Skip to content
2000
image of Exploring the Role of Cuproptosis-related Genes in Acute Myeloid Leukemia Through WGCNA, Single-cell Sequencing and Experiments

Abstract

Background

Cuproptosis, a newly discovered form of programmed cell death, has potential implications for tumorigenesis and cancer progression. This study investigates the role of cuproptosis in Acute Myeloid Leukemia (AML) and identifies associated biomarkers using bulk and single-cell RNA sequencing. Despite recent advances, the mechanisms of cuproptosis in AML remain unclear, and its relationship with immune cell infiltration could reveal novel therapeutic targets.

Methods

RNA-seq data from 151 AML patients and 70 healthy controls were obtained from TCGA and GTEx databases, and single-cell RNA-seq data from 16 AML patients (GEO) were used for validation. Differential expression of Cuproptosis-Related Genes (CRGs) was analyzed RCircos and correlation analysis. Immune cell infiltration was assessed using CIBERSORT and ssGSEA. WGCNA identified key genes for AML and cuproptosis subtypes, which were validated with single-cell data. Intercellular communication was analyzed through ligand-receptor interactions. RNA interference experiments validated TLR4 and NCF2, with gene expression measured through RT-qPCR. Apoptosis and CCK-8 assays assessed cell viability.

Results

We identified 19 CRGs with differential expression between AML subtypes linked to immune cell infiltration. Subtype analysis classified AML patients into C1 and C2 subgroups enriched in biosynthesis and metabolism pathways. WGCNA identified 2701 genes associated with AML and 92 with cuproptosis, leading to 15 intersecting genes. RETN was highlighted as key in intercellular communication. Experimental validation showed that elesclomol-induced cell death in THP-1 cells is reversible by TTM. Knockout of TLR4 and NCF2 promoted cuproptosis.

Conclusion

These findings offer new insights into the role of cuproptosis in AML, highlighting novel biomarkers, such as TLR4 and NCF2, which may provide promising targets for the development of future therapeutic strategies in AML treatment.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673363210250618120652
2025-07-15
2025-09-14
Loading full text...

Full text loading...

