Skip to content
2000
image of Targeted Protein Degradation in Lung Cancer: The Emerging Role of PROTAC Technology and E3 Ligases

Abstract

Lung cancer remains one of the most prevalent and lethal malignancies, with poor drug response and high mortality rates. Proteolysis-targeting chimeras (PROTACs) are emerging as a novel therapeutic strategy, leveraging E3 ligases to degrade oncogenic proteins selectively the ubiquitin-proteasome pathway. These degraders offer higher selectivity and bioavailability compared to traditional inhibitors. This review explores how PROTACs eliminate oncogenic proteins in lung cancer and examines the role of E3 ligases in this process. Commonly utilized ligases include Cereblon (CRBN) and Von Hippel-Lindau (VHL), while newer ones, such as MDM2 and Kelch-like ECH-associated protein 1 (KEAP1), are being investigated for therapeutic potential. We discuss key factors in PROTAC design, including ligand selection, linker optimization, and pharmacokinetic properties, which influence tumor specificity and efficacy while minimizing off-target effects. Additionally, we highlight targetable oncogenic drivers in lung cancer, such as KRAS, EGFR, and ALK fusion proteins, and evaluate preclinical and clinical studies that demonstrate PROTACs' potential for overcoming drug resistance. The challenges associated with clinical translation, tumor microenvironment interactions, and E3 ligase selection are also discussed. Finally, we present future perspectives, including expanding the range of E3 ligases, developing multitargeting strategies, and integrating next-generation molecular glue degraders. By offering a comparative analysis of E3 ligase-specific PROTACs, this review underscores the potential of PROTAC technology to advance precision oncology in lung cancer.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673382742250619055201
2025-07-15
2025-12-21
Loading full text...

Full text loading...

References

  1. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  2. Stewart E.L. Tan S.Z. Liu G. Tsao M.S. Known and putative mechanisms of resistance to EGFR targeted therapies in NSCLC patients with EGFR mutations - A review. Transl. Lung Cancer Res. 2015 4 1 67 81 25806347
    [Google Scholar]
  3. Sadique Hussain M. Gupta G. Ghaboura N. Moglad E. Hassan Almalki W. Alzarea S.I. Kazmi I. Ali H. MacLoughlin R. Loebenberg R. Davies N.M. Kumar Singh S. Dua K. Exosomal ncRNAs in liquid biopsies for lung cancer. Clin. Chim. Acta 2025 565 119983 10.1016/j.cca.2024.119983 39368685
    [Google Scholar]
  4. Wu Y.L. Tsuboi M. He J. John T. Grohe C. Majem M. Goldman J.W. Laktionov K. Kim S.W. Kato T. Vu H.V. Lu S. Lee K.Y. Akewanlop C. Yu C.J. de Marinis F. Bonanno L. Domine M. Shepherd F.A. Zeng L. Hodge R. Atasoy A. Rukazenkov Y. Herbst R.S. Osimertinib in resected EGFR -mutated non–small-cell lung cancer. N. Engl. J. Med. 2020 383 18 1711 1723 10.1056/NEJMoa2027071 32955177
    [Google Scholar]
  5. Hussain M.S. Afzal O. Gupta G. Goyal A. Almalki W.H. Kazmi I. Alzarea S.I. Alfawaz Altamimi A.S. Kukreti N. Chakraborty A. Singh S.K. Dua K. Unraveling NEAT1's complex role in lung cancer biology: A comprehensive review. EXCLI J. 2024 23 34 52 38343745
    [Google Scholar]
  6. Tang S. Qin C. Hu H. Liu T. He Y. Guo H. Yan H. Zhang J. Tang S. Zhou H. Immune checkpoint inhibitors in non-small cell lung cancer: Progress, challenges, and prospects. Cells 2022 11 3 320 10.3390/cells11030320 35159131
    [Google Scholar]
  7. Lai A.C. Crews C.M. Induced protein degradation: An emerging drug discovery paradigm. Nat. Rev. Drug Discov. 2017 16 2 101 114 10.1038/nrd.2016.211 27885283
    [Google Scholar]
  8. Pettersson M. Crews C.M. PROteolysis Targeting Chimeras (PROTACs) — Past, present and future. Drug Discov. Today. Technol. 2019 31 15 27 10.1016/j.ddtec.2019.01.002 31200855
    [Google Scholar]
  9. An S. Fu L. Small-molecule PROTACs: An emerging and promising approach for the development of targeted therapy drugs. EBioMedicine 2018 36 553 562 10.1016/j.ebiom.2018.09.005 30224312
    [Google Scholar]
  10. Burslem G.M. Crews C.M. Proteolysis-targeting chimeras as therapeutics and tools for biological discovery. Cell 2020 181 1 102 114 10.1016/j.cell.2019.11.031 31955850
    [Google Scholar]
  11. Metzger M.B. Hristova V.A. Weissman A.M. HECT and RING finger families of E3 ubiquitin ligases at a glance. J. Cell Sci. 2012 125 3 531 537 10.1242/jcs.091777 22389392
    [Google Scholar]
  12. Gadd M.S. Testa A. Lucas X. Chan K.H. Chen W. Lamont D.J. Zengerle M. Ciulli A. Structural basis of PROTAC cooperative recognition for selective protein degradation. Nat. Chem. Biol. 2017 13 5 514 521 10.1038/nchembio.2329 28288108
    [Google Scholar]
  13. Békés M. Langley D.R. Crews C.M. PROTAC targeted protein degraders: The past is prologue. Nat. Rev. Drug Discov. 2022 21 3 181 200 10.1038/s41573‑021‑00371‑6 35042991
    [Google Scholar]
  14. Deng L. Meng T. Chen L. Wei W. Wang P. The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduct. Target. Ther. 2020 5 1 11 10.1038/s41392‑020‑0107‑0 32296023
    [Google Scholar]
  15. Vassilev L.T. Vu B.T. Graves B. Carvajal D. Podlaski F. Filipovic Z. Kong N. Kammlott U. Lukacs C. Klein C. Fotouhi N. Liu E.A. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 2004 303 5659 844 848 10.1126/science.1092472 14704432
    [Google Scholar]
  16. Itoh Y. Ishikawa M. Naito M. Hashimoto Y. Protein knockdown using methyl bestatin-ligand hybrid molecules: Design and synthesis of inducers of ubiquitination-mediated degradation of cellular retinoic acid-binding proteins. J. Am. Chem. Soc. 2010 132 16 5820 5826 10.1021/ja100691p 20369832
    [Google Scholar]
  17. Buckley D.L. Van Molle I. Gareiss P.C. Tae H.S. Michel J. Noblin D.J. Jorgensen W.L. Ciulli A. Crews C.M. Targeting the von Hippel-Lindau E3 ubiquitin ligase using small molecules to disrupt the VHL/HIF-1α interaction. J. Am. Chem. Soc. 2012 134 10 4465 4468 10.1021/ja209924v 22369643
    [Google Scholar]
  18. Lopez-Girona A. Mendy D. Ito T. Miller K. Gandhi A.K. Kang J. Karasawa S. Carmel G. Jackson P. Abbasian M. Mahmoudi A. Cathers B. Rychak E. Gaidarova S. Chen R. Schafer P.H. Handa H. Daniel T.O. Evans J.F. Chopra R. Cereblon is a direct protein target for immunomodulatory and antiproliferative activities of lenalidomide and pomalidomide. Leukemia 2012 26 11 2326 2335 10.1038/leu.2012.119 22552008
    [Google Scholar]
  19. Chamberlain P.P. Hamann L.G. Development of targeted protein degradation therapeutics. Nat. Chem. Biol. 2019 15 10 937 944 10.1038/s41589‑019‑0362‑y 31527835
    [Google Scholar]
  20. Sampson C. Wang Q. Otkur W. Zhao H. Lu Y. Liu X. Piao H. The roles of E3 ubiquitin ligases in cancer progression and targeted therapy. Clin. Transl. Med. 2023 13 3 e1204 10.1002/ctm2.1204 36881608
    [Google Scholar]
