Skip to content
2000
image of Multi-omic Data Integration Reveals Drug Targets of Skin Fibrosis

Abstract

Introduction

Scar heterogeneity, encompassing normal scar (NS) and pathological scars [hypertrophic scar (HS) and keloids], emerges from the dynamic interplay between systemic immune responses and local tissue microenvironment, highlighting the urgent need for drugs targeting different types of scars through both dimensions.

Methods

Data from DECODE and EQTLGen databases were used as exposure variables at the protein and mRNA levels in the blood, and data from GTEx and ScQTLbase as exposure variables at the tissue and single-cell levels. Two sample Mendelian Randomization (MR) studies were conducted at the systemic, local, and single-cell levels. The outcome variables were based on the NS, HS, and keloid cohorts in the authoritative FinnGen database. The results were ascertained using seven MR methods, including inverse-variance weighting (IVW), Wald ratio, weighted median, weighted mode, simple median, MR-Egger, and Summary-data-based Mendelian Randomization (SMR). Single-cell RNA-seq data were leveraged to validate the expression profiles and functions of the drug targets.

Results

NUDT2, ATXN3, OGN, UROS, and TSG101 were significantly associated with keloids, while PARK7 and MZT2A showed a significant correlation with HSs, and CDCP1 was significantly linked to NSs. Among them, RNA and protein expression levels of NUDT2 and PARK7 demonstrated significant positive associations with keloids and HSs, respectively, at the blood, skin, and single-cell levels. Functional analysis revealed that the higher expression of NUDT2 was associated with angiogenesis and the cellular response to hormone stimuli, whereas PARK7 was involved in the organization of collagen fibrils and the extracellular matrix structure. Moreover, single-cell sequencing confirmed the high expression of NUDT2 and PARK7 in keloids and HSs. These findings highlight their potential roles in both systemic and local scar pathogenesis and underscore their promise as therapeutic targets.

Discussion

This study identifies scar subtype-specific targets, particularly NUDT2 and PARK7, expanding therapeutic candidates for scar management. Multi-ethnic cohort studies are warranted to validate target universality.

Conclusion

Collectively, we have identified eight drug targets, with NUDT2 and PARK7 in particular showing potential therapeutic value for keloids and HSs. Additionally, our results suggest the feasibility of both local and systemic drug administrations.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673379521250630140948
2025-07-23
2025-11-06
Loading full text...

Full text loading...

/deliver/fulltext/cmc/10.2174/0109298673379521250630140948/BMS-CMC-2024-HT142-6137-7.html?itemId=/content/journals/cmc/10.2174/0109298673379521250630140948&mimeType=html&fmt=ahah