References

  1. Prada-Arismendy J. Arroyave J.C. Röthlisberger S. Molecular biomarkers in acute myeloid leukemia. Blood Rev. 2017 31 1 63 76 10.1016/j.blre.2016.08.005 27639498
    [Google Scholar]
  2. Kamga T.P. Collo G.D. Resci F. Bazzoni R. Mercuri A. Quaglia F.M. Tanasi I. Delfino P. Visco C. Bonifacio M. Krampera M. Notch signaling molecules as prognostic biomarkers for acute myeloid leukemia. Cancers 2019 11 12 1958 10.3390/cancers11121958 31817634
    [Google Scholar]
  3. DiNardo C.D. Erba H.P. Freeman S.D. Wei A.H. Acute myeloid leukaemia. Lancet 2023 401 10393 2073 2086 10.1016/S0140‑6736(23)00108‑3 37068505
    [Google Scholar]
  4. Shallis R.M. Wang R. Davidoff A. Ma X. Zeidan A.M. Epidemiology of acute myeloid leukemia: Recent progress and enduring challenges. Blood Rev. 2019 36 70 87 10.1016/j.blre.2019.04.005 31101526
    [Google Scholar]
  5. Yang X. Wang J. Precision therapy for acute myeloid leukemia. J. Hematol. Oncol. 2018 11 1 3 10.1186/s13045‑017‑0543‑7 29301553
    [Google Scholar]
  6. Sonkin D. Thomas A. Teicher B.A. Cancer treatments: Past, present, and future. Cancer Genet. 2024 286-287 18 24 10.1016/j.cancergen.2024.06.002 38909530
    [Google Scholar]
  7. Tang R. Xu J. Zhang B. Liu J. Liang C. Hua J. Meng Q. Yu X. Shi S. Ferroptosis, necroptosis, and pyroptosis in anticancer immunity. J. Hematol. Oncol. 2020 13 1 110 10.1186/s13045‑020‑00946‑7 32778143
    [Google Scholar]
  8. Liu H. Expression and potential immune involvement of cuproptosis in kidney renal clear cell carcinoma. Cancer Genet. 2023 274-275 21 25 10.1016/j.cancergen.2023.03.002 36963335
    [Google Scholar]
  9. Liu H. Tang T. Pan-cancer genetic analysis of cuproptosis and copper metabolism-related gene set. Front. Oncol. 2022 12 952290 10.3389/fonc.2022.952290 36276096
    [Google Scholar]
  10. Liu H. Pan-cancer profiles of the cuproptosis gene set. Am. J. Cancer Res. 2022 12 8 4074 4081 36119826
    [Google Scholar]
  11. Tsvetkov P. Coy S. Petrova B. Dreishpoon M. Verma A. Abdusamad M. Rossen J. Joesch-Cohen L. Humeidi R. Spangler R.D. Eaton J.K. Frenkel E. Kocak M. Corsello S.M. Lutsenko S. Kanarek N. Santagata S. Golub T.R. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 2022 375 6586 1254 1261 10.1126/science.abf0529 35298263
    [Google Scholar]
  12. Ge E.J. Bush A.I. Casini A. Cobine P.A. Cross J.R. DeNicola G.M. Dou Q.P. Franz K.J. Gohil V.M. Gupta S. Kaler S.G. Lutsenko S. Mittal V. Petris M.J. Polishchuk R. Ralle M. Schilsky M.L. Tonks N.K. Vahdat L.T. Aelst V.L. Xi D. Yuan P. Brady D.C. Chang C.J. Connecting copper and cancer: From transition metal signalling to metalloplasia. Nat. Rev. Cancer 2022 22 2 102 113 10.1038/s41568‑021‑00417‑2 34764459
    [Google Scholar]
  13. Lutsenko S. Human copper homeostasis: A network of interconnected pathways. Curr. Opin. Chem. Biol. 2010 14 2 211 217 10.1016/j.cbpa.2010.01.003 20117961
    [Google Scholar]
  14. Liu H. Tang T. Pan-cancer genetic analysis of disulfidptosis-related gene set. Cancer Genet. 2023 278-279 91 103 10.1016/j.cancergen.2023.10.001 37879141
    [Google Scholar]
  15. Liu X. Nie L. Zhang Y. Yan Y. Wang C. Colic M. Olszewski K. Horbath A. Chen X. Lei G. Mao C. Wu S. Zhuang L. Poyurovsky M.V. You J.M. Hart T. Billadeau D.D. Chen J. Gan B. Actin cytoskeleton vulnerability to disulfide stress mediates disulfidptosis. Nat. Cell Biol. 2023 25 3 404 414 10.1038/s41556‑023‑01091‑2 36747082
    [Google Scholar]