  21. Gu S. Cui D. Chen X. Xiong X. Zhao Y. PROTACs: An emerging targeting technique for protein degradation in drug discovery. BioEssays 2018 40 4 1700247 10.1002/bies.201700247 29473971
    [Google Scholar]
  22. Eletr Z.M. Huang D.T. Duda D.M. Schulman B.A. Kuhlman B. E2 conjugating enzymes must disengage from their E1 enzymes before E3-dependent ubiquitin and ubiquitin-like transfer. Nat. Struct. Mol. Biol. 2005 12 10 933 934 10.1038/nsmb984 16142244
    [Google Scholar]
  23. Zheng N. Shabek N. Ubiquitin ligases: Structure, function, and regulation. Annu. Rev. Biochem. 2017 86 1 129 157 10.1146/annurev‑biochem‑060815‑014922 28375744
    [Google Scholar]
  24. Aravind L. Koonin E.V. The U box is a modified RING finger — A common domain in ubiquitination. Curr. Biol. 2000 10 4 R132 R134 10.1016/S0960‑9822(00)00398‑5 10704423
    [Google Scholar]
  25. Jiang J. Ballinger C.A. Wu Y. Dai Q. Cyr D.M. Höhfeld J. Patterson C. CHIP is a U-box-dependent E3 ubiquitin ligase: Identification of Hsc70 as a target for ubiquitylation. J. Biol. Chem. 2001 276 46 42938 42944 10.1074/jbc.M101968200 11557750
    [Google Scholar]
  26. Rotin D. Kumar S. Physiological functions of the HECT family of ubiquitin ligases. Nat. Rev. Mol. Cell Biol. 2009 10 6 398 409 10.1038/nrm2690 19436320
    [Google Scholar]
  27. Weber J. Polo S. Maspero E. HECT E3 ligases: A tale with multiple facets. Front. Physiol. 2019 10 370 10.3389/fphys.2019.00370 31001145
    [Google Scholar]
  28. Huang L. Kinnucan E. Wang G. Beaudenon S. Howley P.M. Huibregtse J.M. Pavletich N.P. Structure of an E6AP-UbcH7 complex: Insights into ubiquitination by the E2-E3 enzyme cascade. Science 1999 286 5443 1321 1326 10.1126/science.286.5443.1321 10558980
    [Google Scholar]
  29. Marín I. Lucas J.I. Gradilla A.C. Ferrús A. Parkin and relatives: The RBR family of ubiquitin ligases. Physiol. Genomics 2004 17 3 253 263 10.1152/physiolgenomics.00226.2003 15152079
    [Google Scholar]
  30. Wenzel D.M. Lissounov A. Brzovic P.S. Klevit R.E. UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids. Nature 2011 474 7349 105 108 10.1038/nature09966 21532592
    [Google Scholar]
  31. Bondeson D.P. Mares A. Smith I.E.D. Ko E. Campos S. Miah A.H. Mulholland K.E. Routly N. Buckley D.L. Gustafson J.L. Zinn N. Grandi P. Shimamura S. Bergamini G. Faelth-Savitski M. Bantscheff M. Cox C. Gordon D.A. Willard R.R. Flanagan J.J. Casillas L.N. Votta B.J. den Besten W. Famm K. Kruidenier L. Carter P.S. Harling J.D. Churcher I. Crews C.M. Catalytic in vivo protein knockdown by small-molecule PROTACs. Nat. Chem. Biol. 2015 11 8 611 617 10.1038/nchembio.1858 26075522
    [Google Scholar]
  32. Nguyen K.M. Busino L. Targeting the E3 ubiquitin ligases DCAF15 and cereblon for cancer therapy. Semin. Cancer Biol. 2020 67 Pt 2 53 60 10.1016/j.semcancer.2020.03.007 32200025
    [Google Scholar]
  33. Jin J. Wu Y. Chen J. Shen Y. Zhang L. Zhang H. Chen L. Yuan H. Chen H. Zhang W. Luan X. The peptide PROTAC modality: A novel strategy for targeted protein ubiquitination. Theranostics 2020 10 22 10141 10153 10.7150/thno.46985 32929339
    [Google Scholar]
  34. Hojjat-Farsangi M. Small-molecule inhibitors of the receptor tyrosine kinases: Promising tools for targeted cancer therapies. Int. J. Mol. Sci. 2014 15 8 13768 13801 10.3390/ijms150813768 25110867
    [Google Scholar]
  35. Passaro A. Jänne P.A. Peters S. Antibody-drug conjugates in lung cancer: Recent advances and implementing strategies. J. Clin. Oncol. 2023 41 21 3747 3761 10.1200/JCO.23.00013 37224424
    [Google Scholar]
  36. Burslem G.M. Crews C.M. Small-molecule modulation of protein homeostasis. Chem. Rev. 2017 117 17 11269 11301 10.1021/acs.chemrev.7b00077 28777566
    [Google Scholar]
  37. Hede K. Blocking cancer with RNA interference moves toward the clinic. J. Natl. Cancer Inst. 2005 97 9 626 628 10.1093/jnci/97.9.626 15870429
    [Google Scholar]
  38. Li J.W. Zheng G. Kaye F.J. Wu L. PROTAC therapy as a new targeted therapy for lung cancer. Mol. Ther. 2023 31 3 647 656 10.1016/j.ymthe.2022.11.011 36415148
    [Google Scholar]
  39. Naito M. Ohoka N. Shibata N. Tsukumo Y. Targeted protein degradation by chimeric small molecules, PROTACs and SNIPERs. Front Chem. 2019 7 849 10.3389/fchem.2019.00849 31921772
    [Google Scholar]
  40. Li D. Deng Y. Wen G. Wang L. Shi X. Chen S. Chen R. Targeting BRD4 with PROTAC degrader ameliorates LPS-induced acute lung injury by inhibiting M1 alveolar macrophage polarization. Int. Immunopharmacol. 2024 132 111991 10.1016/j.intimp.2024.111991 38581996
    [Google Scholar]
  41. Liu J. Chen H. Kaniskan H.Ü. Xie L. Chen X. Jin J. Wei W. TF-PROTACs enable targeted degradation of transcription factors. J. Am. Chem. Soc. 2021 143 23 8902 8910 10.1021/jacs.1c03852 34100597
    [Google Scholar]
  42. Khan S. Wiegand J. Zhang P. Hu W. Thummuri D. Budamagunta V. Hua N. Jin L. Allegra C.J. Kopetz S.E. Zajac-Kaye M. Kaye F.J. Zheng G. Zhou D. BCL-XL PROTAC degrader DT2216 synergizes with sotorasib in preclinical models of KRASG12C-mutated cancers. J. Hematol. Oncol. 2022 15 1 23 10.1186/s13045‑022‑01241‑3 35260176
    [Google Scholar]
  43. Yim J. Park J. Kim G. Lee H.H. Chung J.S. Jo A. Koh M. Park J. Conditional PROTAC: Recent strategies for modulating targeted protein degradation. ChemMedChem 2024 19 22 e202400326 10.1002/cmdc.202400326 38993102
    [Google Scholar]
  44. Khan S. He Y. Zhang X. Yuan Y. Pu S. Kong Q. Zheng G. Zhou D. PROteolysis TArgeting Chimeras (PROTACs) as emerging anticancer therapeutics. Oncogene 2020 39 26 4909 4924 10.1038/s41388‑020‑1336‑y 32475992
    [Google Scholar]
  45. George A.J. Hoffiz Y.C. Charles A.J. Zhu Y. Mabb A.M. A comprehensive atlas of E3 ubiquitin ligase mutations in neurological disorders. Front. Genet. 2018 9 29 10.3389/fgene.2018.00029 29491882
    [Google Scholar]
  46. Senft D. Qi J. Ronai Z.A. Ubiquitin ligases in oncogenic transformation and cancer therapy. Nat. Rev. Cancer 2018 18 2 69 88 10.1038/nrc.2017.105 29242641
    [Google Scholar]
  47. Yang D. Cheng D. Tu Q. Yang H. Sun B. Yan L. Dai H. Luo J. Mao B. Cao Y. Yu X. Jiang H. Zhao X. HUWE1 controls the development of non-small cell lung cancer through down-regulation of p53. Theranostics 2018 8 13 3517 3529 10.7150/thno.24401 30026863
    [Google Scholar]
  48. Amodio N. Scrima M. Palaia L. Salman A.N. Quintiero A. Franco R. Botti G. Pirozzi P. Rocco G. De Rosa N. Viglietto G. Oncogenic role of the E3 ubiquitin ligase NEDD4-1, a PTEN negative regulator, in non-small-cell lung carcinomas. Am. J. Pathol. 2010 177 5 2622 2634 10.2353/ajpath.2010.091075 20889565
    [Google Scholar]
  49. Gu J. Mao W. Ren W. Xu F. Zhu Q. Lu C. Lin Z. Zhang Z. Chu Y. Liu R. Ge D. Ubiquitin-protein ligase E3C maintains non-small-cell lung cancer stemness by targeting AHNAK-p53 complex. Cancer Lett. 2019 443 125 134 10.1016/j.canlet.2018.11.029 30503554
