016/j.ejvs.2019.05.006
    [Google Scholar]
  13. Doshi B.M. Perdrizet G.A. Hightower L.E. Wound healing from a cellular stress response perspective. Cell Stress Chaperones 2008 13 4 393 399 10.1007/s12192‑008‑0059‑8 18626792
    [Google Scholar]
  14. Huelsboemer L. Knoedler L. Kochen A. Yu C.T. Hosseini H. Hollmann K.S. Choi A.E. Stögner V.A. Knoedler S. Hsia H.C. Pomahac B. Kauke-Navarro M. Cellular therapeutics and immunotherapies in wound healing – on the pulse of time? Mil. Med. Res. 2024 11 1 23 10.1186/s40779‑024‑00528‑5 38637905
    [Google Scholar]
  15. Veith A.P. Henderson K. Spencer A. Sligar A.D. Baker A.B. Therapeutic strategies for enhancing angiogenesis in wound healing. Adv. Drug Deliv. Rev. 2019 146 97 125 10.1016/j.addr.2018.09.010 30267742
    [Google Scholar]
  16. Sussman G. An update on wound management. Aust. Prescr. 2023 46 2 29 35 10.18773/austprescr.2023.006 38053564
    [Google Scholar]
  17. Pierce G.F. Mustoe T.A. Pharmacologic enhancement of wound healing. Annu. Rev. Med. 1995 46 467 481 10.1146/annurev.med.46.1.467 7598479
    [Google Scholar]
  18. Grzelak E.M. Elshan N.G.R.D. Shao S. Bulos M.L. Joseph S.B. Chatterjee A.K. Chen J.J. Nguyên-Trân V. Schultz P.G. Bollong M.J. Pharmacological YAP activation promotes regenerative repair of cutaneous wounds. Proc. Natl. Acad. Sci. USA 2023 120 28 e2305085120 10.1073/pnas.2305085120 37399395
    [Google Scholar]
  19. Farber P.L. Isoldi F.C. Ferreira L.M. Electric factors in wound healing. Adv. Wound Care (New Rochelle) 2021 10 8 461 476 10.1089/wound.2019.1114 32870772
    [Google Scholar]
  20. Wang X. Sun K. Wang C. Yang M. Qian K. Ye B. Guo X. Shao Y. Chu C. Xue F. Li J. Bai J. Ultrasound-responsive microfibers promoted infected wound healing with neuro-vascularization by segmented sonodynamic therapy and electrical stimulation. Biomaterials 2025 313 122803 10.1016/j.biomaterials.2024.122803 39232334
    [Google Scholar]
  21. Medrado A.R.A.P. Pugliese L.S. Reis S.R.A. Andrade Z.A. Influence of low level laser therapy on wound healing and its biological action upon myofibroblasts. Lasers Surg. Med. 2003 32 3 239 244 10.1002/lsm.10126 12605432
    [Google Scholar]
  22. Zhu S. Zhao B. Li M. Wang H. Zhu J. Li Q. Gao H. Feng Q. Cao X. Microenvironment responsive nanocomposite hydrogel with NIR photothermal therapy, vascularization and anti-inflammation for diabetic infected wound healing. Bioact. Mater. 2023 26 306 320 10.1016/j.bioactmat.2023.03.005 36950149
    [Google Scholar]
  23. Chang L. Du H. Xu F. Xu C. Liu H. Hydrogel-enabled mechanically active wound dressings. Trends Biotechnol. 2024 42 1 31 42 10.1016/j.tibtech.2023.06.004 37453911
    [Google Scholar]
  24. Yang J. Huang Z. Tan J. Pan J. Chen S. Wan W. Copper ion/gallic acid MOFs-laden adhesive pomelo peel sponge effectively treats biofilm-infected skin wounds and improves healing quality. Bioact. Mater. 2024 32 260 276 10.1016/j.bioactmat.2023.10.005 37869725
    [Google Scholar]
  25. Saadh M.J. Ramírez-Coronel A.A. Saini R.S. Arias- Gonzáles J.L. Amin A.H. Gavilán J.C.O. Sârbu I. Advances in mesenchymal stem/stromal cell-based therapy and their extracellular vesicles for skin wound healing. Hum. Cell 2023 36 4 1253 1264 10.1007/s13577‑023‑00904‑8 37067766
    [Google Scholar]
  26. Shou Y. Le Z. Cheng H.S. Liu Q. Ng Y.Z. Becker D.L. Li X. Liu L. Xue C. Yeo N.J.Y. Tan R. Low J. Kumar A.R.K. Wu K.Z. Li H. Cheung C. Lim C.T. Tan N.S. Chen Y. Liu Z. Tay A. Mechano-activated cell therapy for accelerated diabetic wound healing. Adv. Mater. 2023 35 47 2304638 10.1002/adma.202304638 37681325
