Skip to content
2000
Volume 33, Issue 1
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Ozone (O), a reactive gas produced by sunlight-driven reactions involving nitrogen oxides and volatile organic compounds, presents serious risks to both respiratory and brain health. While its harmful effects on the lungs are well established, there is increasing evidence connecting ozone exposure to cognitive decline and neurodegenerative conditions like Alzheimer’s and Parkinson’s diseases. Ozone induces oxidative stress and systemic inflammation, and activates microglia, with the potential to reach the brain directly through the olfactory pathway. These mechanisms play a role in key neurodegenerative processes, such as the buildup of amyloid-beta, abnormal tau phosphorylation, and mitochondrial dysfunction. Drawing from findings in both animal and human studies, this review highlights the critical need to reduce ozone exposure to safeguard brain health and alleviate the growing impact of neurological disorders.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673375058250624070823
2025-07-09
2026-01-08
Loading full text...

Full text loading...

References

  1. SeinfeldJ.H. PandisS.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change.Wiley2016
    [Google Scholar]
  2. D’AmatoG. Effects of climatic changes and urban air pollution on the rising trends of respiratory allergy and asthma.Multidiscip. Respir. Med.201161283710.1186/2049‑6958‑6‑1‑2822958620
    [Google Scholar]
  3. BlockM.L. Calderón-GarcidueñasL. Air pollution: Mechanisms of neuroinflammation and CNS disease.Trends Neurosci.200932950651610.1016/j.tins.2009.05.00919716187
    [Google Scholar]
  4. CostaL.G. ColeT.B. DaoK. ChangY.C. CoburnJ. GarrickJ.M. Effects of air pollution on the nervous system and its possible role in neurodevelopmental and neurodegenerative disorders.Pharmacol. Ther.202021010752310.1016/j.pharmthera.2020.10752332165138
    [Google Scholar]
  5. KimS.Y. KimE. KimW.J. Health effects of ozone on respiratory diseases.Tuberc. Respir. Dis.202083Suppl. 1S6S1110.4046/trd.2020.015433261243
    [Google Scholar]
  6. CampbellA. Inflammation, neurodegenerative diseases, and environmental exposures.Ann. N. Y. Acad. Sci.20041035111713210.1196/annals.1332.00815681804
    [Google Scholar]
  7. OberdörsterG. ElderA. RinderknechtA. Nanoparticles and the brain: Cause for concern?J. Nanosci. Nanotechnol.2009984996500710.1166/jnn.2009.GR0219928180
    [Google Scholar]
  8. MorganT.E. DavisD.A. IwataN. TannerJ.A. SnyderD. NingZ. KamW. HsuY.T. WinklerJ.W. ChenJ.C. PetasisN.A. BaudryM. SioutasC. FinchC.E. Glutamatergic neurons in rodent models respond to nanoscale particulate urban air pollutants in vivo and in vitro.Environ. Health Perspect.201111971003100910.1289/ehp.100297321724521
    [Google Scholar]
  9. TylerC.R. AllanA.M. The effects of arsenic exposure on neurological and cognitive dysfunction in human and rodent studies: A review.Curr. Environ. Health Rep.20141213214710.1007/s40572‑014‑0012‑124860722
    [Google Scholar]
  10. ChenH. KwongJ.C. CopesR. HystadP. van DonkelaarA. TuK. BrookJ.R. GoldbergM.S. MartinR.V. MurrayB.J. WiltonA.S. KoppA. BurnettR.T. Exposure to ambient air pollution and the incidence of dementia: A population-based cohort study.Environ. Int.201710827127710.1016/j.envint.2017.08.02028917207
    [Google Scholar]
  11. LevesqueS. SuraceM.J. McDonaldJ. BlockM.L. Air pollution & the brain: Subchronic diesel exhaust exposure causes neuroinflammation and elevates early markers of neurodegenerative disease.J. Neuroinflammation20118110510.1186/1742‑2094‑8‑10521864400
    [Google Scholar]
  12. DavisD.A. BortolatoM. GodarS.C. SanderT.K. IwataN. PakbinP. ShihJ.C. BerhaneK. McConnellR. SioutasC. FinchC.E. MorganT.E. Prenatal exposure to urban air nanoparticles in mice causes altered neuronal differentiation and depression-like responses.PLoS One201385e6412810.1371/journal.pone.006412823734187