    [Google Scholar]
  50. Lu X. Huang X. Xu H. Lu S. You S. Xu J. Zhan Q. Dong C. Zhang N. Zhang Y. Cao L. Zhang X. Zhang N. Zhang L. The role of E3 ubiquitin ligase WWP2 and the regulation of PARP1 by ubiquitinated degradation in acute lymphoblastic leukemia. Cell Death Discov. 2022 8 1 421 10.1038/s41420‑022‑01209‑9 36257929
    [Google Scholar]
  51. Shukla S. Allam U.S. Ahsan A. Chen G. Krishnamurthy P.M. Marsh K. Rumschlag M. Shankar S. Whitehead C. Schipper M. Basrur V. Southworth D.R. Chinnaiyan A.M. Rehemtulla A. Beer D.G. Lawrence T.S. Nyati M.K. Ray D. KRAS protein stability is regulated through SMURF2: UBCH5 complex-mediated β-TrCP1 degradation. Neoplasia 2014 16 2 115 W5 10.1593/neo.14184 24709419
    [Google Scholar]
  52. Duan H. Lei Z. Xu F. Pan T. Lu D. Ding P. Zhu C. Pan C. Zhang S. PARK2 suppresses proliferation and tumorigenicity in non-small cell lung cancer. Front. Oncol. 2019 9 790 10.3389/fonc.2019.00790 31508359
    [Google Scholar]
  53. Wang S. Xu L. Che X. Li C. Xu L. Hou K. Fan Y. Wen T. Qu X. Liu Y. E3 ubiquitin ligases Cbl-b and c-Cbl downregulate PD-L1 in EGFR wild-type non-small cell lung cancer. FEBS Lett. 2018 592 4 621 630 10.1002/1873‑3468.12985 29364514
    [Google Scholar]
  54. Rorsman C. Tsioumpekou M. Heldin C.H. Lennartsson J. The ubiquitin ligases c-Cbl and Cbl-b negatively regulate platelet-derived growth factor (PDGF) BB-induced chemotaxis by affecting PDGF receptor β (PDGFRβ) internalization and signaling. J. Biol. Chem. 2016 291 22 11608 11618 10.1074/jbc.M115.705814 27048651
    [Google Scholar]
  55. Hong S.Y. Kao Y.R. Lee T.C. Wu C.W. Upregulation of E3 ubiquitin ligase CBLC enhances EGFR dysregulation and signaling in lung adenocarcinoma. Cancer Res. 2018 78 17 4984 4996 10.1158/0008‑5472.CAN‑17‑3858 29945960
    [Google Scholar]
  56. Yu X. Minter-Dykhouse K. Malureanu L. Zhao W.M. Zhang D. Merkle C.J. Ward I.M. Saya H. Fang G. van Deursen J. Chen J. Chfr is required for tumor suppression and Aurora A regulation. Nat. Genet. 2005 37 4 401 406 10.1038/ng1538 15793587
    [Google Scholar]
  57. Liu Z. Wu Y. Tao Z. Ma L. E3 ubiquitin ligase Hakai regulates cell growth and invasion, and increases the chemosensitivity to cisplatin in non-small-cell lung cancer cells. Int. J. Mol. Med. 2018 42 2 1145 1151 10.3892/ijmm.2018.3683 29786107
    [Google Scholar]
  58. Liu L. Yu L. Zeng C. Long H. Duan G. Yin G. Dai X. Lin Z. E3 ubiquitin ligase HRD1 promotes lung tumorigenesis by promoting sirtuin 2 ubiquitination and degradation. Mol. Cell. Biol. 2020 40 7 e00257-19 10.1128/MCB.00257‑19 31932479
    [Google Scholar]
  59. Haupt Y. Maya R. Kazaz A. Oren M. Mdm2 promotes the rapid degradation of p53. Nature 1997 387 6630 296 299 10.1038/387296a0 9153395
    [Google Scholar]
  60. Li K. Zheng X. Tang H. Zang Y.S. Zeng C. Liu X. Shen Y. Pang Y. Wang S. Xie F. Lu X. Luo Y. Li Z. Bi W. Jia X. Huang T. Wei R. Huang K. Chen Z. Zhu Q. He Y. Zhang M. Gu Z. Xiao Y. Zhang X. Fletcher J.A. Wang Y. E3 ligase MKRN3 is a tumor suppressor regulating PABPC1 ubiquitination in non–small cell lung cancer. J. Exp. Med. 2021 218 8 e20210151 10.1084/jem.20210151 34143182
    [Google Scholar]
  61. Hattori T. Isobe T. Abe K. Kikuchi H. Kitagawa K. Oda T. Uchida C. Kitagawa M. Pirh2 promotes ubiquitin-dependent degradation of the cyclin-dependent kinase inhibitor p27Kip1. Cancer Res. 2007 67 22 10789 10795 10.1158/0008‑5472.CAN‑07‑2033 18006823
    [Google Scholar]
  62. Wu X.T. Wang Y.H. Cai X.Y. Dong Y. Cui Q. Zhou Y.N. Yang X.W. Lu W.F. Zhang M. RNF115 promotes lung adenocarcinoma through Wnt/β-catenin pathway activation by mediating APC ubiquitination. Cancer Metab. 2021 9 1 7 10.1186/s40170‑021‑00243‑y 33509267
    [Google Scholar]
  63. Callow M.G. Tran H. Phu L. Lau T. Lee J. Sandoval W.N. Liu P.S. Bheddah S. Tao J. Lill J.R. Hongo J.A. Davis D. Kirkpatrick D.S. Polakis P. Costa M. Ubiquitin ligase RNF146 regulates tankyrase and Axin to promote Wnt signaling. PLoS One 2011 6 7 e22595 10.1371/journal.pone.0022595 21799911
    [Google Scholar]
  64. Ding Y. Lu Y. Xie X. Cao L. Zheng S. Ring finger protein 180 suppresses cell proliferation and energy metabolism of non-small cell lung cancer through downregulating C-myc. World J. Surg. Oncol. 2022 20 1 162 10.1186/s12957‑022‑02599‑x 35598017
    [Google Scholar]
  65. Nakayama K. Frew I.J. Hagensen M. Skals M. Habelhah H. Bhoumik A. Kadoya T. Erdjument-Bromage H. Tempst P. Frappell P.B. Bowtell D.D. Ronai Z. Siah2 regulates stability of prolyl-hydroxylases, controls HIF1alpha abundance, and modulates physiological responses to hypoxia. Cell 2004 117 7 941 952 10.1016/j.cell.2004.06.001 15210114
    [Google Scholar]
  66. Wang Q. Gao G. Zhang T. Yao K. Chen H. Park M.H. Yamamoto H. Wang K. Ma W. Malakhova M. Bode A.M. Dong Z. TRAF1 is critical for regulating the BRAF/MEK/ERK pathway in non–small cell lung carcinogenesis. Cancer Res. 2018 78 14 3982 3994 10.1158/0008‑5472.CAN‑18‑0429 29748372
    [Google Scholar]
  67. Linares J.F. Duran A. Yajima T. Pasparakis M. Moscat J. Diaz-Meco M.T. K63 polyubiquitination and activation of mTOR by the p62-TRAF6 complex in nutrient-activated cells. Mol. Cell 2013 51 3 283 296 10.1016/j.molcel.2013.06.020 23911927
    [Google Scholar]
  68. Liang M. Wang L. Sun Z. Chen X. Wang H. Qin L. Zhao W. Geng B. E3 ligase TRIM15 facilitates non-small cell lung cancer progression through mediating Keap1-Nrf2 signaling pathway. Cell Commun. Signal. 2022 20 1 62 10.1186/s12964‑022‑00875‑7 35534896
    [Google Scholar]
  69. Allton K. Jain A.K. Herz H.M. Tsai W.W. Jung S.Y. Qin J. Bergmann A. Johnson R.L. Barton M.C. Trim24 targets endogenous p53 for degradation. Proc. Natl. Acad. Sci. USA 2009 106 28 11612 11616 10.1073/pnas.0813177106 19556538
    [Google Scholar]
  70. He Y. Zhou X. Jiang S. Zhang Z. Cao B. Liu J. Zeng Y. Zhao J. Mao X. TRIM25 activates AKT/mTOR by inhibiting PTEN via K63-linked polyubiquitination in non-small cell lung cancer. Acta Pharmacol. Sin. 2022 43 3 681 691 10.1038/s41401‑021‑00662‑z 33931764
    [Google Scholar]
  71. Bornstein G. Bloom J. Sitry-Shevah D. Nakayama K. Pagano M. Hershko A. Role of the SCFSkp2 ubiquitin ligase in the degradation of p21Cip1 in S phase. J. Biol. Chem. 2003 278 28 25752 25757 10.1074/jbc.M301774200 12730199
    [Google Scholar]
  72. Morizane Y. Honda R. Fukami K. Yasuda H. X-linked inhibitor of apoptosis functions as ubiquitin ligase toward mature caspase-9 and cytosolic Smac/DIABLO. J. Biochem. 2005 137 2 125 132 10.1093/jb/mvi029 15749826
    [Google Scholar]
  73. Shi Y. Wang X. Xu Z. He Y. Guo C. He L. Huan C. Cai C. Huang J. Zhang J. Li Y. Zeng C. Zhang X. Wang L. Ke Y. Cheng H. PDLIM5 inhibits STUB1-mediated degradation of SMAD3 and promotes the migration and invasion of lung cancer cells. J. Biol. Chem. 2020 295 40 13798 13811 10.1074/jbc.RA120.014976 32737199