    [Google Scholar]
  27. Holl J. Kowalewski C. Zimek Z. Fiedor P. Kaminski A. Oldak T. Moniuszko M. Eljaszewicz A. Chronic diabetic wounds and their treatment with skin substitutes. Cells 2021 10 3 655 10.3390/cells10030655 33804192
    [Google Scholar]
  28. Przekora A. A concise review on tissue engineered artificial skin grafts for chronic wound treatment: Can we reconstruct functional skin tissue in vitro? Cells 2020 9 7 1622 10.3390/cells9071622 32640572
    [Google Scholar]
  29. Nourian Dehkordi A. Mirahmadi Babaheydari F. Chehelgerdi M. Raeisi Dehkordi S. Skin tissue engineering: wound healing based on stem-cell-based therapeutic strategies. Stem Cell Res. Ther. 2019 10 1 111 10.1186/s13287‑019‑1212‑2 30922387
    [Google Scholar]
  30. Markov M.S. Magnetic field therapy: a review. Electromagn. Biol. Med. 2007 26 1 1 23 10.1080/15368370600925342 17454079
    [Google Scholar]
  31. Strauch B. Herman C. Dabb R. Ignarro L.J. Pilla A.A. Evidence-based use of pulsed electromagnetic field therapy in clinical plastic surgery. Aesthet. Surg. J. 2009 29 2 135 143 10.1016/j.asj.2009.02.001 19371845
    [Google Scholar]
  32. Jiao M. Yin H. Hu J. Xu W. Zhang X. Zhang P. Effects of low-frequency pulsed electromagnetic fields on high-altitude stress ulcer healing in rats. BioMed Res. Int. 2019 2019 1 8 10.1155/2019/6354054 31309108
    [Google Scholar]
  33. Lewandoski L.T. Grymuza de Souza V. Cannan Kiekiss G. Soares F. Buzanello M.R. Bertolini G.R.F. Static magnetic field on wound healing in rodents: a systematic review and meta-analysis. Electromagn. Biol. Med. 2025 44 1 107 118 10.1080/15368378.2024.2448186 39760456
    [Google Scholar]
  34. Ross C.L. The use of electric, magnetic, and electromagnetic field for directed cell migration and adhesion in regenerative medicine. Biotechnol. Prog. 2017 33 1 5 16 10.1002/btpr.2371 27797153
    [Google Scholar]
  35. Mj C. Ei C. N, S.; S, A.; S, G.; Er, K.; Bj, S.; Gc, G. Pulsed electromagnetic fields accelerate normal and diabetic wound healing by increasing endogenous FGF-2 release. Plast. Reconstr. Surg. 2008 121
    [Google Scholar]
  36. Shang W. Chen G. Li Y. Zhuo Y. Wang Y. Fang Zhicai Yu Y. Ren H. Static magnetic field accelerates diabetic wound healing by facilitating resolution of inflammation. J Diabetes Res 2019 121 5641271 10.1155/2019/5641271
    [Google Scholar]
  37. Feng, C.; Yu, B.; Song,C.; Wang, J.; Zhang, L.; Ji, X.; Wang,Y.; Fang, Y.; Liao, Z.; Wei, M.; Zhang, X. Static magnetic fields reduce oxidative stress to improve wound healing and alleviate diabetic complications cells. Scientific Reports 2022 11 8677 10.3390/cells11030443
    [Google Scholar]
  38. Xu S. Okano H. Nakajima M. Hatano N. Tomita N. Ikada Y. Static magnetic field effects on impaired peripheral vasomotion in conscious rats. Evid. Based Complement. Alternat. Med. 2013 2013 1 6 10.1155/2013/746968 24454512
    [Google Scholar]
  39. Bertolino G. de Freitas Braga A. de Oliveira Lima do Couto Rosa K. de Brito Junior L.C. de Araujo J.E. Macroscopic and histological effects of magnetic field exposition in the process of tissue reparation in Wistar rats. Arch. Dermatol. Res. 2006 298 3 121 126 10.1007/s00403‑006‑0667‑z 16773313
    [Google Scholar]
  40. Ekici Y. Aydogan C. Balcik C. Haberal N. Kirnap M. Moray G. Haberal M. Effect of static magnetic field on experimental dermal wound strength. Indian J Plast Surg 2012 45 2 215 9 10.4103/0970‑0358.101281
    [Google Scholar]
  41. Wang Z. Che P.L. Du J. Ha B. Yarema K.J. Static magnetic field exposure reproduces cellular effects of the Parkinson’s disease drug candidate ZM241385. PLoS One 2010 5 11 e13883 10.1371/journal.pone.0013883 21079735