    [Google Scholar]
  13. Calderón-GarcidueñasL. ReedW. MaronpotR.R. Henriquez-RoldánC. Delgado-ChavezR. Calderón-GarcidueñasA. DragustinovisI. Franco-LiraM. Aragón-FloresM. SoltA.C. AltenburgM. Torres-JardónR. SwenbergJ.A. Brain inflammation and Alzheimer’s-like pathology in individuals exposed to severe air pollution.Toxicol. Pathol.200432665065810.1080/0192623049052023215513908
    [Google Scholar]
  14. RitzB. LeeP.C. HansenJ. LassenC.F. KetzelM. SørensenM. Raaschou-NielsenO. Traffic-related air pollution and Parkinson’s disease in Denmark: A case–control study.Environ. Health Perspect.2016124335135610.1289/ehp.140931326151951
    [Google Scholar]
  15. Singh SA. SureshS. VellapandianC. Ozone-induced neurotoxicity: In vitro and in vivo evidence.Ageing Res. Rev.20239110204510.1016/j.arr.2023.10204537652313
    [Google Scholar]
  16. WeuveJ. PuettR.C. SchwartzJ. YanoskyJ.D. LadenF. GrodsteinF. Exposure to particulate air pollution and cognitive decline in older women.Arch. Intern. Med.2012172321922710.1001/archinternmed.2011.68322332151
    [Google Scholar]
  17. SunyerJ. Suades-GonzálezE. García-EstebanR. RivasI. PujolJ. Alvarez-PedrerolM. FornsJ. QuerolX. BasagañaX. Traffic-related air pollution and attention in primary school children.Epidemiology201728218118910.1097/EDE.000000000000060327922536
    [Google Scholar]
  18. RodriguezP. López-LandaA. Romo-ParraH. Rubio-OsornioM. RubioC. Unraveling the ozone impact and oxidative stress on the nervous system.Toxicology202450915397310.1016/j.tox.2024.15397339423999
    [Google Scholar]
  19. Marin-CastañedaL.A. Gonzalez-GaribayG. Garcia-QuintanaI. Pacheco-AispuroG. RubioC. Mechanisms of ozone-induced neurotoxicity in the development and progression of dementia: A brief review.Front. Aging Neurosci.202416149435610.3389/fnagi.2024.149435639529750
    [Google Scholar]
  20. PatialS. SainiY. Lung macrophages: Current understanding of their roles in Ozone-induced lung diseases.Crit. Rev. Toxicol.202050431032310.1080/10408444.2020.176253732458707
    [Google Scholar]
  21. MudwayI.S. KellyF.J. HolgateS.T. Oxidative stress in air pollution research.Free Radic. Biol. Med.20201512610.1016/j.freeradbiomed.2020.04.03132360613
    [Google Scholar]
  22. SongK. LiY. ZhangH. AnN. WeiY. WangL. TianC. YuanM. SunY. XingY. GaoY. Oxidative stress-mediated blood-brain barrier (BBB) disruption in neurological diseases.Oxid. Med. Cell. Longev.20202020112710.1155/2020/4356386
    [Google Scholar]
  23. LiuD. KeZ. LuoJ. Thiamine deficiency and neurodegeneration: The interplay among oxidative stress, endoplasmic reticulum stress, and autophagy.Mol. Neurobiol.20175475440544810.1007/s12035‑016‑0079‑927596507
    [Google Scholar]
  24. MaQ. Role of nrf2 in oxidative stress and toxicity.Annu. Rev. Pharmacol. Toxicol.201353140142610.1146/annurev‑pharmtox‑011112‑14032023294312
    [Google Scholar]
  25. LawrenceT. The nuclear factor NF-kappaB pathway in inflammation.Cold Spring Harb. Perspect. Biol.200916a00165110.1101/cshperspect.a00165120457564
    [Google Scholar]
  26. RouxP.P. BlenisJ. ERK and p38 MAPK-activated protein kinases: A family of protein kinases with diverse biological functions.Microbiol. Mol. Biol. Rev.200468232034410.1128/MMBR.68.2.320‑344.200415187187
    [Google Scholar]
  27. ChoH.Y. KleebergerS.R. Nrf2 protects against airway disorders.Toxicol. Appl. Pharmacol.20102441435610.1016/j.taap.2009.07.02419646463
    [Google Scholar]
  28. VerkhratskyA. ButtA. Glial Physiology and Pathophysiology.John Wiley & Sons, Ltd201310.1002/9781118402061
    [Google Scholar]