    [Google Scholar]
  74. Burslem G.M. Ottis P. Jaime-Figueroa S. Morgan A. Cromm P.M. Toure M. Crews C.M. Efficient synthesis of immunomodulatory drug analogues enables exploration of structure–degradation relationships. ChemMedChem 2018 13 15 1508 1512 10.1002/cmdc.201800271 29870139
    [Google Scholar]
  75. Sakamoto K.M. Kim K.B. Kumagai A. Mercurio F. Crews C.M. Deshaies R.J. Protacs: Chimeric molecules that target proteins to the Skp1–Cullin–F box complex for ubiquitination and degradation. Proc. Natl. Acad. Sci. USA 2001 98 15 8554 8559 10.1073/pnas.141230798 11438690
    [Google Scholar]
  76. Schneekloth J.S. Jr Fonseca F.N. Koldobskiy M. Mandal A. Deshaies R. Sakamoto K. Crews C.M. Chemical genetic control of protein levels: Selective in vivo targeted degradation. J. Am. Chem. Soc. 2004 126 12 3748 3754 10.1021/ja039025z 15038727
    [Google Scholar]
  77. Sun X. Gao H. Yang Y. He M. Wu Y. Song Y. Tong Y. Rao Y. PROTACs: Great opportunities for academia and industry. Signal Transduct. Target. Ther. 2019 4 1 64 10.1038/s41392‑019‑0101‑6 31885879
    [Google Scholar]
  78. Schneekloth A.R. Pucheault M. Tae H.S. Crews C.M. Targeted intracellular protein degradation induced by a small molecule: En route to chemical proteomics. Bioorg. Med. Chem. Lett. 2008 18 22 5904 5908 10.1016/j.bmcl.2008.07.114 18752944
    [Google Scholar]
  79. Spradlin J.N. Hu X. Ward C.C. Brittain S.M. Jones M.D. Ou L. To M. Proudfoot A. Ornelas E. Woldegiorgis M. Olzmann J.A. Bussiere D.E. Thomas J.R. Tallarico J.A. McKenna J.M. Schirle M. Maimone T.J. Nomura D.K. Harnessing the anti-cancer natural product nimbolide for targeted protein degradation. Nat. Chem. Biol. 2019 15 7 747 755 10.1038/s41589‑019‑0304‑8 31209351
    [Google Scholar]
  80. Zhang X. Crowley V.M. Wucherpfennig T.G. Dix M.M. Cravatt B.F. Electrophilic PROTACs that degrade nuclear proteins by engaging DCAF16. Nat. Chem. Biol. 2019 15 7 737 746 10.1038/s41589‑019‑0279‑5 31209349
    [Google Scholar]
  81. Tong B. Luo M. Xie Y. Spradlin J.N. Tallarico J.A. McKenna J.M. Schirle M. Maimone T.J. Nomura D.K. Bardoxolone conjugation enables targeted protein degradation of BRD4. Sci. Rep. 2020 10 1 15543 10.1038/s41598‑020‑72491‑9 32968148
    [Google Scholar]
  82. Chamberlain P.P. Lopez-Girona A. Miller K. Carmel G. Pagarigan B. Chie-Leon B. Rychak E. Corral L.G. Ren Y.J. Wang M. Riley M. Delker S.L. Ito T. Ando H. Mori T. Hirano Y. Handa H. Hakoshima T. Daniel T.O. Cathers B.E. Structure of the human Cereblon–DDB1–lenalidomide complex reveals basis for responsiveness to thalidomide analogs. Nat. Struct. Mol. Biol. 2014 21 9 803 809 10.1038/nsmb.2874 25108355
    [Google Scholar]
  83. Zhu Y.X. Braggio E. Shi C.X. Bruins L.A. Schmidt J.E. Van Wier S. Chang X.B. Bjorklund C.C. Fonseca R. Bergsagel P.L. Orlowski R.Z. Stewart A.K. Cereblon expression is required for the antimyeloma activity of lenalidomide and pomalidomide. Blood 2011 118 18 4771 4779 10.1182/blood‑2011‑05‑356063 21860026
    [Google Scholar]
  84. Noblejas-López M.M. Tébar-García D. López-Rosa R. Alcaraz-Sanabria A. Cristóbal-Cueto P. Pinedo-Serrano A. Rivas-García L. Galán-Moya E.M. TACkling cancer by targeting selective protein degradation. Pharmaceutics 2023 15 10 2442 10.3390/pharmaceutics15102442 37896202
    [Google Scholar]
  85. Thapa R. Bhat A.A. Gupta G. Renuka Jyothi S. Kaur I. Kumar S. Sharma N. Prasad G.V.S. Pramanik A. Ali H. CRBN-PROTACs in cancer therapy: From mechanistic insights to clinical applications. Chem. Biol. Drug Des. 2024 104 5 e70009 10.1111/cbdd.70009 39496477
    [Google Scholar]
  86. Qu X. Liu H. Song X. Sun N. Zhong H. Qiu X. Yang X. Jiang B. Effective degradation of EGFRL858R+T790M mutant proteins by CRBN-based PROTACs through both proteosome and autophagy/lysosome degradation systems. Eur. J. Med. Chem. 2021 218 113328 10.1016/j.ejmech.2021.113328 33773286
    [Google Scholar]
  87. Burslem G.M. Smith B.E. Lai A.C. Jaime-Figueroa S. McQuaid D.C. Bondeson D.P. Toure M. Dong H. Qian Y. Wang J. Crew A.P. Hines J. Crews C.M. The advantages of targeted protein degradation over inhibition: An RTK case study. Cell Chem. Biol. 2018 25 1 67 77.e3 10.1016/j.chembiol.2017.09.009 29129716
    [Google Scholar]
  88. Du Y. Chen Y. Wang Y. Chen J. Lu X. Zhang L. Li Y. Wang Z. Ye G. Zhang G. HJM-561, a potent, selective, and orally bioavailable EGFR PROTAC that overcomes osimertinib-resistant EGFR triple mutations. Mol. Cancer Ther. 2022 21 7 1060 1066 10.1158/1535‑7163.MCT‑21‑0835 35499406
    [Google Scholar]
  89. Shi S. Du Y. Huang L. Cui J. Niu J. Xu Y. Zhu Q. Discovery of novel potent covalent inhibitor-based EGFR degrader with excellent in vivo efficacy. Bioorg. Chem. 2022 120 105605 10.1016/j.bioorg.2022.105605 35081479
    [Google Scholar]
  90. Shen J. Chen L. Liu J. Li A. Zheng L. Chen S. Li Y. EGFR degraders in non-small-cell lung cancer: Breakthrough and unresolved issue. Chem. Biol. Drug Des. 2024 103 4 e14517 10.1111/cbdd.14517 38610074
    [Google Scholar]
  91. Zhang W. Li P. Sun S. Jia C. Yang N. Zhuang X. Zheng Z. Li S. Discovery of highly potent and selective CRBN-recruiting EGFRL858R/T790M degraders in vivo. Eur. J. Med. Chem. 2022 238 114509 10.1016/j.ejmech.2022.114509 35691176
    [Google Scholar]
  92. Zeng M. Xiong Y. Safaee N. Nowak R.P. Donovan K.A. Yuan C.J. Nabet B. Gero T.W. Feru F. Li L. Gondi S. Ombelets L.J. Quan C. Jänne P.A. Kostic M. Scott D.A. Westover K.D. Fischer E.S. Gray N.S. Exploring targeted degradation strategy for oncogenic KRASG12C. Cell Chem. Biol. 2020 27 1 19 31.e6 10.1016/j.chembiol.2019.12.006 31883964
    [Google Scholar]
  93. Bond M.J. Chu L. Nalawansha D.A. Li K. Crews C.M. Targeted degradation of oncogenic KRAS G12C by VHL-recruiting PROTACs. ACS Cent. Sci. 2020 6 8 1367 1375 10.1021/acscentsci.0c00411 32875077
    [Google Scholar]
  94. Hussain M.S. Moglad E. Afzal M. Bansal P. Kaur H. Deorari M. Ali H. Shahwan M. Hassan almalki W. Kazmi I. Alzarea S.I. Singh S.K. Dua K. Gupta G. Circular RNAs in the KRAS pathway: Emerging players in cancer progression. Pathol. Res. Pract. 2024 256 155259 10.1016/j.prp.2024.155259 38503004
    [Google Scholar]
  95. Powell C.E. Gao Y. Tan L. Donovan K.A. Nowak R.P. Loehr A. Bahcall M. Fischer E.S. Jänne P.A. George R.E. Gray N.S. Chemically induced degradation of anaplastic lymphoma kinase (ALK). J. Med. Chem. 2018 61 9 4249 4255 10.1021/acs.jmedchem.7b01655 29660984
    [Google Scholar]
  96. Liu J. Chen H. Ma L. He Z. Wang D. Liu Y. Lin Q. Zhang T. Gray N. Kaniskan H.Ü. Jin J. Wei W. Light-induced control of protein destruction by opto-PROTAC. Sci. Adv. 2020 6 8 eaay5154 10.1126/sciadv.aay5154 32128407
    [Google Scholar]
  97. Ren C. Sun N. Kong Y. Qu X. Liu H. Zhong H. Song X. Yang X. Jiang B. Structure-based discovery of SIAIS001 as an oral bioavailability ALK degrader constructed from Alectinib. Eur. J. Med. Chem. 2021 217 113335 10.1016/j.ejmech.2021.113335 33751979