    [Google Scholar]
  42. Darendeliler M.A. Darendeliler A. Sinclair P.M. Effects of static magnetic and pulsed electromagnetic fields on bone healing. Int. J. Adult Orthodon. Orthognath. Surg. 1997 12 1 43 53 9456617
    [Google Scholar]
  43. Yu B. Liu J. Cheng J. Zhang L. Song C. Tian X. Fan Y. Lv Y. Zhang X. A static magnetic field improves iron metabolism and prevents high-fat-diet/streptozocin-induced diabetes. Innovation 2021 2 1 100077 10.1016/j.xinn.2021.100077 34557734
    [Google Scholar]
  44. Jing D. Shen G. Cai J. Li F. Huang J. Wang Y. Xu Q. Tang C. Luo E. Effects of 180 mT static magnetic fields on diabetic wound healing in rats. Bioelectromagnetics 2010 31 8 640 648 10.1002/bem.20592 20607739
    [Google Scholar]
  45. Zhao J. Li Y. Deng K. Yun P. Gong T. Therapeutic effects of static magnetic field on wound healing in diabetic rats. J. Diabetes Res. 2017 2017 1 5 10.1155/2017/6305370 28459073
    [Google Scholar]
  46. Han C. Shi C. Liu L. Han J. Yang Q. Wang Y. Li X. Fu W. Gao H. Huang H. Zhang X. Yu K. Majorbio cloud 2024: Update single-cell and multiomics workflows. iMeta 2024 3 4 e217 10.1002/imt2.217 39135689
    [Google Scholar]
  47. Graefe C. Eichhorn L. Wurst P. Kleiner J. Heine A. Panetas I. Abdulla Z. Hoeft A. Frede S. Kurts C. Endl E. Weisheit C.K. Optimized Ki-67 staining in murine cells: a tool to determine cell proliferation. Mol. Biol. Rep. 2019 46 4 4631 4643 10.1007/s11033‑019‑04851‑2 31093875
    [Google Scholar]
  48. Wang J. Wu H. Peng Y. Zhao Y. Qin Y. Zhang Y. Xiao Z. Hypoxia adipose stem cell-derived exosomes promote high-quality healing of diabetic wound involves activation of PI3K/Akt pathways. J. Nanobiotechnology 2021 19 1 202 10.1186/s12951‑021‑00942‑0 34233694
    [Google Scholar]
  49. Li J.Y. Ren K.K. Zhang W.J. Xiao L. Wu H.Y. Liu Q.Y. Ding T. Zhang X.C. Nie W.J. Ke Y. Deng K.Y. Liu Q.W. Xin H.B. Human amniotic mesenchymal stem cells and their paracrine factors promote wound healing by inhibiting heat stress-induced skin cell apoptosis and enhancing their proliferation through activating PI3K/AKT signaling pathway. Stem Cell Res. Ther. 2019 10 1 247 10.1186/s13287‑019‑1366‑y 31399039
    [Google Scholar]
  50. Lv H. Liu J. Zhen C. Wang Y. Wei Y. Ren W. Shang P. Magnetic fields as a potential therapy for diabetic wounds based on animal experiments and clinical trials. Cell Prolif. 2021 54 3 e12982 10.1111/cpr.12982 33554390
    [Google Scholar]
  51. Song B.W. Hong H. Jung Y.J. Lee J.H. Kim B.S. Lee H.B. Combination therapy comprising a static magnetic field with contractility improves skin wounds. Tissue Eng. Part A 2018 24 17-18 1354 1363 10.1089/ten.tea.2017.0470 29652610
    [Google Scholar]
  52. Liu L. Yan J. Cao Y. Yan Y. Shen X. Yu B. Tao L. Wang S. Proliferation, migration and invasion of triple negative breast cancer cells are suppressed by berbamine via the PI3K/Akt/MDM2/p53 and PI3K/Akt/mTOR signaling pathways. Oncol. Lett. 2020 21 1 70 10.3892/ol.2020.12331 33365081
    [Google Scholar]
  53. Leiphrakpam P. Are C. PI3K/Akt/mTOR signaling pathway as a target for colorectal cancer treatment. Int. J. Mol. Sci. 2024 25 6 3178 10.3390/ijms25063178 38542151
    [Google Scholar]
  54. He X. Li Y. Deng B. Lin A. Zhang G. Ma M. Wang Y. Yang Y. Kang X. The PI3K/AKT signalling pathway in inflammation, cell death and glial scar formation after traumatic spinal cord injury: Mechanisms and therapeutic opportunities. Cell Prolif. 2022 55 9 e13275 10.1111/cpr.13275 35754255
    [Google Scholar]