References

  1. Mascharak S. desJardins-Park H.E. Davitt M.F. Griffin M. Borrelli M.R. Moore A.L. Chen K. Duoto B. Chinta M. Foster D.S. Shen A.H. Januszyk M. Kwon S.H. Wernig G. Wan D.C. Lorenz H.P. Gurtner G.C. Longaker M.T. Preventing Engrailed-1 activation in fibroblasts yields wound regeneration without scarring. Science 2021 372 6540 eaba2374 10.1126/science.aba2374 33888614
    [Google Scholar]
  2. Finnerty C.C. Jeschke M.G. Branski L.K. Barret J.P. Dziewulski P. Herndon D.N. Hypertrophic scarring: The greatest unmet challenge after burn injury. Lancet 2016 388 10052 1427 1436 10.1016/S0140‑6736(16)31406‑4 27707499
    [Google Scholar]
  3. Konieczny P. Naik S. Healing without scarring. Science 2021 372 6540 346 347 10.1126/science.abi5770 33888629
    [Google Scholar]
  4. Jagdeo J. Kerby E. Glass D.A. Keloids. JAMA Dermatol 2021 157 6 744 10.1001/jamadermatol.2020.4705 33881453
    [Google Scholar]
  5. Peña O.A. Martin P. Cellular and molecular mechanisms of skin wound healing. Nat. Rev. Mol. Cell Biol. 2024 25 8 599 616 10.1038/s41580‑024‑00715‑1 38528155
    [Google Scholar]
  6. Jeschke M.G. Wood F.M. Middelkoop E. Bayat A. Teot L. Ogawa R. Gauglitz G.G. Scars. Nat Rev Dis Primers 2023 9 1 64 10.1038/s41572‑023‑00474‑x 37973792
    [Google Scholar]
  7. Ung C.Y. Warwick A. Onoufriadis A. Barker J.N. Parsons M. McGrath J.A. Shaw T.J. Dand N. Comorbidities of keloid and hypertrophic scars among participants in UK biobank. JAMA Dermatol 2023 159 2 172 181 10.1001/jamadermatol.2022.5607 36598763
    [Google Scholar]
  8. Deng C.C. Hu Y.F. Zhu D.H. Cheng Q. Gu J.J. Feng Q.L. Zhang L.X. Xu Y.P. Wang D. Rong Z. Yang B. Single-cell RNA-seq reveals fibroblast heterogeneity and increased mesenchymal fibroblasts in human fibrotic skin diseases. Nat Commun 2021 12 1 3709 10.1038/s41467‑021‑24110‑y 34140509
    [Google Scholar]
  9. Jiang Z. Chen Z. Xu Y. Li H. Li Y. Peng L. Shan H. Liu X. Wu H. Wu L. Jian D. Su J. Chen X. Chen Z. Zhao S. Low-Frequency ultrasound sensitive piezo1 channels regulate keloid-related characteristics of fibroblasts. Adv Sci (Weinh) 2024 11 14 2305489 10.1002/advs.202305489 38311578
    [Google Scholar]
  10. Sinha S. Sparks H.D. Labit E. Robbins H.N. Gowing K. Jaffer A. Kutluberk E. Arora R. Raredon M.S.B. Cao L. Swanson S. Jiang P. Hee O. Pope H. Workentine M. Todkar K. Sharma N. Bharadia S. Chockalingam K. de Almeida L.G.N. Adam M. Niklason L. Potter S.S. Seifert A.W. Dufour A. Gabriel V. Rosin N.L. Stewart R. Muench G. McCorkell R. Matyas J. Biernaskie J. Fibroblast inflammatory priming determines regenerative versus fibrotic skin repair in reindeer. Cell 2022 185 25 4717 4736.e25 10.1016/j.cell.2022.11.004 36493752
    [Google Scholar]
  11. Mascharak S. Talbott H.E. Januszyk M. Griffin M. Chen K. Davitt M.F. Demeter J. Henn D. Bonham C.A. Foster D.S. Mooney N. Cheng R. Jackson P.K. Wan D.C. Gurtner G.C. Longaker M.T. Multi-omic analysis reveals divergent molecular events in scarring and regenerative wound healing. Cell Stem Cell 2022 29 2 315 327.e6 10.1016/j.stem.2021.12.011 35077667
    [Google Scholar]
  12. Xu H. Zhu Z. Hu J. Sun J. Wo Y. Wang X. Zou H. Li B. Zhang Y. Downregulated cytotoxic CD8+ T-cell identifies with the NKG2A-soluble HLA-E axis as a predictive biomarker and potential therapeutic target in keloids. Cell Mol Immunol 2022 19 4 527 539 10.1038/s41423‑021‑00834‑1 35039632
    [Google Scholar]
  13. Wernly B. Paar V. Aigner A. Pilz P.M. Podesser B.K. Förster M. Jung C. Pinon Hofbauer J. Tockner B. Wimmer M. Kraus T. Motloch L.J. Hackl M. Hoppe U.C. Kiss A. Lichtenauer M. Anti-CD3 antibody treatment reduces scar formation in a rat model of myocardial infarction. Cells 2020 9 2 295 10.3390/cells9020295 31991811