    [Google Scholar]
  98. Czyzyk-Krzeska M.F. Meller J. von Hippel–Lindau tumor suppressor: Not only HIF’s executioner. Trends Mol. Med. 2004 10 4 146 149 10.1016/j.molmed.2004.02.004 15162797
    [Google Scholar]
  99. Buckley D.L. Gustafson J.L. Van Molle I. Roth A.G. Tae H.S. Gareiss P.C. Jorgensen W.L. Ciulli A. Crews C.M. Small-molecule inhibitors of the interaction between the E3 ligase VHL and HIF1α. Angew. Chem. Int. Ed. 2012 51 46 11463 11467 10.1002/anie.201206231 23065727
    [Google Scholar]
  100. Wang X. Feng S. Fan J. Li X. Wen Q. Luo N. New strategy for renal fibrosis: Targeting Smad3 proteins for ubiquitination and degradation. Biochem. Pharmacol. 2016 116 200 209 10.1016/j.bcp.2016.07.017 27473774
    [Google Scholar]
  101. Yang F. Wen Y. Wang C. Zhou Y. Zhou Y. Zhang Z.M. Liu T. Lu X. Efficient targeted oncogenic KRASG12C degradation via first reversible-covalent PROTAC. Eur. J. Med. Chem. 2022 230 114088 10.1016/j.ejmech.2021.114088 35007863
    [Google Scholar]
  102. Zhou C. Fan Z. Zhou Z. Li Y. Cui R. Liu C. Zhou G. Diao X. Jiang H. Zheng M. Zhang S. Xu T. Discovery of the first-in-class agonist-based SOS1 PROTACs effective in human cancer cells harboring various KRAS mutations. J. Med. Chem. 2022 65 5 3923 3942 10.1021/acs.jmedchem.1c01774 35230841
    [Google Scholar]
  103. Lavacchi D. Mazzoni F. Giaccone G. Clinical evaluation of dacomitinib for the treatment of metastatic non-small cell lung cancer (NSCLC): Current perspectives. Drug Des. Devel. Ther. 2019 13 3187 3198 10.2147/DDDT.S194231 31564835
    [Google Scholar]
  104. Wang M. Lu J. Wang M. Yang C.Y. Wang S. Discovery of SHP2-D26 as a first, potent, and effective PROTAC degrader of SHP2 protein. J. Med. Chem. 2020 63 14 7510 7528 10.1021/acs.jmedchem.0c00471 32437146
    [Google Scholar]
  105. Liu J. Xue L. Xu X. Luo J. Zhang S. FAK-targeting PROTAC demonstrates enhanced antitumor activity against KRAS mutant non-small cell lung cancer. Exp. Cell Res. 2021 408 2 112868 10.1016/j.yexcr.2021.112868 34648846
    [Google Scholar]
  106. Sun Y. Wang R. Sun Y. Wang L. Xue Y. Wang J. Wu T. Yin W. Qin Q. Sun Y. Zhao D. Cheng M. Identification of novel and potent PROTACs targeting FAK for non-small cell lung cancer: Design, synthesis, and biological study. Eur. J. Med. Chem. 2022 237 114373 10.1016/j.ejmech.2022.114373 35486993
    [Google Scholar]
  107. Bai L. Zhou H. Xu R. Zhao Y. Chinnaswamy K. McEachern D. Chen J. Yang C.Y. Liu Z. Wang M. Liu L. Jiang H. Wen B. Kumar P. Meagher J.L. Sun D. Stuckey J.A. Wang S. A potent and selective small-molecule degrader of STAT3 achieves complete tumor regression in vivo. Cancer Cell 2019 36 5 498 511.e17 10.1016/j.ccell.2019.10.002 31715132
    [Google Scholar]
  108. Khan S. Zhang X. Lv D. Zhang Q. He Y. Zhang P. Liu X. Thummuri D. Yuan Y. Wiegand J.S. Pei J. Zhang W. Sharma A. McCurdy C.R. Kuruvilla V.M. Baran N. Ferrando A.A. Kim Y. Rogojina A. Houghton P.J. Huang G. Hromas R. Konopleva M. Zheng G. Zhou D. A selective BCL-XL PROTAC degrader achieves safe and potent antitumor activity. Nat. Med. 2019 25 12 1938 1947 10.1038/s41591‑019‑0668‑z 31792461
    [Google Scholar]
  109. Diehl C.J. Ciulli A. Discovery of small molecule ligands for the von Hippel-Lindau (VHL) E3 ligase and their use as inhibitors and PROTAC degraders. Chem. Soc. Rev. 2022 51 19 8216 8257 10.1039/D2CS00387B 35983982
    [Google Scholar]
  110. Lu D. Yu X. Lin H. Cheng R. Monroy E.Y. Qi X. Wang M.C. Wang J. Applications of covalent chemistry in targeted protein degradation. Chem. Soc. Rev. 2022 51 22 9243 9261 10.1039/D2CS00362G 36285735
    [Google Scholar]
  111. Tamura T. Kawano M. Hamachi I. Targeted covalent modification strategies for drugging the undruggable targets. Chem. Rev. 2025 125 2 1191 1253 10.1021/acs.chemrev.4c00745 39772527
    [Google Scholar]
  112. Fulda S. Vucic D. Targeting IAP proteins for therapeutic intervention in cancer. Nat. Rev. Drug Discov. 2012 11 2 109 124 10.1038/nrd3627 22293567
    [Google Scholar]
  113. Cohen P. Tcherpakov M. Will the ubiquitin system furnish as many drug targets as protein kinases? Cell 2010 143 5 686 693 10.1016/j.cell.2010.11.016 21111230
    [Google Scholar]
  114. Ohoka N. Okuhira K. Ito M. Nagai K. Shibata N. Hattori T. Ujikawa O. Shimokawa K. Sano O. Koyama R. Fujita H. Teratani M. Matsumoto H. Imaeda Y. Nara H. Cho N. Naito M. In vivo knockdown of pathogenic proteins via specific and nongenetic Inhibitor of Apoptosis Protein (IAP)-dependent Protein Erasers (SNIPERs). J. Biol. Chem. 2017 292 11 4556 4570 10.1074/jbc.M116.768853 28154167
    [Google Scholar]
  115. Varfolomeev E. Blankenship J.W. Wayson S.M. Fedorova A.V. Kayagaki N. Garg P. Zobel K. Dynek J.N. Elliott L.O. Wallweber H.J.A. Flygare J.A. Fairbrother W.J. Deshayes K. Dixit V.M. Vucic D. IAP antagonists induce autoubiquitination of c-IAPs, NF-kappaB activation, and TNFalpha-dependent apoptosis. Cell 2007 131 4 669 681 10.1016/j.cell.2007.10.030 18022362
    [Google Scholar]
  116. Okuhira K. Demizu Y. Hattori T. Ohoka N. Shibata N. Nishimaki-Mogami T. Okuda H. Kurihara M. Naito M. Development of hybrid small molecules that induce degradation of estrogen receptor‐alpha and necrotic cell death in breast cancer cells. Cancer Sci. 2013 104 11 1492 1498 10.1111/cas.12272 23992566
    [Google Scholar]
  117. Cossu F. Milani M. Mastrangelo E. Lecis D. Targeting the BIR domains of Inhibitor of Apoptosis (IAP) proteins in cancer treatment. Comput. Struct. Biotechnol. J. 2019 17 142 150 10.1016/j.csbj.2019.01.009 30766663
    [Google Scholar]
  118. Vucic D. Fairbrother W.J. The inhibitor of apoptosis proteins as therapeutic targets in cancer. Clin. Cancer Res. 2007 13 20 5995 6000 10.1158/1078‑0432.CCR‑07‑0729 17947460
    [Google Scholar]
  119. Thapa R. Gupta S. Gupta G. Bhat A.A. Smriti Singla M. Ali H. Singh S.K. Dua K. Kashyap M.K. Epithelial–mesenchymal transition to mitigate age-related progression in lung cancer. Ageing Res. Rev. 2024 102 102576 10.1016/j.arr.2024.102576 39515620
    [Google Scholar]
  120. Levine A.J. p53, the cellular gatekeeper for growth and division. Cell 1997 88 3 323 331 10.1016/S0092‑8674(00)81871‑1 9039259
    [Google Scholar]
  121. Michael D. Oren M. The p53–Mdm2 module and the ubiquitin system. Semin. Cancer Biol. 2003 13 1 49 58 10.1016/S1044‑579X(02)00099‑8 12507556
    [Google Scholar]
  122. Momand J. Jung D. Wilczynski S. Niland J. The MDM2 gene amplification database. Nucleic Acids Res. 1998 26 15 3453 3459 10.1093/nar/26.15.3453 9671804
    [Google Scholar]
  123. Singh S. Saxena S. Sharma H. Paudel K.R. Chakraborty A. MacLoughlin R. Oliver B.G. Gupta G. Negi P. Singh S.K. Dua K. Emerging role of tumor suppressing microRNAs as therapeutics in managing non-small cell lung cancer. Pathol. Res. Pract. 2024 256 155222 10.1016/j.prp.2024.155222 38452582