  29. Rivas-ArancibiaS. Hernández-OrozcoE. Rodríguez-MartínezE. Valdés-FuentesM. Cornejo-TrejoV. Pérez-PachecoN. Dorado-MartínezC. Zequeida-CarmonaD. Espinosa-CaletiI. Ozone pollution, oxidative stress, regulatory T cells and antioxidants.Antioxidants2022118155310.3390/antiox11081553
    [Google Scholar]
  30. MittalM. SiddiquiM.R. TranK. ReddyS.P. MalikA.B. Reactive oxygen species in inflammation and tissue injury.Antioxid. Redox Signal.20142071126116710.1089/ars.2012.514923991888
    [Google Scholar]
  31. LeszekJ. BarretoG.E. GąsiorowskiK. KoutsourakiE. Ávila-RodriguesM. AlievG. Inflammatory mechanisms and oxidative stress as key factors responsible for progression of neurodegeneration: Role of brain innate immune system.CNS Neurol. Disord. Drug Targets201615332933610.2174/187152731566616020212591426831258
    [Google Scholar]
  32. GiovannoniF. QuintanaF.J. The role of astrocytes in CNS inflammation.Trends Immunol.202041980581910.1016/j.it.2020.07.00732800705
    [Google Scholar]
  33. KettenmannH. RansomB.R. Neuroglia.Oxford University PressUSA2005
    [Google Scholar]
  34. BlockM.L. ZeccaL. HongJ.S. Microglia-mediated neurotoxicity: Uncovering the molecular mechanisms.Nat. Rev. Neurosci.200781576910.1038/nrn203817180163
    [Google Scholar]
  35. AjmaniG.S. SuhH.H. PintoJ.M. Effects of ambient air pollution exposure on olfaction: A review.Environ. Health Perspect.2016124111683169310.1289/EHP13627285588
    [Google Scholar]
  36. MuttrayA. GosepathJ. SchmallF. BriegerJ. Mayer-PopkenO. MeliaM. LetzelS. An acute exposure to ozone impairs human olfactory functioning.Environ. Res.2018167425010.1016/j.envres.2018.07.00630007872
    [Google Scholar]
  37. StarkR. The olfactory bulb: A neuroendocrine spotlight on feeding and metabolism.J. Neuroendocrinol.2024366e1338210.1111/jne.1338238468186
    [Google Scholar]
  38. GencS. ZadeoglulariZ. FussS.H. GencK. The adverse effects of air pollution on the nervous system.J. Toxicol.20122012112310.1155/2012/78246222523490
    [Google Scholar]
  39. KraftA.D. HarryG.J. Features of microglia and neuroinflammation relevant to environmental exposure and neurotoxicity.Int. J. Environ. Res. Public Health2011872980301810.3390/ijerph807298021845170
    [Google Scholar]
  40. HenekaM. ObanionM. Inflammatory processes in Alzheimer’s disease.J. Neuroimmunol.20071841-2699110.1016/j.jneuroim.2006.11.01717222916
    [Google Scholar]
  41. WangX. SunG. FengT. ZhangJ. HuangX. WangT. XieZ. ChuX. YangJ. WangH. ChangS. GongY. RuanL. ZhangG. YanS. LianW. DuC. YangD. ZhangQ. LinF. LiuJ. ZhangH. GeC. XiaoS. DingJ. GengM. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression.Cell Res.2019291078780310.1038/s41422‑019‑0216‑x31488882
    [Google Scholar]
  42. BhusalA. AfridiR. LeeW.H. SukK. Bidirectional communication between microglia and astrocytes in neuroinflammation.Curr. Neuropharmacol.202321102020202910.2174/1570159X2166622112912171536453496
    [Google Scholar]
  43. YangQ. WangG. ZhangF. Role of peripheral immune cells-mediated inflammation on the process of neurodegenerative diseases.Front. Immunol.20201158282510.3389/fimmu.2020.58282533178212
    [Google Scholar]
  44. MalangeK.F. Navia-PelaezJ.M. DiasE.V. LemesJ.B.P. ChoiS.H. Dos SantosG.G. YakshT.L. CorrM. Macrophages and glial cells: Innate immune drivers of inflammatory arthritic pain perception from peripheral joints to the central nervous system.Front. Pain Res.20223101880010.3389/fpain.2022.101880036387416
    [Google Scholar]
  45. PetrallaS. De ChiricoF. MitiA. TartagniO. MassenzioF. PoetaE. VirgiliM. ZuccheriG. MontiB. Epigenetics and communication mechanisms in microglia activation with a view on technological approaches.Biomolecules202111230610.3390/biom1102030633670563
    [Google Scholar]
  46. GiallongoS. LonghitanoL. DenaroS. D’AprileS. TorrisiF. La SpinaE. GiallongoC. ManninoG. Lo FurnoD. ZappalàA. GiuffridaR. ParentiR. Li VoltiG. TibulloD. VicarioN. The role of epigenetics in neuroinflammatory-driven diseases.Int. J. Mol. Sci.202223231521810.3390/ijms23231521836499544