    [Google Scholar]
  14. Liu X. Tong X. Zou Y. Lin X. Zhao H. Tian L. Jie Z. Wang Q. Zhang Z. Lu H. Xiao L. Qiu X. Zi J. Wang R. Xu X. Yang H. Wang J. Zong Y. Liu W. Hou Y. Zhu S. Jia H. Zhang T. Mendelian randomization analyses support causal relationships between blood metabolites and the gut microbiome. Nat. Genet. 2022 54 1 52 61 10.1038/s41588‑021‑00968‑y 34980918
    [Google Scholar]
  15. Daghlas I Gill D. Leveraging Mendelian randomization to inform drug discovery and development for ischemic stroke. J. Cereb. Blood Flow Metab. 2024 44 11 0271678X241305916 10.1177/0271678X241305916
    [Google Scholar]
  16. Kurki M.I. Karjalainen J. Palta P. Sipilä T.P. Kristiansson K. Donner K.M. Reeve M.P. Laivuori H. Aavikko M. Kaunisto M.A. Loukola A. Lahtela E. Mattsson H. Laiho P. Della Briotta Parolo P. Lehisto A.A. Kanai M. Mars N. Rämö J. Kiiskinen T. Heyne H.O. Veerapen K. Rüeger S. Lemmelä S. Zhou W. Ruotsalainen S. Pärn K. Hiekkalinna T. Koskelainen S. Paajanen T. Llorens V. Gracia-Tabuenca J. Siirtola H. Reis K. Elnahas A.G. Sun B. Foley C.N. Aalto-Setälä K. Alasoo K. Arvas M. Auro K. Biswas S. Bizaki-Vallaskangas A. Carpen O. Chen C.Y. Dada O.A. Ding Z. Ehm M.G. Eklund K. Färkkilä M. Finucane H. Ganna A. Ghazal A. Graham R.R. Green E.M. Hakanen A. Hautalahti M. Hedman Å.K. Hiltunen M. Hinttala R. Hovatta I. Hu X. Huertas-Vazquez A. Huilaja L. Hunkapiller J. Jacob H. Jensen J.N. Joensuu H. John S. Julkunen V. Jung M. Junttila J. Kaarniranta K. Kähönen M. Kajanne R. Kallio L. Kälviäinen R. Kaprio J. Kerimov N. Kettunen J. Kilpeläinen E. Kilpi T. Klinger K. Kosma V.M. Kuopio T. Kurra V. Laisk T. Laukkanen J. Lawless N. Liu A. Longerich S. Mägi R. Mäkelä J. Mäkitie A. Malarstig A. Mannermaa A. Maranville J. Matakidou A. Meretoja T. Mozaffari S.V. Niemi M.E.K. Niemi M. Niiranen T. O´Donnell C.J. Obeidat M. Okafo G. Ollila H.M. Palomäki A. Palotie T. Partanen J. Paul D.S. Pelkonen M. Pendergrass R.K. Petrovski S. Pitkäranta A. Platt A. Pulford D. Punkka E. Pussinen P. Raghavan N. Rahimov F. Rajpal D. Renaud N.A. Riley-Gillis B. Rodosthenous R. Saarentaus E. Salminen A. Salminen E. Salomaa V. Schleutker J. Serpi R. Shen H. Siegel R. Silander K. Siltanen S. Soini S. Soininen H. Sul J.H. Tachmazidou I. Tasanen K. Tienari P. Toppila-Salmi S. Tukiainen T. Tuomi T. Turunen J.A. Ulirsch J.C. Vaura F. Virolainen P. Waring J. Waterworth D. Yang R. Nelis M. Reigo A. Metspalu A. Milani L. Esko T. Fox C. Havulinna A.S. Perola M. Ripatti S. Jalanko A. Laitinen T. Mäkelä T.P. Plenge R. McCarthy M. Runz H. Daly M.J. Palotie A. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 2023 613 7944 508 518 10.1038/s41586‑022‑05473‑8 36653562
    [Google Scholar]
  17. Gill D. Dib M.J. Cronjé H.T. Karhunen V. Woolf B. Gagnon E. Daghlas I. Nyberg M. Drakeman D. Burgess S. Common pitfalls in drug target Mendelian randomization and how to avoid them. BMC Med 2024 22 1 473 10.1186/s12916‑024‑03700‑9 39407214
    [Google Scholar]
  18. Ferkingstad E. Sulem P. Atlason B.A. Sveinbjornsson G. Magnusson M.I. Styrmisdottir E.L. Gunnarsdottir K. Helgason A. Oddsson A. Halldorsson B.V. Jensson B.O. Zink F. Halldorsson G.H. Masson G. Arnadottir G.A. Katrinardottir H. Juliusson K. Magnusson M.K. Magnusson O.T. Fridriksdottir R. Saevarsdottir S. Gudjonsson S.A. Stacey S.N. Rognvaldsson S. Eiriksdottir T. Olafsdottir T.A. Steinthorsdottir V. Tragante V. Ulfarsson M.O. Stefansson H. Jonsdottir I. Holm H. Rafnar T. Melsted P. Saemundsdottir J. Norddahl G.L. Lund S.H. Gudbjartsson D.F. Thorsteinsdottir U. Stefansson K. Large-scale integration of the plasma proteome with genetics and disease. Nat Genet 2021 53 12 1712 1721 10.1038/s41588‑021‑00978‑w 34857953