    [Google Scholar]
  124. Sun Y. Zhao X. Ding N. Gao H. Wu Y. Yang Y. Zhao M. Hwang J. Song Y. Liu W. Rao Y. PROTAC-induced BTK degradation as a novel therapy for mutated BTK C481S induced ibrutinib-resistant B-cell malignancies. Cell Res. 2018 28 7 779 781 10.1038/s41422‑018‑0055‑1 29875397
    [Google Scholar]
  125. Zhao Q. Lan T. Su S. Rao Y. Induction of apoptosis in MDA-MB-231 breast cancer cells by a PARP1-targeting PROTAC small molecule. Chem. Commun. (Camb.) 2019 55 3 369 372 10.1039/C8CC07813K 30540295
    [Google Scholar]
  126. Vicente A.T.S. Salvador J.A.R. MDM2-based proteolysis-targeting chimeras (PROTACs): An innovative drug strategy for cancer treatment. Int. J. Mol. Sci. 2022 23 19 11068 10.3390/ijms231911068 36232374
    [Google Scholar]
  127. Hines J. Lartigue S. Dong H. Qian Y. Crews C.M. MDM2-recruiting PROTAC offers superior, synergistic antiproliferative activity via simultaneous degradation of BRD4 and stabilization of p53. Cancer Res. 2019 79 1 251 262 10.1158/0008‑5472.CAN‑18‑2918 30385614
    [Google Scholar]
  128. Qi S.M. Dong J. Xu Z.Y. Cheng X.D. Zhang W.D. Qin J.J. PROTAC: An effective targeted protein degradation strategy for cancer therapy. Front. Pharmacol. 2021 12 692574 10.3389/fphar.2021.692574 34025443
    [Google Scholar]
  129. Saeid A.B. Paudel K.R. De Rubis G. Mehndiratta S. Kokkinis S. Vishwas S. Yeung S. Gupta G. Singh S.K. Dua K. Fisetin-loaded nanoemulsion ameliorates lung cancer pathogenesis via downregulating cathepsin-B, galectin-3 and enolase in an in vitro setting. EXCLI J. 2024 23 1238 1244 39574963
    [Google Scholar]
  130. Yao Y. Zhang Q. Li Z. Zhang H. MDM2: Current research status and prospects of tumor treatment. Cancer Cell Int. 2024 24 1 170 10.1186/s12935‑024‑03356‑8 38741108
    [Google Scholar]
  131. Hou H. Sun D. Zhang X. The role of MDM2 amplification and overexpression in therapeutic resistance of malignant tumors. Cancer Cell Int. 2019 19 1 216 10.1186/s12935‑019‑0937‑4 31440117
    [Google Scholar]
  132. Paudel K.R. Singh M. De Rubis G. Kumbhar P. Mehndiratta S. Kokkinis S. El-Sherkawi T. Gupta G. Singh S.K. Malik M.Z. Mohammed Y. Oliver B.G. Disouza J. Patravale V. Hansbro P.M. Dua K. Computational and biological approaches in repurposing ribavirin for lung cancer treatment: Unveiling antitumorigenic strategies. Life Sci. 2024 352 122859 10.1016/j.lfs.2024.122859 38925223
    [Google Scholar]
  133. Sun D. Qian H. Li J. Xing P. Targeting MDM2 in malignancies is a promising strategy for overcoming resistance to anticancer immunotherapy. J. Biomed. Sci. 2024 31 1 17 10.1186/s12929‑024‑01004‑x 38281981
    [Google Scholar]
  134. Han T. Goralski M. Gaskill N. Capota E. Kim J. Ting T.C. Xie Y. Williams N.S. Nijhawan D. Anticancer sulfonamides target splicing by inducing RBM39 degradation via recruitment to DCAF15. Science 2017 356 6336 eaal3755 10.1126/science.aal3755 28302793
    [Google Scholar]
  135. Maqbool M. Hussain M.S. Bisht A.S. Kumari A. Kamran A. Sultana A. Kumar R. Khan Y. Gupta G. Connecting the dots: LncRNAs in the KRAS pathway and cancer. Pathol. Res. Pract. 2024 262 155570 10.1016/j.prp.2024.155570 39226802
    [Google Scholar]
  136. Du X. Volkov O.A. Czerwinski R.M. Tan H. Huerta C. Morton E.R. Rizzi J.P. Wehn P.M. Xu R. Nijhawan D. Wallace E.M. Structural basis and kinetic pathway of RBM39 recruitment to DCAF15 by a sulfonamide molecular glue E7820. Structure 2019 27 11 1625 1633.e3 10.1016/j.str.2019.10.005 31693911
    [Google Scholar]
  137. Uehara T. Minoshima Y. Sagane K. Sugi N.H. Mitsuhashi K.O. Yamamoto N. Kamiyama H. Takahashi K. Kotake Y. Uesugi M. Yokoi A. Inoue A. Yoshida T. Mabuchi M. Tanaka A. Owa T. Selective degradation of splicing factor CAPERα by anticancer sulfonamides. Nat. Chem. Biol. 2017 13 6 675 680 10.1038/nchembio.2363 28437394
    [Google Scholar]
  138. Li L. Mi D. Pei H. Duan Q. Wang X. Zhou W. Jin J. Li D. Liu M. Chen Y. In vivo target protein degradation induced by PROTACs based on E3 ligase DCAF15. Signal Transduct. Target. Ther. 2020 5 1 129 10.1038/s41392‑020‑00245‑0 32713946
    [Google Scholar]
  139. Hussain M.S. Gupta G. Mishra R. Patel N. Gupta S. Alzarea S.I. Kazmi I. Kumbhar P. Disouza J. Dureja H. Kukreti N. Singh S.K. Dua K. Unlocking the secrets: Volatile Organic Compounds (VOCs) and their devastating effects on lung cancer. Pathol. Res. Pract. 2024 255 155157 10.1016/j.prp.2024.155157 38320440
    [Google Scholar]
  140. Wei S. Xing J. Chen J. Chen L. Lv J. Chen X. Li T. Yu T. Wang H. Wang K. Yu W. DCAF13 inhibits the p53 signaling pathway by promoting p53 ubiquitination modification in lung adenocarcinoma. J. Exp. Clin. Cancer Res. 2024 43 1 3 10.1186/s13046‑023‑02936‑2 38163876
    [Google Scholar]
  141. Gulati N. Chellappan D.K. MacLoughlin R. Gupta G. Singh S.K. Oliver B.G. Dua K. Dureja H. Advances in nano-based drug delivery systems for the management of cytokine influx-mediated inflammation in lung diseases. Naunyn Schmiedebergs Arch. Pharmacol. 2024 397 6 3695 3707 10.1007/s00210‑023‑02882‑y 38078921
    [Google Scholar]
  142. Li A.S.M. Kimani S. Wilson B. Noureldin M. González-Álvarez H. Mamai A. Hoffer L. Guilinger J.P. Zhang Y. von Rechenberg M. Disch J.S. Mulhern C.J. Slakman B.L. Cuozzo J.W. Dong A. Poda G. Mohammed M. Saraon P. Mittal M. Modh P. Rathod V. Patel B. Ackloo S. Santhakumar V. Szewczyk M.M. Barsyte-Lovejoy D. Arrowsmith C.H. Marcellus R. Guié M.A. Keefe A.D. Brown P.J. Halabelian L. Al-awar R. Vedadi M. Discovery of nanomolar DCAF1 small molecule ligands. J. Med. Chem. 2023 66 7 5041 5060 10.1021/acs.jmedchem.2c02132 36948210
    [Google Scholar]
  143. De Rubis G. Paudel K.R. Corrie L. Mehndiratta S. Patel V.K. Kumbhar P.S. Manjappa A.S. Disouza J. Patravale V. Gupta G. Manandhar B. Rajput R. Robinson A.K. Reyes R.J. Chakraborty A. Chellappan D.K. Singh S.K. Oliver B.G.G. Hansbro P.M. Dua K. Applications and advancements of nanoparticle-based drug delivery in alleviating lung cancer and chronic obstructive pulmonary disease. Naunyn Schmiedebergs Arch. Pharmacol. 2024 397 5 2793 2833 10.1007/s00210‑023‑02830‑w 37991539
    [Google Scholar]
  144. Kimani S.W. Owen J. Green S.R. Li F. Li Y. Dong A. Brown P.J. Ackloo S. Kuter D. Yang C. MacAskill M. MacKinnon S.S. Arrowsmith C.H. Schapira M. Shahani V. Halabelian L. Discovery of a novel DCAF1 ligand using a drug–target interaction prediction model: Generalizing machine learning to new drug targets. J. Chem. Inf. Model. 2023 63 13 4070 4078 10.1021/acs.jcim.3c00082 37350740
    [Google Scholar]
  145. Wang C. Zhang Y. Chen W. Wu Y. Xing D. New- generation advanced PROTACs as potential therapeutic agents in cancer therapy. Mol. Cancer 2024 23 1 110 10.1186/s12943‑024‑02024‑9 38773495
    [Google Scholar]