  16. Sha S. Si L. Wu X. Chen Y. Xiong H. Xu Y. Liu W. Mei H. Wang T. Li M. Prognostic analysis of cuproptosis-related gene in triple-negative breast cancer. Front. Immunol. 2022 13 922780 10.3389/fimmu.2022.922780 35979353
    [Google Scholar]
  17. Du Y. Lin Y. Wang B. Li Y. Xu D. Gan L. Xiong X. Hou S. Chen S. Shen Z. Ye Y. Cuproptosis patterns and tumor immune infiltration characterization in colorectal cancer. Front. Genet. 2022 13 976007 10.3389/fgene.2022.976007 36176287
    [Google Scholar]
  18. Shi X. Shi D. Yin Y. Wu Y. Chen W. Yu Y. Wang X. Cuproptosis-associated genes (CAGs) contribute to the prognosis prediction and potential therapeutic targets in hepatocellular carcinoma. Cell. Signal. 2024 117 111072 10.1016/j.cellsig.2024.111072 38307306
    [Google Scholar]
  19. Huang H. Long Z. Xie Y. Qin P. Kuang L. Li X. Zhao Y. Zhang X. Yang L. Ma W. Xiao X. Liu Y. Sun X. Zhang M. Wang F. Hu D. Hu F. Molecular subtypes based on cuproptosis-related genes and tumor microenvironment infiltration characterization in colorectal cancer. J. Oncol. 2022 2022 1 19 10.1155/2022/5034092 36276275
    [Google Scholar]
  20. Peng T.E. Qiu F. Qu Y. Yu C. Cheng X. Li L. Current and future of “turn-on” based small-molecule copper probes for cuproptosis. ChemistryOpen 2023 12 9 e202300078 10.1002/open.202300078 37705070
    [Google Scholar]
  21. Li P. Li J. Wen F. Cao Y. Luo Z. Zuo J. Wu F. Li Z. Li W. Wang F. A novel cuproptosis-related LncRNA signature: Prognostic and therapeutic value for acute myeloid leukemia. Front. Oncol. 2022 12 966920 10.3389/fonc.2022.966920 36276132
    [Google Scholar]
  22. Luo D. Liu S. Luo J. Chen H. He Z. Gao Z. Wen Z. Liu X. Xu N. Characterization of cuproptosis identified immune microenvironment and prognosis in acute myeloid leukemia. Clin. Transl. Oncol. 2023 25 8 2393 2407 10.1007/s12094‑023‑03118‑4 36826709
    [Google Scholar]
  23. Ma C. Hao Y. Shi B. Wu Z. Jin D. Yu X. Jin B. Unveiling mitochondrial and ribosomal gene deregulation and tumor microenvironment dynamics in acute myeloid leukemia. Cancer Gene Ther. 2024 31 7 1034 1048 10.1038/s41417‑024‑00788‑2 38806621
    [Google Scholar]
  24. Shi H. Yan K.K. Ding L. Qian C. Chi H. Yu J. Network approaches for dissecting the immune system. iScience 2020 23 8 101354 10.1016/j.isci.2020.101354 32717640
    [Google Scholar]
  25. Saadatpour A. Guo G. Orkin S.H. Yuan G.C. Characterizing heterogeneity in leukemic cells using single-cell gene expression analysis. Genome Biol. 2014 15 12 525 10.1186/s13059‑014‑0525‑9 25517911
    [Google Scholar]
  26. Zhao Y. Li M.C. Konaté M.M. Chen L. Das B. Karlovich C. Williams P.M. Evrard Y.A. Doroshow J.H. McShane L.M. TPM, FPKM, or normalized counts? a comparative study of quantification measures for the analysis of RNA-seq data from the NCI patient-derived models repository. J. Transl. Med. 2021 19 1 269 10.1186/s12967‑021‑02936‑w 34158060
    [Google Scholar]
  27. Alvarez V.R. Pongor L.S. Mariño-Ramírez L. Landsman D. TPMCalculator: One-step software to quantify mRNA abundance of genomic features. Bioinformatics 2019 35 11 1960 1962 10.1093/bioinformatics/bty896 30379987
    [Google Scholar]
  28. Yang X. Shi Y. Li M. Lu T. Xi J. Lin Z. Jiang W. Guo W. Zhan C. Wang Q. Identification and validation of an immune cell infiltrating score predicting survival in patients with lung adenocarcinoma. J. Transl. Med. 2019 17 1 217 10.1186/s12967‑019‑1964‑6 31286969
    [Google Scholar]