    [Google Scholar]
  47. StephensonJ. NutmaE. van der ValkP. AmorS. Inflammation in CNS neurodegenerative diseases.Immunology2018154220421910.1111/imm.1292229513402
    [Google Scholar]
  48. WangX. MichaelisE.K. Selective neuronal vulnerability to oxidative stress in the brain.Front. Aging Neurosci.201021210.3389/fnagi.2010.0001220552050
    [Google Scholar]
  49. BrownG.C. BorutaiteV. Nitric oxide inhibition of mitochondrial respiration and its role in cell death.Free Radic. Biol. Med.200233111440145010.1016/S0891‑5849(02)01112‑712446201
    [Google Scholar]
  50. SwerdlowR.H. KhanS.M. A “mitochondrial cascade hypothesis” for sporadic Alzheimer’s disease.Med. Hypotheses200463182010.1016/j.mehy.2003.12.04515193340
    [Google Scholar]
  51. MinocherhomjiS. TollefsbolT.O. SinghK.K. Mitochondrial regulation of epigenetics and its role in human diseases.Epigenetics20127432633410.4161/epi.1954722419065
    [Google Scholar]
  52. EnweasorC. FlayerC.H. HaczkuA. Ozone-induced oxidative stress, neutrophilic airway inflammation, and glucocorticoid resistance in asthma.Front. Immunol.20211263109210.3389/fimmu.2021.63109233717165
    [Google Scholar]
  53. Hernández-CruzE.Y. Oxidative stress and its role in Cd-induced epigenetic modifications: Use of antioxidants as a possible preventive strategy.Oxygen2022217721010.3390/oxygen2020015
    [Google Scholar]
  54. GackièreF. VinayL. Contribution of the potassium-chloride cotransporter KCC2 to the strength of inhibition in the neonatal rodent spinal cord in vitro.J. Neurosci.201535135307531610.1523/JNEUROSCI.1674‑14.201525834055
    [Google Scholar]
  55. PowerM.C. AdarS.D. YanoskyJ.D. WeuveJ. Exposure to air pollution as a potential contributor to cognitive function, cognitive decline, brain imaging, and dementia: A systematic review of epidemiologic research.Neurotoxicology20165623525310.1016/j.neuro.2016.06.00427328897
    [Google Scholar]
  56. LiuR. YoungM.T. ChenJ.C. KaufmanJ.D. ChenH. Ambient air pollution exposures and risk of Parkinson disease.Environ. Health Perspect.2016124111759176510.1289/EHP13527285422
    [Google Scholar]
  57. RasheedM. LiangJ. WangC. DengY. ChenZ. Epigenetic regulation of neuroinflammation in Parkinson’s disease.Int. J. Mol. Sci.202122495610.3390/ijms22094956
    [Google Scholar]
  58. Clemente-SuárezV. Redondo-FlórezL. Beltrán-VelascoA. Ramos-CampoD. Belinchón-deMiguelP. Martinez-GuardadoI. DalamitrosA. Yáñez-SepúlvedaR. Martín-RodríguezA. Tornero-AguileraJ. Mitochondria and brain disease: A comprehensive review of pathological mechanisms and therapeutic opportunities.Biomedicines2023119248810.3390/biomedicines1109248837760929
    [Google Scholar]
  59. LissnerL.J. WartchowK.M. ToniazzoA.P. GonçalvesC.A. RodriguesL. Object recognition and Morris water maze to detect cognitive impairment from mild hippocampal damage in rats: A reflection based on the literature and experience.Pharmacol. Biochem. Behav.202121017327310.1016/j.pbb.2021.17327334536480
    [Google Scholar]
  60. AlvaradoM.C. BachevalierJ. Comparison of the effects of damage to the perirhinal and parahippocampal cortex on transverse patterning and location memory in rhesus macaques.J. Neurosci.20052561599160910.1523/JNEUROSCI.4457‑04.200515703414
    [Google Scholar]
  61. Bello-MedinaP.C. Rodríguez-MartínezE. Prado-AlcaláR.A. Rivas-ArancibiaS. Ozone pollution, oxidative stress, synaptic plasticity, and neurodegeneration.Neurología2022374277286[English Edition].10.1016/j.nrl.2018.10.003
    [Google Scholar]
  62. Bello-MedinaP.C. Prado-AlcaláR.A. Rivas-ArancibiaS. Effect of ozone exposure on dendritic spines of CA1 pyramidal neurons of the dorsal hippocampus and on object–place recognition memory in rats.Neuroscience201940211010.1016/j.neuroscience.2019.01.01830685541