  55. Chen S. Peng J. Sherchan P. Ma Y. Xiang S. Yan F. Zhao H. Jiang Y. Wang N. Zhang J.H. Zhang H. TREM2 activation attenuates neuroinflammation and neuronal apoptosis via PI3K/Akt pathway after intracerebral hemorrhage in mice. J. Neuroinflammation 2020 17 1 168 10.1186/s12974‑020‑01853‑x 32466767
    [Google Scholar]
  56. Alves C.L. Ditzel H.J. Drugging the PI3K/AKT/mTOR pathway in ER+ breast cancer. Int. J. Mol. Sci. 2023 24 5 4h5tt2p2 10.3390/ijms24054522 36901954
    [Google Scholar]
  57. Danciu T.E. Adam R.M. Naruse K. Freeman M.R. Hauschka P.V. Calcium regulates the PI3K-Akt pathway in stretched osteoblasts. FEBS Lett. 2003 536 1-3 193 197 10.1016/S0014‑5793(03)00055‑3 12586362
    [Google Scholar]
  58. Nuccitelli S. Cerella C. Cordisco S. Albertini M.C. Accorsi A. De Nicola M. D’Alessio M. Radogna F. Magrini A. Bergamaschi A. Ghibelli L. Hyperpolarization of plasma membrane of tumor cells sensitive to antiapoptotic effects of magnetic fields. Ann. N. Y. Acad. Sci. 2006 1090 1 217 225 10.1196/annals.1378.024 17384265
    [Google Scholar]
  59. De Nicola M. Cordisco S. Cerella C. Albertini M.C. D’Alessio M. Accorsi A. Bergamaschi A. Magrini A. Ghibelli L. Magnetic fields protect from apoptosis via redox alteration. Ann. N. Y. Acad. Sci. 2006 1090 1 59 68 10.1196/annals.1378.006 17384247
    [Google Scholar]
  60. Rosen A.D. Mechanism of action of moderate-intensity static magnetic fields on biological systems. Cell Biochem. Biophys. 2003 39 2 163 174 10.1385/CBB:39:2:163 14515021
    [Google Scholar]
  61. Morris C.E. Skalak T.C. Chronic static magnetic field exposure alters microvessel enlargement resulting from surgical intervention. J. Appl. Physiol. 2007 103 2 629 636 10.1152/japplphysiol.01133.2006 17478604
    [Google Scholar]
  62. Wang Z. Sarje A. Che P.L. Yarema K.J. Moderate strength (0.23–0.28 T) static magnetic fields (SMF) modulate signaling and differentiation in human embryonic cells. BMC Genomics 2009 10 1 356 10.1186/1471‑2164‑10‑356 19653909
    [Google Scholar]
  63. Wu H. Li C. Masood M. Zhang Z. González-Almela E. Castells-Garcia A. Zou G. Xu X. Wang L. Zhao G. Yu S. Zhu P. Wang B. Qin D. Liu J. Static magnetic fields regulate T-Type calcium ion channels and mediate mesenchymal stem cells proliferation. Cells 2022 11 15 24h6tt0p. 10.3390/cells11152460 35954307
    [Google Scholar]
  64. Miyakoshi J. Effects of static magnetic fields at the cellular level. Prog. Biophys. Mol. Biol. 2005 87 2-3 213 223 10.1016/j.pbiomolbio.2004.08.008 15556660
    [Google Scholar]
  65. Wang H. Zhang X. Magnetic Fields and Reactive Oxygen Species. Int. J. Mol. Sci. 2017 18 10 2175 10.3390/ijms18102175 29057846
    [Google Scholar]
  66. Wang H. Zhang X. ROS reduction does not decrease the anticancer efficacy of x-ray in two breast cancer cell lines. Oxid. Med. Cell. Longev. 2019 2019 1 12 10.1155/2019/3782074 31001373
    [Google Scholar]
  67. Jedrzejczak-Silicka M. Kordas M. Konopacki M. Rakoczy R. Modulation of cellular response to different parameters of the rotating magnetic field (RMF)—An in vitro wound healing study. Int. J. Mol. Sci. 2021 22 11 5785 10.3390/ijms22115785 34071384
    [Google Scholar]
  68. Marycz K. Kornicka K. Röcken M. Static magnetic field (SMF) as a regulator of stem cell fate – new perspectives in regenerative medicine arising from an underestimated tool. Stem Cell Rev. 2018 14 6 785 792 10.1007/s12015‑018‑9847‑4 30225821
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673379670250703084615
Loading
/content/journals/cmc/10.2174/0109298673379670250703084615
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test