  29. Guan M. Jiao Y. Zhou L. Immune infiltration analysis with the CIBERSORT method in lung cancer. Dis. Markers 2022 2022 1 7 10.1155/2022/3186427 35340416
    [Google Scholar]
  30. Shen X. Yang Z. Feng S. Li Y. Identification of uterine leiomyosarcoma-associated hub genes and immune cell infiltration pattern using weighted co-expression network analysis and CIBERSORT algorithm. World J. Surg. Oncol. 2021 19 1 223 10.1186/s12957‑021‑02333‑z 34321013
    [Google Scholar]
  31. Craven K.E. Gökmen-Polar Y. Badve S.S. CIBERSORT analysis of TCGA and METABRIC identifies subgroups with better outcomes in triple negative breast cancer. Sci. Rep. 2021 11 1 4691 10.1038/s41598‑021‑83913‑7 33633150
    [Google Scholar]
  32. Tong X. Tang R. Xiao M. Xu J. Wang W. Zhang B. Liu J. Yu X. Shi S. Targeting cell death pathways for cancer therapy: Recent developments in necroptosis, pyroptosis, ferroptosis, and cuproptosis research. J. Hematol. Oncol. 2022 15 1 174 10.1186/s13045‑022‑01392‑3 36482419
    [Google Scholar]
  33. Li X. Xu L. Exploring prognostic markers for patients with acute myeloid leukemia based on cuproptosis related genes. Transl. Cancer Res. 2023 12 8 2008 2022 10.21037/tcr‑23‑85 37701119
    [Google Scholar]
  34. Xiong C. Ling H. Hao Q. Zhou X. Cuproptosis: P53-regulated metabolic cell death? Cell Death Differ. 2023 30 4 876 884 10.1038/s41418‑023‑01125‑0 36755067
    [Google Scholar]
  35. Xie J. Yang Y. Gao Y. He J. Cuproptosis: Mechanisms and links with cancers. Mol. Cancer 2023 22 1 46 10.1186/s12943‑023‑01732‑y 36882769
    [Google Scholar]
  36. Chen L. Min J. Wang F. Copper homeostasis and cuproptosis in health and disease. Signal Transduct. Target. Ther. 2022 7 1 378 10.1038/s41392‑022‑01229‑y 36414625
    [Google Scholar]
  37. Juan C.A. Pérez de la Lastra J.M. Plou F.J. Pérez-Lebeña E. The chemistry of reactive oxygen species (ROS) revisited: Outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. Int. J. Mol. Sci. 2021 22 9 4642 10.3390/ijms22094642 33924958
    [Google Scholar]
  38. O’Day S. Gonzalez R. Lawson D. Weber R. Hutchins L. Anderson C. Haddad J. Kong S. Williams A. Jacobson E. Phase II, randomized, controlled, double-blinded trial of weekly elesclomol plus paclitaxel versus paclitaxel alone for stage IV metastatic melanoma. J. Clin. Oncol. 2009 27 32 5452 5458 10.1200/JCO.2008.17.1579 19826135
    [Google Scholar]
  39. Zhang T. Liao D. Hu Y. Cuproptosis-related lncRNAs forecast the prognosis of acute myeloid leukemia. Transl. Cancer Res. 2023 12 5 1175 1195 10.21037/tcr‑22‑2526 37304546
    [Google Scholar]
  40. Miedema K.G.E. Poele T.E.M. Tissing W.J.E. Postma D.S. Koppelman G.H. Pagter D.A.P. Kamps W.A. Alizadeh B.Z. Boezen H.M. Bont D.E.S.J.M. Association of polymorphisms in the TLR4 gene with the risk of developing neutropenia in children with leukemia. Leukemia 2011 25 6 995 1000 10.1038/leu.2011.27 21403649
    [Google Scholar]
  41. Schnetzke U. Spies-Weisshart B. Yomade O. Fischer M. Rachow T. Schrenk K. Glaser A. Toal V.L.M. Hochhaus A. Scholl S. Polymorphisms of Toll-like receptors (TLR2 and TLR4) are associated with the risk of infectious complications in acute myeloid leukemia. Genes Immun. 2015 16 1 83 88 10.1038/gene.2014.67 25427560
    [Google Scholar]
  42. Sánchez-Cuaxospa M. Contreras-Ramos A. Pérez- Figueroa E. Medina-Sansón A. Jiménez-Hernández E. Torres-Nava J.R. Rojas-Castillo E. Maldonado-Bernal C. Low expression of Toll-like receptors in peripheral blood mononuclear cells of pediatric patients with acute lymphoblastic leukemia. Int. J. Oncol. 2016 49 2 675 681 10.3892/ijo.2016.3569 27277333