    [Google Scholar]
  19. Pietzner M Wheeler E Carrasco-Zanini J Mapping the proteo-genomic convergence of human diseases. Science 2021 374 eabj1541 10.1126/science.abj1541
    [Google Scholar]
  20. Kamali Z. Keaton J.M. Haghjooy Javanmard S. Edwards T.L. Snieder H. Vaez A. Large-scale multi-omics studies provide new insights into blood pressure regulation. Int. J. Mol. Sci. 2022 23 14 7557 10.3390/ijms23147557 35886906
    [Google Scholar]
  21. Ding R. Wang Q. Gong L. Zhang T. Zou X. Xiong K. Liao Q. Plass M. Li L. scQTLbase: An integrated human single-cell eQTL database. Nucleic Acids Res. 2024 52 D1 D1010 D1017 10.1093/nar/gkad781 37791879
    [Google Scholar]
  22. Burgess S. Mason A.M. Grant A.J. Slob E.A.W. Gkatzionis A. Zuber V. Patel A. Tian H. Liu C. Haynes W.G. Hovingh G.K. Knudsen L.B. Whittaker J.C. Gill D. Using genetic association data to guide drug discovery and development: Review of methods and applications. Am. J. Hum. Genet. 2023 110 2 195 214 10.1016/j.ajhg.2022.12.017 36736292
    [Google Scholar]
  23. Feng C. Shan M. Xia Y. Zheng Z. He K. Wei Y. Song K. Meng T. Liu H. Hao Y. Liang Z. Wang Y. Huang Y. Single-cell RNA sequencing reveals distinct immunology profiles in human keloid. Front Immunol. 2022 13 940645 10.3389/fimmu.2022.940645 35990663
    [Google Scholar]
  24. Direder M Weiss T Copic D Tschachler E. Sibilia M. Mildner M. Schwann cells contribute to keloid formation. Matrix Biol. 2022 108 55 76 10.1016/j.matbio.2022.03.001
    [Google Scholar]
  25. Shim J. Oh S.J. Yeo E. Park J.H. Bae J.H. Kim S.H. Lee D. Lee J.H. Integrated analysis of single-cell and spatial transcriptomics in keloids: Highlights on fibrovascular interactions in keloid pathogenesis. J. Invest. Dermatol. 2022 142 8 2128 2139.e11 10.1016/j.jid.2022.01.017 35123990
    [Google Scholar]
  26. Song W. Li Y. Yao Y. Sun S. Guan X. Wang B. Systematic druggable genome-wide Mendelian randomization identifies therapeutic targets for lung cancer. BMC Cancer 2024 24 1 680 10.1186/s12885‑024‑12449‑6 38834983
    [Google Scholar]
  27. Zhu Z. Zhang F. Hu H. Bakshi A. Robinson M.R. Powell J.E. Montgomery G.W. Goddard M.E. Wray N.R. Visscher P.M. Yang J. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat. Genet. 2016 48 5 481 487 10.1038/ng.3538 27019110
    [Google Scholar]
  28. Chauquet S. Zhu Z. O’Donovan M.C. Walters J.T.R. Wray N.R. Shah S. Association of antihypertensive drug target genes with psychiatric disorders. JAMA Psychiatry 2021 78 6 623 631 10.1001/jamapsychiatry.2021.0005 33688928
    [Google Scholar]
  29. Zuber V. Grinberg N.F. Gill D. Manipur I. Slob E.A.W. Patel A. Wallace C. Burgess S. Combining evidence from Mendelian randomization and colocalization: Review and comparison of approaches. Am J Hum Genet 2022 109 5 767 782 10.1016/j.ajhg.2022.04.001 35452592
    [Google Scholar]
  30. Chen SX Cheng J Watchmaker J Dover JS Chung HJ Review of lasers and energy-based devices for skin rejuvenation and scar treatment with histologic correlations. Dermatol Surg 2022 48 441 10.1097/DSS.0000000000003397
    [Google Scholar]
  31. Ogawa R. The most current algorithms for the treatment and prevention of hypertrophic scars and keloids: A 2020 update of the algorithms published 10 years ago. Plast Reconstr Surg 2022 149 1 79e 94e 10.1097/PRS.0000000000008667 34813576
    [Google Scholar]
  32. Fernández-Guarino M. Bacci S. Pérez González L.A. Bermejo-Martínez M. Cecilia-Matilla A. Hernández-Bule M.L. The role of physical therapies in wound healing and assisted scarring. Int. J. Mol. Sci. 2023 24 8 7487 10.3390/ijms24087487 37108650