    [Google Scholar]
  63. LuB. FigurovA. Role of neurotrophins in synapse development and plasticity.Rev. Neurosci.19978111210.1515/REVNEURO.1997.8.1.19402641
    [Google Scholar]
  64. Pimentel-CoelhoP.M. RivestS. The early contribution of cerebrovascular factors to the pathogenesis of Alzheimer’s disease.Eur. J. Neurosci.201235121917193710.1111/j.1460‑9568.2012.08126.x22708603
    [Google Scholar]
  65. Kyi-Tha-ThuC. FujitaniY. HiranoS. Win-ShweT.T. Early-life exposure to traffic-related air pollutants induced anxiety-like behaviors in rats via neurotransmitters and neurotrophic factors.Int. J. Mol. Sci.202224158610.3390/ijms2401058636614034
    [Google Scholar]
  66. GoldmanS.M. Environmental toxins and Parkinson’s disease.Annu. Rev. Pharmacol. Toxicol.201454114116410.1146/annurev‑pharmtox‑011613‑13593724050700
    [Google Scholar]
  67. ShermanS.M. GuilleryR.W. The role of the thalamus in the flow of information to the cortex.Philos. Trans. R. Soc. Lond. B Biol. Sci.200235714281695170810.1098/rstb.2002.116112626004
    [Google Scholar]
  68. HsiehH.L. YangC.M. Role of redox signaling in neuroinflammation and neurodegenerative diseases.BioMed Res. Int.2013201311810.1155/2013/48461324455696
    [Google Scholar]
  69. HalliwellB. Oxidative stress and neurodegeneration: Where are we now?J. Neurochem.20069761634165810.1111/j.1471‑4159.2006.03907.x16805774
    [Google Scholar]
  70. KatanM.B. Apolipoprotein E isoforms, serum cholesterol, and cancer.Int. J. Epidemiol.20043319910.1093/ije/dyh31215075136
    [Google Scholar]
  71. GuoC. SunL. ChenX. ZhangD. Oxidative stress, mitochondrial damage and neurodegenerative diseases.Neural Regen. Res.20138212003201425206509
    [Google Scholar]
  72. GuY. NievesJ.W. SternY. LuchsingerJ.A. ScarmeasN. Food combination and Alzheimer disease risk: A protective diet.Arch. Neurol.201067669970610.1001/archneurol.2010.8420385883
    [Google Scholar]
  73. BartzokisG. Alzheimer’s disease as homeostatic responses to age-related myelin breakdown.Neurobiol. Aging20113281341137110.1016/j.neurobiolaging.2009.08.00719775776
    [Google Scholar]
  74. CliffordA. LangL. ChenR. AnsteyK.J. SeatonA. Exposure to air pollution and cognitive functioning across the life course – A systematic literature review.Environ. Res.201614738339810.1016/j.envres.2016.01.01826945620
    [Google Scholar]
  75. GrandjeanP. LandriganP.J. Neurobehavioural effects of developmental toxicity.Lancet Neurol.201413333033810.1016/S1474‑4422(13)70278‑324556010
    [Google Scholar]
  76. RanftU. SchikowskiT. SugiriD. KrutmannJ. KrämerU. Long-term exposure to traffic-related particulate matter impairs cognitive function in the elderly.Environ. Res.200910981004101110.1016/j.envres.2009.08.00319733348
    [Google Scholar]
  77. TonneC. ElbazA. BeeversS. Singh-ManouxA. Traffic-related air pollution in relation to cognitive function in older adults.Epidemiology201425567468110.1097/EDE.000000000000014425036434
    [Google Scholar]
  78. HuangfuP. AtkinsonR. Long-term exposure to NO2 and O3 and all-cause and respiratory mortality: A systematic review and meta-analysis.Environ. Int.202014410599810.1016/j.envint.2020.10599833032072
    [Google Scholar]
  79. LeeS. TianD. HeR. CraggJ.J. CarlstenC. GiangA. GillP.K. JohnsonK.M. BrighamE. Ambient air pollution exposure and adult asthma incidence: A systematic review and meta-analysis.Lancet Planet. Health2024812e1065e107810.1016/S2542‑5196(24)00279‑139674196
    [Google Scholar]
  80. HajatA. HsiaC. O’NeillM.S. Socioeconomic disparities and air pollution exposure: A global review.Curr. Environ. Health Rep.20152444045010.1007/s40572‑015‑0069‑526381684
    [Google Scholar]