  146. Dahiya R. Sutariya V.B. Gupta S.V. Pant K. Ali H. Alhadrawi M. Kaur K. Sharma A. Rajput P. Gupta G. Almujri S.S. Chinni S.V. Harnessing pyroptosis for lung cancer therapy: The impact of NLRP3 inflammasome activation. Pathol. Res. Pract. 2024 260 155444 10.1016/j.prp.2024.155444 38986361
    [Google Scholar]
  147. Zoppi V. Hughes S.J. Maniaci C. Testa A. Gmaschitz T. Wieshofer C. Koegl M. Riching K.M. Daniels D.L. Spallarossa A. Ciulli A. Iterative design and optimization of initially inactive proteolysis targeting chimeras (PROTACs) identify VZ185 as a potent, fast, and selective von hippel–lindau (VHL) based dual degrader probe of BRD9 and BRD7. J. Med. Chem. 2019 62 2 699 726 10.1021/acs.jmedchem.8b01413 30540463
    [Google Scholar]
  148. Bhat A.A. Afzal M. Moglad E. Thapa R. Ali H. Almalki W.H. Kazmi I. Alzarea S.I. Gupta G. Subramaniyan V. lncRNAs as prognostic markers and therapeutic targets in cuproptosis-mediated cancer. Clin. Exp. Med. 2024 24 1 226 10.1007/s10238‑024‑01491‑0 39325172
    [Google Scholar]
  149. Liang C. Shi X. Fan C. Pathological and diagnostic implications of DCAF16 expression in human carcinomas including adenocarcinoma, squamous cell carcinoma, and urothelial carcinoma. Int. J. Clin. Exp. Pathol. 2017 10 8 8585 8591 31966713
    [Google Scholar]
  150. Davies T.G. Wixted W.E. Coyle J.E. Griffiths-Jones C. Hearn K. McMenamin R. Norton D. Rich S.J. Richardson C. Saxty G. Willems H.M.G. Woolford A.J.A. Cottom J.E. Kou J.P. Yonchuk J.G. Feldser H.G. Sanchez Y. Foley J.P. Bolognese B.J. Logan G. Podolin P.L. Yan H. Callahan J.F. Heightman T.D. Kerns J.K. Monoacidic inhibitors of the kelch-like ECH-associated protein 1: Nuclear factor erythroid 2-related factor 2 (KEAP1:NRF2) protein–protein interaction with high cell potency identified by fragment-based discovery. J. Med. Chem. 2016 59 8 3991 4006 10.1021/acs.jmedchem.6b00228 27031670
    [Google Scholar]
  151. Araghi M. Mannani R. Heidarnejad maleki A. Hamidi A. Rostami S. Safa S.H. Faramarzi F. Khorasani S. Alimohammadi M. Tahmasebi S. Akhavan-Sigari R. Recent advances in non-small cell lung cancer targeted therapy; An update review. Cancer Cell Int. 2023 23 1 162 10.1186/s12935‑023‑02990‑y 37568193
    [Google Scholar]
  152. Yamamoto M. Kensler T.W. Motohashi H. The KEAP1-NRF2 system: a thiol-based sensor-effector apparatus for maintaining redox homeostasis. Physiol. Rev. 2018 98 3 1169 1203 10.1152/physrev.00023.2017 29717933
    [Google Scholar]
  153. Manford A.G. Rodríguez-Pérez F. Shih K.Y. Shi Z. Berdan C.A. Choe M. Titov D.V. Nomura D.K. Rape M. A cellular mechanism to detect and alleviate reductive stress. Cell 2020 183 1 46 61.e21 10.1016/j.cell.2020.08.034 32941802
    [Google Scholar]
  154. Henning N.J. Manford A.G. Spradlin J.N. Brittain S.M. Zhang E. McKenna J.M. Tallarico J.A. Schirle M. Rape M. Nomura D.K. Discovery of a covalent FEM1B recruiter for targeted protein degradation applications. J. Am. Chem. Soc. 2022 144 2 701 708 10.1021/jacs.1c03980 34994556
    [Google Scholar]
  155. Cordani N. Nova D. Sala L. Abbate M.I. Colonese F. Cortinovis D.L. Canova S. Proteolysis Targeting Chimera Agents (PROTACs): new hope for overcoming the resistance mechanisms in oncogene-addicted non-small cell lung cancer. Int. J. Mol. Sci. 2024 25 20 11214 10.3390/ijms252011214 39456995
    [Google Scholar]
  156. Ward C.C. Kleinman J.I. Brittain S.M. Lee P.S. Chung C.Y.S. Kim K. Petri Y. Thomas J.R. Tallarico J.A. McKenna J.M. Schirle M. Nomura D.K. Covalent ligand screening uncovers a RNF4 E3 ligase recruiter for targeted protein degradation applications. ACS Chem. Biol. 2019 14 11 2430 2440 10.1021/acschembio.8b01083 31059647
    [Google Scholar]
  157. Tong B. Spradlin J.N. Novaes L.F.T. Zhang E. Hu X. Moeller M. Brittain S.M. McGregor L.M. McKenna J.M. Tallarico J.A. Schirle M. Maimone T.J. Nomura D.K. A nimbolide-based kinase degrader preferentially degrades oncogenic BCR-ABL. ACS Chem. Biol. 2020 15 7 1788 1794 10.1021/acschembio.0c00348 32568522
    [Google Scholar]
  158. Li X. Pu W. Zheng Q. Ai M. Chen S. Peng Y. Proteolysis-targeting chimeras (PROTACs) in cancer therapy. Mol. Cancer 2022 21 1 99 10.1186/s12943‑021‑01434‑3 35410300
    [Google Scholar]
  159. Wang C. Zhang Y. Wu Y. Xing D. Developments of CRBN-based PROTACs as potential therapeutic agents. Eur. J. Med. Chem. 2021 225 113749 10.1016/j.ejmech.2021.113749 34411892
    [Google Scholar]
  160. Liu Y. Ouyang L. Mao C. Chen Y. Liu N. Chen L. Shi Y. Xiao D. Liu S. Tao Y. Inhibition of RNF182 mediated by Bap promotes non-small cell lung cancer progression. Front. Oncol. 2023 12 1009508 10.3389/fonc.2022.1009508 36686776
    [Google Scholar]
  161. Fu X.Y. Yin H. Chen X.T. Yao J.F. Ma Y.N. Song M. Xu H. Yu Q.Y. Du S.S. Qi Y.K. Wang K.W. Three rounds of stability-guided optimization and systematical evaluation of oncolytic peptide LTX-315. J. Med. Chem. 2024 67 5 3885 3908 10.1021/acs.jmedchem.3c02232 38278140
    [Google Scholar]
  162. Guan X. Xu X. Tao Y. Deng X. He L. Lin Z. Chang J. Huang J. Zhou D. Yu X. Wei M. Zhang L. Dual targeting and bioresponsive nano-PROTAC induced precise and effective lung cancer therapy. J. Nanobiotechnology 2024 22 1 692 10.1186/s12951‑024‑02967‑7 39523308
    [Google Scholar]
  163. Yin H. Chen X. Chi Q. Ma Y. Fu X. Du S. Qi Y. Wang K. The hybrid oncolytic peptide NTP-385 potently inhibits adherent cancer cells by targeting the nucleus. Acta Pharmacol. Sin. 2023 44 1 201 210 10.1038/s41401‑022‑00939‑x 35794372
    [Google Scholar]
  164. Cao Z. Zhu J. Wang Z. Peng Y. Zeng L. Comprehensive pan-cancer analysis reveals ENC1 as a promising prognostic biomarker for tumor microenvironment and therapeutic responses. Sci. Rep. 2024 14 1 25331 10.1038/s41598‑024‑76798‑9 39455818
    [Google Scholar]
  165. Zhou L. Lu Y. Liu W. Wang S. Wang L. Zheng P. Zi G. Liu H. Liu W. Wei S. Drug conjugates for the treatment of lung cancer: From drug discovery to clinical practice. Exp. Hematol. Oncol. 2024 13 1 26 10.1186/s40164‑024‑00493‑8 38429828
    [Google Scholar]
  166. Liu H. Tang Y. Zhou Q. Zhang J. Li X. Gu H. Hu B. Li Y. The interrelation of blood urea nitrogen-to-albumin ratio with three-month clinical outcomes in acute ischemic stroke cases: A secondary analytical exploration derived from a prospective cohort study. Int. J. Gen. Med. 2024 17 5333 5347 10.2147/IJGM.S483505 39574467
    [Google Scholar]
  167. Lou Y. Zou X. Pan Z. Huang Z. Zheng S. Zheng X. Yang X. Bao M. Zhang Y. Gu J. Zhang Y. The mechanism of action of Botrychium (Thunb.) Sw. for prevention of idiopathic pulmonary fibrosis based on 1H-NMR-based metabolomics. J. Pharm. Pharmacol. 2024 76 8 1018 1027 10.1093/jpp/rgae058 38776436
    [Google Scholar]
  168. Lin X. Liao Y. Chen X. Long D. Yu T. Shen F. Regulation of oncoprotein 18/stathmin signaling by ERK concerns the resistance to taxol in nonsmall cell lung cancer cells. Cancer Biother. Radiopharm. 2016 31 2 37 43 10.1089/cbr.2015.1921 26881937