    [Google Scholar]
  33. Bernabe R.M. Won P. Lin J. Pham C. Madrigal P. Yenikomshian H. Gillenwater T.J. Combining scar-modulating agents for the treatment of hypertrophic scars and keloids: A systematic review. J. Plast. Reconstr. Aesthet. Surg 2024 88 125 140 10.1016/j.bjps.2023.10.065 37979279
    [Google Scholar]
  34. Kamboj P. Mahore A. Husain A. Amir M. Benzothiazole-based apoptosis inducers: A comprehensive overview and future prospective. Arch. Pharm. (Weinheim) 2024 357 4 2300493 10.1002/ardp.202300493 38212254
    [Google Scholar]
  35. Wang Z.C. Zhao W.Y. Cao Y. Liu Y.Q. Sun Q. Shi P. Cai J.Q. Shen X.Z. Tan W.Q. The roles of inflammation in keloid and hypertrophic scars. Front. Immunol. 2020 11 603187 10.3389/fimmu.2020.603187 33343575
    [Google Scholar]
  36. Lee H. Jang Y. Recent understandings of biology, prophylaxis and treatment strategies for hypertrophic scars and keloids. Int. J. Mol. Sci. 2018 19 3 711 10.3390/ijms19030711 29498630
    [Google Scholar]
  37. Wang Z. Zhao F. Xu C. Zhang Q. Ren H. Huang X. He C. Ma J. Wang Z. Metabolic reprogramming in skin wound healing. Burns. Trauma. 2024 12 tkad047 10.1093/burnst/tkad047 38179472
    [Google Scholar]
  38. Shan M. Xiao M. Xu J. Sun W. Wang Z. Du W. Liu X. Nie M. Wang X. Liang Z. Liu H. Hao Y. Xia Y. Zhu L. Song K. Feng C. Meng T. Wang Z. Cao W. Wang L. Zheng Z. Wang Y. Huang Y. Multi-omics analyses reveal bacteria and catalase associated with keloid disease. EBioMedicine 2024 99 104904 10.1016/j.ebiom.2023.104904 38061241
    [Google Scholar]
  39. Lin X. Lai Y. Scarring skin: Mechanisms and therapies. Int. J. Mol. Sci. 2024 25 3 1458 10.3390/ijms25031458 38338767
    [Google Scholar]
  40. Baron J.M. Glatz M. Proksch E. Optimal support of wound healing: New insights. Dermatology 2020 236 6 593 600 10.1159/000505291 31955162
    [Google Scholar]
  41. Karppinen S.M. Heljasvaara R. Gullberg D. Tasanen K. Pihlajaniemi T. Toward understanding scarless skin wound healing and pathological scarring. F1000 Res. 2019 8 787 10.12688/f1000research.18293.1 31231509
    [Google Scholar]
  42. Nurzat Y. Zhu Z. Zhang Y. Xu H. Invariant chain of the MAIT-TCR vα7. 2-Jα33 as a novel diagnostic biomarker for keloids. Exp. Dermatol. 2023 32 2 186 197 10.1111/exd.14700 36309840
    [Google Scholar]
  43. Xu Z. Dong M. Yin S. Dong J. Zhang M. Tian R. Min W. Zeng L. Qiao H. Chen J. Why traditional herbal medicine promotes wound healing: Research from immune response, wound microbiome to controlled delivery. Adv. Drug Deliv. Rev. 2023 195 114764 10.1016/j.addr.2023.114764 36841332
    [Google Scholar]
  44. du Halgouet A. Darbois A. Alkobtawi M. Mestdagh M. Alphonse A. Premel V. Yvorra T. Colombeau L. Rodriguez R. Zaiss D. El Morr Y. Bugaut H. Legoux F. Perrin L. Aractingi S. Golub R. Lantz O. Salou M. Role of MR1-driven signals and amphiregulin on the recruitment and repair function of MAIT cells during skin wound healing. Immunity 2023 56 1 78 92.e6 10.1016/j.immuni.2022.12.004 36630919
    [Google Scholar]
  45. Konieczny P. Xing Y. Sidhu I. Subudhi I. Mansfield K.P. Hsieh B. Biancur D.E. Larsen S.B. Cammer M. Li D. Landén N.X. Loomis C. Heguy A. Tikhonova A.N. Tsirigos A. Naik S. Interleukin-17 governs hypoxic adaptation of injured epithelium. Science 2022 377 6602 eabg9302 10.1126/science.abg9302 35709248
    [Google Scholar]
  46. Chen B. Li H. Xia W. The role of Th1/Th2 cell chemokine expression in hypertrophic scar. Int. Wound J. 2020 17 1 197 205 10.1111/iwj.13257 31691483
    [Google Scholar]
  47. Chancheewa B. Asawanonda P. Noppakun N. Kumtornrut C. Myofibroblasts, B cells, and mast cells in different types of long-standing acne scars. Skin Appendage Disord. 2022 8 6 469 475 10.1159/000524566 36407643