  81. WoodruffT.J. ParkerJ.D. DarrowL.A. SlamaR. BellM.L. ChoiH. GlinianaiaS. HoggattK.J. KarrC.J. LobdellD.T. WilhelmM. Methodological issues in studies of air pollution and reproductive health.Environ. Res.2009109331132010.1016/j.envres.2008.12.01219215915
    [Google Scholar]
  82. GustavsonK. von SoestT. KarevoldE. RøysambE. Attrition and generalizability in longitudinal studies: Findings from a 15-year population-based study and a Monte Carlo simulation study.BMC Public Health201212191810.1186/1471‑2458‑12‑91823107281
    [Google Scholar]
  83. PatelC.J. KerrJ. ThomasD.C. MukherjeeB. RitzB. ChatterjeeN. JankowskaM. MadanJ. KaragasM.R. McAllisterK.A. MechanicL.E. FallinM.D. Ladd-AcostaC. BlairI.A. TeitelbaumS.L. AmosC.I. Opportunities and challenges for environmental exposure assessment in population-based studies.Cancer Epidemiol. Biomarkers Prev.20172691370138010.1158/1055‑9965.EPI‑17‑045928710076
    [Google Scholar]
  84. RauhV.A. MargolisA.E. Research Review: Environmental exposures, neurodevelopment, and child mental health – New paradigms for the study of brain and behavioral effects.J. Child Psychol. Psychiatry201657777579310.1111/jcpp.1253726987761
    [Google Scholar]
  85. JungC.R. LinY.T. HwangB.F. Air pollution and newly diagnostic autism spectrum disorders: A population-based cohort study in Taiwan.PLoS One201389e7551010.1371/journal.pone.007551024086549
    [Google Scholar]
  86. KilianJ. KitazawaM. The emerging risk of exposure to air pollution on cognitive decline and Alzheimer’s disease – Evidence from epidemiological and animal studies.Biomed. J.201841314116210.1016/j.bj.2018.06.00130080655
    [Google Scholar]
  87. LiM. MaY.H. FuY. LiuJ.Y. HuH.Y. ZhaoY.L. HuangL.Y. TanL. Association between air pollution and CSF sTREM2 in cognitively normal older adults: The CABLE study.Ann. Clin. Transl. Neurol.20229111752176310.1002/acn3.5167136317226
    [Google Scholar]
  88. O’BrienR.J. WongP.C. Amyloid precursor protein processing and Alzheimer’s disease.Annu. Rev. Neurosci.201134118520410.1146/annurev‑neuro‑061010‑11361321456963
    [Google Scholar]
  89. RawatP. SeharU. BishtJ. SelmanA. CulbersonJ. ReddyP.H. Phosphorylated Tau in Alzheimer’s disease and other tauopathies.Int. J. Mol. Sci.202223211284110.3390/ijms23211284136361631
    [Google Scholar]
  90. CrozeM.L. ZimmerL. LeeH. Ozone atmospheric pollution and Alzheimer’s disease: From epidemiological facts to molecular mechanisms.J. Alzheimers Dis.201862250352210.3233/JAD‑17085729480184
    [Google Scholar]
  91. LinY.C. FanK.C. WuC.D. PanW.C. ChenJ.C. ChaoY.P. LaiY.J. ChiuY.L. ChuangY.F. Yearly change in air pollution and brain aging among older adults: A community-based study in Taiwan.Environ. Int.202419010887610.1016/j.envint.2024.10887639002330
    [Google Scholar]
  92. WillisA.W. EvanoffB.A. LianM. GalarzaA. WegrzynA. SchootmanM. RacetteB.A. Metal emissions and urban incident Parkinson disease: A community health study of Medicare beneficiaries by using geographic information systems.Am. J. Epidemiol.2010172121357136310.1093/aje/kwq30320959505
    [Google Scholar]
  93. ChanN.K. Differences in Cortical Thickness Between Cognitively Impaired Persons With and Without Apathy May Reflect Discrete Mechanisms of Neuropathophysiology.CanadaUniversity of Toronto2021
    [Google Scholar]
  94. Calderón-GarcidueñasL. Mora-TiscareñoA. OntiverosE. Gómez-GarzaG. Barragán-MejíaG. BroadwayJ. ChapmanS. Valencia-SalazarG. JewellsV. MaronpotR.R. Henríquez-RoldánC. Pérez-GuilléB. Torres-JardónR. HerritL. BrooksD. Osnaya-BrizuelaN. MonroyM.E. González-MacielA. Reynoso-RoblesR. Villarreal-CalderonR. SoltA.C. EngleR.W. Air pollution, cognitive deficits and brain abnormalities: A pilot study with children and dogs.Brain Cogn.200868211712710.1016/j.bandc.2008.04.00818550243
    [Google Scholar]