    [Google Scholar]
  169. Zhuang M. Guan S. Wang H. Burlingame A.L. Wells J.A. Substrates of IAP ubiquitin ligases identified with a designed orthogonal E3 ligase, the NEDDylator. Mol. Cell 2013 49 2 273 282 10.1016/j.molcel.2012.10.022 23201124
    [Google Scholar]
  170. Nie Y. Li D. Peng Y. Wang S. Hu S. Liu M. Ding J. Zhou W. Metal organic framework coated MnO2 nanosheets delivering doxorubicin and self-activated DNAzyme for chemo-gene combinatorial treatment of cancer. Int. J. Pharm. 2020 585 119513 10.1016/j.ijpharm.2020.119513 32526334
    [Google Scholar]
  171. Skaar J.R. Pagan J.K. Pagano M. SCF ubiquitin ligase-targeted therapies. Nat. Rev. Drug Discov. 2014 13 12 889 903 10.1038/nrd4432 25394868
    [Google Scholar]
  172. Jiang C.H. Sun T.L. Xiang D.X. Wei S.S. Li W.Q. Anticancer activity and mechanism of xanthohumol: A prenylated flavonoid from hops (Humulus lupulus L.). Front. Pharmacol. 2018 9 530 10.3389/fphar.2018.00530 29872398
    [Google Scholar]
  173. Buetow L. Huang D.T. Structural insights into the catalysis and regulation of E3 ubiquitin ligases. Nat. Rev. Mol. Cell Biol. 2016 17 10 626 642 10.1038/nrm.2016.91 27485899
    [Google Scholar]
  174. Jiang Y. Chen R. Xu S. Ding Y. Zhang M. Bao M. He B. Li S. Endocrine and metabolic factors and the risk of idiopathic pulmonary fibrosis: A Mendelian randomization study. Front. Endocrinol. (Lausanne) 2024 14 1321576 10.3389/fendo.2023.1321576 38260151
    [Google Scholar]
  175. Li Y. Wang N. Huang Y. He S. Bao M. Wen C. Wu L. CircMYBL1 suppressed acquired resistance to osimertinib in non-small-cell lung cancer. Cancer Genet. 2024 284-285 34 42 10.1016/j.cancergen.2024.04.001 38626533
    [Google Scholar]
  176. Zhao C. Song W. Wang J. Tang X. Jiang Z. Immunoadjuvant-functionalized metal–organic frameworks: Synthesis and applications in tumor immune modulation. Chem. Commun. (Camb.) 2025 61 10 1962 1977 10.1039/D4CC06510G 39774558
    [Google Scholar]
  177. Ott P.A. Hodi F.S. Robert C. CTLA-4 and PD-1/PD-L1 blockade: New immunotherapeutic modalities with durable clinical benefit in melanoma patients. Clin. Cancer Res. 2013 19 19 5300 5309 10.1158/1078‑0432.CCR‑13‑0143 24089443
    [Google Scholar]
  178. Dong Q. Jiang Z. Platinum–iron nanoparticles for oxygen-enhanced sonodynamic tumor cell suppression. Inorganics (Basel) 2024 12 12 331 10.3390/inorganics12120331
    [Google Scholar]
  179. Fong P.C. Boss D.S. Yap T.A. Tutt A. Wu P. Mergui-Roelvink M. Mortimer P. Swaisland H. Lau A. O’Connor M.J. Ashworth A. Carmichael J. Kaye S.B. Schellens J.H.M. de Bono J.S. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N. Engl. J. Med. 2009 361 2 123 134 10.1056/NEJMoa0900212 19553641
    [Google Scholar]
  180. Hussain M.S. Sharma S. Kumari A. Kamran A. Bahl G. Bisht A.S. Sultana A. Ashique S. Ramalingam P.S. Arumugam S. Role of long non-coding RNAs in neurofibromatosis and Schwannomatosis: Pathogenesis and therapeutic potential. Epigenomics 2024 16 23-24 1453 1464 10.1080/17501911.2024.2430170 39601046
    [Google Scholar]
  181. Yin D. Zhong Y. Ling S. Lu S. Wang X. Jiang Z. Wang J. Dai Y. Tian X. Huang Q. Wang X. Chen J. Li Z. Li Y. Xu Z. Jiang H. Wu Y. Shi Y. Wang Q. Xu J. Hong W. Xue H. Yang H. Zhang Y. Da L. Han Z. Tao S. Dong R. Ying T. Hong J. Cai Y. Dendritic-cell-targeting virus-like particles as potent mRNA vaccine carriers. Nat. Biomed. Eng. 2024 9 2 185 200 10.1038/s41551‑024‑01208‑4 38714892
    [Google Scholar]
  182. Hanzl A. Winter G.E. Targeted protein degradation: Current and future challenges. Curr. Opin. Chem. Biol. 2020 56 35 41 10.1016/j.cbpa.2019.11.012 31901786
    [Google Scholar]
  183. Li Z. Fan J. Xiao Y. Wang W. Zhen C. Pan J. Wu W. Liu Y. Chen Z. Yan Q. Zeng H. Luo S. Liu L. Tu Z. Zhao X. Hou Y. Essential role of Dhx16-mediated ribosome assembly in maintenance of hematopoietic stem cells. Leukemia 2024 38 12 2699 2708 10.1038/s41375‑024‑02423‑3 39333759
    [Google Scholar]
  184. Banik S.M. Pedram K. Wisnovsky S. Ahn G. Riley N.M. Bertozzi C.R. Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature 2020 584 7820 291 297 10.1038/s41586‑020‑2545‑9 32728216
    [Google Scholar]
  185. Takahashi D. Moriyama J. Nakamura T. Miki E. Takahashi E. Sato A. Akaike T. Itto-Nakama K. Arimoto H. AUTACs: Cargo-specific degraders using selective autophagy. Mol. Cell 2019 76 5 797 810.e10 10.1016/j.molcel.2019.09.009 31606272
    [Google Scholar]
  186. Yang Z. Liu X. Xu H. Teschendorff A.E. Xu L. Li J. Fu M. Liu J. Zhou H. Wang Y. Zhang L. He Y. Lv K. Yang H. Integrative analysis of genomic and epigenomic regulation reveals miRNA mediated tumor heterogeneity and immune evasion in lower grade glioma. Commun. Biol. 2024 7 1 824 10.1038/s42003‑024‑06488‑9 38971948
    [Google Scholar]
  187. Li Z. Xiao C. Yong T. Li Z. Gan L. Yang X. Influence of nanomedicine mechanical properties on tumor targeting delivery. Chem. Soc. Rev. 2020 49 8 2273 2290 10.1039/C9CS00575G 32215407
    [Google Scholar]
  188. Yang H. Li Q. Chen X. Weng M. Huang Y. Chen Q. Liu X. Huang H. Feng Y. Zhou H. Zhang M. Pei W. Li X. Fu Q. Zhu L. Wang Y. Kong X. Lv K. Zhang Y. Sun Y. Ma M. Targeting SOX13 inhibits assembly of respiratory chain supercomplexes to overcome ferroptosis resistance in gastric cancer. Nat. Commun. 2024 15 1 4296 10.1038/s41467‑024‑48307‑z 38769295
    [Google Scholar]
  189. Gao J. Hou B. Zhu Q. Yang L. Jiang X. Zou Z. Li X. Xu T. Zheng M. Chen Y.H. Xu Z. Xu H. Yu H. Engineered bioorthogonal POLY-PROTAC nanoparticles for tumour-specific protein degradation and precise cancer therapy. Nat. Commun. 2022 13 1 4318 10.1038/s41467‑022‑32050‑4 35882867
    [Google Scholar]
  190. Gao Y. Duan J. Dang X. Yuan Y. Wang Y. He X. Bai R. Ye X.Y. Xie T. Design, synthesis and biological evaluation of novel histone deacetylase (HDAC) inhibitors derived from β-elemene scaffold. J. Enzyme Inhib. Med. Chem. 2023 38 1 2195991 10.1080/14756366.2023.2195991 37013860
    [Google Scholar]
  191. Wu D. Yang K. Zhang Z. Feng Y. Rao L. Chen X. Yu G. Metal-free bioorthogonal click chemistry in cancer theranostics. Chem. Soc. Rev. 2022 51 4 1336 1376 10.1039/D1CS00451D 35050284
    [Google Scholar]
  192. Zhang C. Zeng Z. Cui D. He S. Jiang Y. Li J. Huang J. Pu K. Semiconducting polymer nano-PROTACs for activatable photo-immunometabolic cancer therapy. Nat. Commun. 2021 12 1 2934 10.1038/s41467‑021‑23194‑w 34006860
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673382742250619055201
Loading
/content/journals/cmc/10.2174/0109298673382742250619055201
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: fusion proteins ; PROTACs ; Ubiquitin-proteasome system ; EGFR ; Lung cancer ; E3 ligases
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test