    [Google Scholar]
  48. Xu Y. Bian Q. Zhang Y. Zhang Y. Li D. Ma X. Wang R. Hu W. Hu J. Ye Y. Lin H. Zhang T. Gao J. Single-dose of integrated bilayer microneedles for enhanced hypertrophic scar therapy with rapid anti-inflammatory and sustained inhibition of myofibroblasts. Biomaterials 2025 312 122742 10.1016/j.biomaterials.2024.122742 39106821
    [Google Scholar]
  49. Chen L. Wang J. Li S. Yu Z. Liu B. Song B. Su Y. The clinical dynamic changes of macrophage phenotype and function in different stages of human wound healing and hypertrophic scar formation. Int. Wound. J. 2019 16 2 360 369 10.1111/iwj.13041 30440110
    [Google Scholar]
  50. Ogawa R. Keloid and hypertrophic scars are the result of chronic inflammation in the reticular dermis. Int. J. Mol. Sci. 2017 18 3 606 10.3390/ijms18030606 28287424
    [Google Scholar]
  51. Laudenbach B.T. Krey K. Emslander Q. Andersen L.L. Reim A. Scaturro P. Mundigl S. Dächert C. Manske K. Moser M. Ludwig J. Wohlleber D. Kröger A. Binder M. Pichlmair A. NUDT2 initiates viral RNA degradation by removal of 5′-phosphates. Nat. Commun. 2021 12 1 6918 10.1038/s41467‑021‑27239‑y 34824277
    [Google Scholar]
  52. Husain R.A. Jiao X. Hennings J.C. Giesecke J. Palsule G. Beck-Wödl S. Osmanović D. Bjørgo K. Mir A. Ilyas M. Abbasi S.M. Efthymiou S. Dominik N. Maroofian R. Houlden H. Rankin J. Pagnamenta A.T. Nashabat M. Altwaijri W. Alfadhel M. Umair M. Khouj E. Reardon W. El-Hattab A.W. Mekki M. Houge G. Beetz C. Bauer P. Putoux A. Lesca G. Sanlaville D. Alkuraya F.S. Taylor R.W. Mentzel H.J. Hübner C.A. Huppke P. Hart R.P. Haack T.B. Kiledjian M. Rubio I. Biallelic NUDT2 variants defective in mRNA decapping cause a neurodevelopmental disease. Brain 2024 147 4 1197 1205 10.1093/brain/awad434 38141063
    [Google Scholar]
  53. Hidmi S. Nechushtan H. Razin E. Tshori S. Role of Nudt2 in anchorage-independent growth and cell migration of human melanoma. Int. J. Mol. Sci. 2023 24 13 10513 10.3390/ijms241310513 37445693
    [Google Scholar]
  54. Abu-Rahmah R. Nechushtan H. Hidmi S. Meirovitz A. Razin E. Peretz T. The functional role of Nudt2 in human triple negative breast cancer. Front Oncol. 2024 14 1364663 10.3389/fonc.2024.1364663 38715773
    [Google Scholar]
  55. Shu S.L. Paruchuru L.B. Tay N.Q. Chua Y.L. Foo A.S.Y. Yang C.M. Liong K.H. Koh E.G.L. Lee A. Nechushtan H. Razin E. Kemeny D.M. Ap4A regulates Directional mobility and antigen presentation in dendritic cells. iScience 2019 16 524 534 10.1016/j.isci.2019.05.045 31254530
    [Google Scholar]
  56. Hernández-Carralero E. Cabrera E. Rodríguez-Torres G. Hernández-Reyes Y. Singh A.N. Santa-María C. Fernández-Justel J.M. Janssens R.C. Marteijn J.A. Evert B.O. Mailand N. Gómez M. Ramadan K. Smits V.A.J. Freire R. ATXN3 controls DNA replication and transcription by regulating chromatin structure. Nucleic Acids Res. 2023 51 11 5396 5413 10.1093/nar/gkad212 36971114
    [Google Scholar]
  57. Zhuang S. Xie J. Zhen J. Guo L. Hong Z. Li F. Xu D. The deubiquitinating enzyme ATXN3 promotes the progression of anaplastic thyroid carcinoma by stabilizing EIF5A2. Mol. Cell Endocrinol. 2021 537 111440 10.1016/j.mce.2021.111440 34428509
    [Google Scholar]
  58. Wang S. Iyer R. Han X. Wei J. Li N. Cheng Y. Zhou Y. Gao Q. Zhang L. Yan M. Sun Z. Fang D. CRISPR screening identifies the deubiquitylase ATXN3 as a PD-L1–positive regulator for tumor immune evasion. J. Clin. Invest. 2023 133 23 e167728 10.1172/JCI167728 38038129
    [Google Scholar]