  95. ValkoM. LeibfritzD. MoncolJ. CroninM.T.D. MazurM. TelserJ. Free radicals and antioxidants in normal physiological functions and human disease.Int. J. Biochem. Cell Biol.2007391448410.1016/j.biocel.2006.07.00116978905
    [Google Scholar]
  96. GaoQ. ZangE. BiJ. DubrowR. LoweS.R. ChenH. ZengY. ShiL. ChenK. Long-term ozone exposure and cognitive impairment among Chinese older adults: A cohort study.Environ. Int.202216010707210.1016/j.envint.2021.10707234979350
    [Google Scholar]
  97. WilkerE.H. PreisS.R. BeiserA.S. WolfP.A. AuR. KloogI. LiW. SchwartzJ. KoutrakisP. DeCarliC. SeshadriS. MittlemanM.A. Long-term exposure to fine particulate matter, residential proximity to major roads and measures of brain structure.Stroke20154651161116610.1161/STROKEAHA.114.00834825908455
    [Google Scholar]
  98. LockhartS.N. DeCarliC. Structural imaging measures of brain aging.Neuropsychol. Rev.201424327128910.1007/s11065‑014‑9268‑325146995
    [Google Scholar]
  99. KimC.S. RohrA.C. Review and analysis of personal-ambient ozone measurements.J. Air Waste Manag. Assoc.202171111333134610.1080/10962247.2021.194231834156323
    [Google Scholar]
  100. PearsonJ.F. BachireddyC. ShyamprasadS. GoldfineA.B. BrownsteinJ.S. Association between fine particulate matter and diabetes prevalence in the U.S.Diabetes Care201033102196220110.2337/dc10‑069820628090
    [Google Scholar]
  101. SelkoeD.J. Alzheimer’s disease: Genes, proteins, and therapy.Physiol. Rev.200181274176610.1152/physrev.2001.81.2.74111274343
    [Google Scholar]
  102. CostaL.G. ColeT.B. CoburnJ. ChangY.C. DaoK. RoqueP. Neurotoxicants are in the air: Convergence of human, animal, and in vitro studies on the effects of air pollution on the brain.BioMed Res. Int.201420141810.1155/2014/73638524524086
    [Google Scholar]
  103. HeppnerF.L. RansohoffR.M. BecherB. Immune attack: The role of inflammation in Alzheimer disease.Nat. Rev. Neurosci.201516635837210.1038/nrn388025991443
    [Google Scholar]
  104. SchapiraA.H.V. Mitochondria in the aetiology and pathogenesis of Parkinson’s disease.Lancet Neurol.2008719710910.1016/S1474‑4422(07)70327‑718093566
    [Google Scholar]
  105. HirschE. HunotS. HirschE.C. HunotS. Neuroinflammation in Parkinson’s disease: A target for neuroprotection? Lancet Neurol. 8, 382-397.Lancet Neurol.2009838239710.1016/S1474‑4422(09)70062‑619296921
    [Google Scholar]
  106. GaoC. JiangJ. TanY. ChenS. Microglia in neurodegenerative diseases: Mechanism and potential therapeutic targets.Signal Transduct. Target. Ther.20238135910.1038/s41392‑023‑01588‑037735487
    [Google Scholar]
  107. LawrenceJ.M. SchardienK. WigdahlB. NonnemacherM.R. Roles of neuropathology-associated reactive astrocytes: A systematic review.Acta Neuropathol. Commun.20231114210.1186/s40478‑023‑01526‑936915214
    [Google Scholar]
  108. Van EldikL.J. CarrilloM.C. ColeP.E. FeuerbachD. GreenbergB.D. HendrixJ.A. KennedyM. KozauerN. MargolinR.A. MolinuevoJ.L. MuellerR. RansohoffR.M. WilcockD.M. BainL. BalesK. The roles of inflammation and immune mechanisms in Alzheimer’s disease.Alzheimers Dement.2016229910910.1016/j.trci.2016.05.00129067297
    [Google Scholar]
  109. Kölliker-FrersR. UdovinL. Otero-LosadaM. KobiecT. HerreraM.I. PalaciosJ. RazzitteG. CapaniF. Neuroinflammation: An integrating overview of reactive-neuroimmune cell interactions in health and disease.Mediators Inflamm.2021202112010.1155/2021/999914634158806
    [Google Scholar]
  110. GrammasP. Neurovascular dysfunction, inflammation and endothelial activation: Implications for the pathogenesis of Alzheimer’s disease.J. Neuroinflammation2011812610.1186/1742‑2094‑8‑2621439035
    [Google Scholar]
  111. IadecolaC. The pathobiology of vascular dementia.Neuron201380484486610.1016/j.neuron.2013.10.00824267647
    [Google Scholar]