    [Google Scholar]
  43. Ramzi M. Khalafi-Nezhad A. Saadi M.I. Jowkar Z. Association between TLR2 and TLR4 expression and response to induction therapy in acute myeloid leukemia patients. Int. J. Hematol. Oncol. Stem Cell Res. 2018 12 4 303 312 10.18502/ijhoscr.v12i4.109 30774831
    [Google Scholar]
  44. Paolillo R. Boulanger M. Gâtel P. Gabellier L. Toledo D.M. Tempé D. Hallal R. Akl D. Moreaux J. Baik H. Gueret E. Recher C. Sarry J.E. Cartron G. Piechaczyk M. Bossis G. The NADPH oxidase NOX2 is a marker of adverse prognosis involved in chemoresistance of acute myeloid leukemias. Haematologica 2022 107 11 2562 2575 10.3324/haematol.2021.279889 35172562
    [Google Scholar]
  45. Maraldi T. Prata C. Vieceli Dalla Sega F. Caliceti C. Zambonin L. Fiorentini D. Hakim G. NAD(P)H oxidase isoform Nox2 plays a prosurvival role in human leukaemia cells. Free Radic. Res. 2009 43 11 1111 1121 10.1080/10715760903186132 19707918
    [Google Scholar]
  46. Dakik H. Dor E.M. Leclerc J. Kouzi F. Nehme A. Deynoux M. Debeissat C. Khamis G. Ducrocq E. Ibrik A. Stasia M.J. Raad H. Rezvani H.R. Gouilleux F. Zibara K. Herault O. Mazurier F. Characterization of NADPH oxidase expression and activity in acute myeloid leukemia cell lines: A correlation with the differentiation status. Antioxidants 2021 10 3 498 10.3390/antiox10030498 33807114
    [Google Scholar]
  47. Lindsey S. Zhu C. Lu Y.F. Eklund E.A. HoxA10 represses transcription of the gene encoding p67phox in phagocytic cells. J. Immunol. 2005 175 8 5269 5279 10.4049/jimmunol.175.8.5269 16210632
    [Google Scholar]
  48. Italiano D. Lena A.M. Melino G. Candi E. Identification of NCF2/p67phox as a novel p53 target gene. Cell Cycle 2012 11 24 4589 4596 10.4161/cc.22853 23187810
    [Google Scholar]
  49. Liu H. Weng J. Huang C.L.H. Jackson A.P. Is the voltage-gated sodium channel β3 subunit (SCN3B) a biomarker for glioma? Funct. Integr. Genomics 2024 24 5 162 10.1007/s10142‑024‑01443‑7 39289188
    [Google Scholar]
  50. Liu H. Weng J. A comprehensive bioinformatic analysis of cyclin-dependent kinase 2 (CDK2) in glioma. Gene 2022 822 146325 10.1016/j.gene.2022.146325 35183683
    [Google Scholar]
  51. Li Y. Liu H. Clinical powers of aminoacyl tRNA synthetase complex interacting multifunctional protein 1 (AIMP1) for head-neck squamous cell carcinoma. Cancer Biomark. 2022 34 3 359 374 10.3233/CBM‑210340 35068446
    [Google Scholar]
  52. Liu H. Tang T. A bioinformatic study of IGFBPs in glioma regarding their diagnostic, prognostic, and therapeutic prediction value. Am. J. Transl. Res. 2023 15 3 2140 2155 37056850
    [Google Scholar]
  53. Liu H. Dilger J.P. Lin J. A pan-cancer-bioinformatic-based literature review of TRPM7 in cancers. Pharmacol. Ther. 2022 240 108302 10.1016/j.pharmthera.2022.108302 36332746
    [Google Scholar]
  54. Liu H. Li Y. Karsidag M. Tu T. Wang P. Technical and biological biases in bulk transcriptomic data mining for cancer research. J. Cancer 2025 16 1 34 43 10.7150/jca.100922 39744578
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673363210250618120652
Loading
/content/journals/cmc/10.2174/0109298673363210250618120652
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: single-cell transcriptome ; subtype ; WGCNA ; AML ; Cuproptosis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test