  59. Fagerberg L. Hallström B.M. Oksvold P. Kampf C. Djureinovic D. Odeberg J. Habuka M. Tahmasebpoor S. Danielsson A. Edlund K. Asplund A. Sjöstedt E. Lundberg E. Szigyarto C.A.K. Skogs M. Takanen J.O. Berling H. Tegel H. Mulder J. Nilsson P. Schwenk J.M. Lindskog C. Danielsson F. Mardinoglu A. Sivertsson Å. von Feilitzen K. Forsberg M. Zwahlen M. Olsson I. Navani S. Huss M. Nielsen J. Ponten F. Uhlén M. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol. Cell Proteomics 2014 13 2 397 406 10.1074/mcp.M113.035600 24309898
    [Google Scholar]
  60. Wu L. Ou Z. Liu P. Zhao C. Tong S. Wang R. Li Y. Yuan J. Chen M. Fan B. Zu X. Wang Y. Tang J. ATXN3 promotes prostate cancer progression by stabilizing YAP. Cell Commun. Signal 2023 21 1 152 10.1186/s12964‑023‑01073‑9 37349820
    [Google Scholar]
  61. Nulali J. Zhan M. Zhang K. Tu P. Liu Y. Song H. Osteoglycin: An ECM factor regulating fibrosis and tumorigenesis. Biomolecules 2022 12 11 1674 10.3390/biom12111674 36421687
    [Google Scholar]
  62. Huang S Lin Y Deng Q Suppression of OGN in lung myofibroblasts attenuates pulmonary fibrosis by inhibiting integrin αv-mediated TGF-β/Smad pathway activation. Matrix Biol. 2024 132 87 10.1016/j.matbio.2024.07.001
    [Google Scholar]
  63. Yang M. Hu H. Wu S. Ding J. Yin B. Huang B. Li F. Guo X. Han L. EIF4A3-regulated circ_0087429 can reverse EMT and inhibit the progression of cervical cancer via miR-5003-3p-dependent upregulation of OGN expression. J. Exp. Clin. Cancer Res. 2022 41 1 165 10.1186/s13046‑022‑02368‑4 35513835
    [Google Scholar]
  64. Lin T.H. Bis-Brewer D.M. Sheehan A.E. Townsend L.N. Maddison D.C. Züchner S. Smith G.A. Freeman M.R. TSG101 negatively regulates mitochondrial biogenesis in axons. Proc. Natl. Acad. Sci. USA 2021 118 20 e2018770118 10.1073/pnas.2018770118 33972422
    [Google Scholar]
  65. Tufan A.B. Lazarow K. Kolesnichenko M. Sporbert A. von Kries J.P. Scheidereit C. TSG101 associates with PARP1 and is essential for PARylation and DNA damage-induced NF-κB activation. EMBO J. 2022 41 21 e110372 10.15252/embj.2021110372 36124865
    [Google Scholar]
  66. Zhao B. Zhang Y. Han S. Zhang W. Zhou Q. Guan H. Liu J. Shi J. Su L. Hu D. Exosomes derived from human amniotic epithelial cells accelerate wound healing and inhibit scar formation. J. Mol. Histol. 2017 48 2 121 132 10.1007/s10735‑017‑9711‑x 28229263
    [Google Scholar]
  67. Zhu Y. Hu X. Zhang J. Wang Z. Wu S. Yi Y. Extracellular vesicles derived from human adipose-derived stem cell prevent the formation of hypertrophic scar in a rabbit model. Ann. Plast Surg. 2020 84 5 602 607 10.1097/SAP.0000000000002357 32282497
    [Google Scholar]
  68. Heremans I.P. Caligiore F. Gerin I. Bury M. Lutz M. Graff J. Stroobant V. Vertommen D. Teleman A.A. Van Schaftingen E. Bommer G.T. Parkinson’s disease protein PARK7 prevents metabolite and protein damage caused by a glycolytic metabolite. Proc. Natl. Acad. Sci. USA 2022 119 4 e2111338119 10.1073/pnas.2111338119 35046029
    [Google Scholar]
  69. Pan J. Xiong W. Zhang A. Zhang H. Lin H. Gao L. Ke J. Huang S. Zhang J. Gu J. Chang A.C.Y. Wang C. The imbalance of p53–Park7 Signaling axis induces iron homeostasis dysfunction in doxorubicin-challenged cardiomyocytes. Adv. Sci. (Weinh) 2023 10 15 2206007 10.1002/advs.202206007 36967569
    [Google Scholar]
  70. Danileviciute E. Zeng N. Capelle C.M. Paczia N. Gillespie M.A. Kurniawan H. Benzarti M. Merz M.P. Coowar D. Fritah S. Vogt Weisenhorn D.M. Gomez Giro G. Grusdat M. Baron A. Guerin C. Franchina D.G. Léonard C. Domingues O. Delhalle S. Wurst W. Turner J.D. Schwamborn J.C. Meiser J. Krüger R. Ranish J. Brenner D. Linster C.L. Balling R. Ollert M. Hefeng F.Q. PARK7/DJ-1 promotes pyruvate dehydrogenase activity and maintains Treg homeostasis during ageing. Nat. Metab. 2022 4 5 589 607 10.1038/s42255‑022‑00576‑y 35618940
    [Google Scholar]
  71. Yu Y. Sun X. Gu J. Yu C. Wen Y. Gao Y. Xia Q. Kong X. Deficiency of DJ-1 ameliorates liver fibrosis through inhibition of hepatic ROS production and inflammation. Int J Biol Sci 2016 12 10 1225 1235 10.7150/ijbs.15154 27766037
    [Google Scholar]
  72. Wang J. Zhang H. Chen L. Fu K. Yan Y. Liu Z. CircDCBLD2 alleviates liver fibrosis by regulating ferroptosis via facilitating STUB1-mediated PARK7 ubiquitination degradation. J. Gastroenterol 2024 59 3 229 249 10.1007/s00535‑023‑02068‑6 38310161
    [Google Scholar]
  73. Wang H. Jiang X. Cheng Y. Ren H. Hu Y. Zhang Y. Su H. Zou Z. Wang Q. Liu Z. Zhang J. Qiu X. MZT2A promotes NSCLC viability and invasion by increasing Akt phosphorylation via the MOZART2 domain. Cancer Sci. 2021 112 6 2210 2222 10.1111/cas.14900 33754417
    [Google Scholar]
  74. Song L. Qian G. Huang J. Chen T. Yang Y. AZD9291-resistant non-small cell lung cancer cell-derived exosomal lnc-MZT2A-5:1 induces the activation of fibroblasts. Ann. Transl. Med. 2021 9 20 1593 10.21037/atm‑21‑5186 34790799
    [Google Scholar]
  75. Liu D. Wang M. Murthy V. McNamara D.M. Nguyen T.T.L. Philips T.J. Vyas H. Gao H. Sahni J. Starling R.C. Cooper L.T. Skime M.K. Batzler A. Jenkins G.D. Barlera S. Pileggi S. Mestroni L. Merlo M. Sinagra G. Pinet F. Krejčí J. Chaloupka A. Miller J.D. de Groote P. Tschumperlin D.J. Weinshilboum R.M. Pereira N.L. Myocardial recovery in recent onset dilated cardiomyopathy: Role of CDCP1 and cardiac fibrosis. Circ. Res. 2023 133 10 810 825 10.1161/CIRCRESAHA.123.323200 37800334
    [Google Scholar]
  76. Noskovičová N. Heinzelmann K. Burgstaller G. Behr J. Eickelberg O. Cub domain-containing protein 1 negatively regulates TGF-β signaling and myofibroblast differentiation. Am. J. Physiol. Lung Cell Mol. Physiol. 2018 314 5 L695 L707 10.1152/ajplung.00205.2017 29351434
    [Google Scholar]
  77. Yuan S. Titova O.E. Zhang K. Gou W. Schillemans T. Natarajan P. Chen J. Li X. Åkesson A. Bruzelius M. Klarin D. Damrauer S.M. Larsson S.C. Plasma protein and venous thromboembolism: Prospective cohort and mendelian randomisation analyses. Br. J. Haematol. 2023 201 4 783 792 10.1111/bjh.18679 36734038
    [Google Scholar]
  78. Zhang Y. Li D. Zhu Z. Chen S. Lu M. Cao P. Chen T. Li S. Xue S. Zhang Y. Zhu J. Ruan G. Ding C. Evaluating the impact of metformin targets on the risk of osteoarthritis: A mendelian randomization study. Osteoarthritis Cartilage 2022 30 11 1506 1514 10.1016/j.joca.2022.06.010 35803489
    [Google Scholar]
  79. Sun Z. Yun Z. Lin J. Sun X. Wang Q. Duan J. Li C. Zhang X. Xu S. Wang Z. Xiong X. Yao K. Comprehensive mendelian randomization analysis of plasma proteomics to identify new therapeutic targets for the treatment of coronary heart disease and myocardial infarction. J. Transl. Med. 2024 22 1 404 10.1186/s12967‑024‑05178‑8 38689297
    [Google Scholar]
  80. Lin J. Zhou J. Xu Y. Potential drug targets for multiple sclerosis identified through Mendelian randomization analysis. Brain 2023 146 8 3364 3372 10.1093/brain/awad070 36864689
    [Google Scholar]
  81. Zhao S.S. Yiu Z.Z.N. Barton A. Bowes J. Association of lipid-lowering drugs with risk of psoriasis. JAMA Dermatol. 2023 159 3 275 280 10.1001/jamadermatol.2022.6051 36696131
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673379521250630140948
Loading
/content/journals/cmc/10.2174/0109298673379521250630140948
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keywords: Scar ; multi-omics ; mendelian randomization ; proteomics and transcriptomics ; drug targets
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test