  112. DotyR.L. Olfactory dysfunction in Parkinson disease.Nat. Rev. Neurol.20128632933910.1038/nrneurol.2012.8022584158
    [Google Scholar]
  113. NoyceA.J. BestwickJ.P. Silveira-MoriyamaL. HawkesC.H. GiovannoniG. LeesA.J. SchragA. Meta-analysis of early nonmotor features and risk factors for Parkinson disease.Ann. Neurol.201272689390110.1002/ana.2368723071076
    [Google Scholar]
  114. LiuC.C. KanekiyoT. XuH. BuG. BuG. Apolipoprotein E and Alzheimer disease: Risk, mechanisms and therapy.Nat. Rev. Neurol.20139210611810.1038/nrneurol.2012.26323296339
    [Google Scholar]
  115. MertaşB. Boşgelmezİ.İ. The role of genetic, environmental, and dietary factors in Alzheimer’s disease: A narrative review.Int. J. Mol. Sci.2021223122210.3390/ijms26031222
    [Google Scholar]
  116. DashU.C. BholN.K. SwainS.K. SamalR.R. NayakP.K. RainaV. PandaS.K. KerryR.G. DuttaroyA.K. JenaA.B. Oxidative stress and inflammation in the pathogenesis of neurological disorders: Mechanisms and implications.Acta Pharm. Sin. B2024151153410.1016/j.apsb.2024.10.00440041912
    [Google Scholar]
  117. Motsinger-ReifA.A. ReifD.M. AkhtariF.S. HouseJ.S. CampbellC.R. MessierK.P. FargoD.C. BowenT.A. NadadurS.S. SchmittC.P. PettiboneK.G. BalshawD.M. LawlerC.P. NewtonS.A. CollmanG.W. MillerA.K. MerrickB.A. CuiY. AnchangB. HarmonQ.E. McAllisterK.A. WoychikR. Gene-environment interactions within a precision environmental health framework.Cell Genomics20244710059110.1016/j.xgen.2024.10059138925123
    [Google Scholar]
  118. PrinceM. WimoA. GuerchetM. AliG-C. WuY-T. PrinaM. The global impact of Dementia. An analysis of prevalence, incidence, cost and trends.2015Available from: https://www.alzint.org/u/WorldAlzheimerReport2015.pdf
  119. LelieveldJ. EvansJ.S. FnaisM. GiannadakiD. PozzerA. The contribution of outdoor air pollution sources to premature mortality on a global scale.Nature2015525756936737110.1038/nature1537126381985
    [Google Scholar]
  120. YanM.H. WangX. ZhuX. Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease.Free Radic. Biol. Med.2013629010110.1016/j.freeradbiomed.2012.11.01423200807
    [Google Scholar]
  121. Di MeoS. ReedT.T. VendittiP. VictorV.M. Role of ROS and RNS sources in physiological and pathological conditions.Oxid. Med. Cell. Longev.201620161124504910.1155/2016/124504927478531
    [Google Scholar]
  122. RameshG. MacLeanA.G. PhilippM.T. Cytokines and chemokines at the crossroads of neuroinflammation, neurodegeneration, and neuropathic pain.Mediators Inflamm.2013201312010.1155/2013/48073923997430
    [Google Scholar]
  123. YangX. ChenC. WangK. ChenM. WangY. ChenZ. ZhaoW. OuS. Elucidating the molecular mechanisms of ozone therapy for neuropathic pain management by integrated transcriptomic and metabolomic approach.Front. Genet.202314123168210.3389/fgene.2023.123168237779912
    [Google Scholar]
  124. da FonsecaA.C.C. MatiasD. GarciaC. AmaralR. GeraldoL.H. FreitasC. LimaF.R.S. The impact of microglial activation on blood-brain barrier in brain diseases.Front. Cell. Neurosci.2014836210.3389/fncel.2014.0036225404894
    [Google Scholar]
  125. KimH. LengK. ParkJ. SoretsA.G. KimS. ShostakA. EmbalabalaR.J. MloukK. KatdareK.A. RoseI.V.L. SturgeonS.M. NealE.H. AoY. WangS. SofroniewM.V. BrungerJ.M. McMahonD.G. SchragM.S. KampmannM. LippmannE.S. Reactive astrocytes transduce inflammation in a blood-brain barrier model through a TNF-STAT3 signaling axis and secretion of alpha 1-antichymotrypsin.Nat. Commun.2022131658110.1038/s41467‑022‑34412‑436323693
    [Google Scholar]
  126. ZhangY. QiY. GaoY. ChenW. ZhouT. ZangY. LiJ. Astrocyte metabolism and signaling pathways in the CNS.Front. Neurosci.202317121745110.3389/fnins.2023.121745137732313
    [Google Scholar]
  127. BrookR.D. RajagopalanS. PopeC.A.III BrookJ.R. BhatnagarA. Diez-RouxA.V. HolguinF. HongY. LuepkerR.V. MittlemanM.A. PetersA. SiscovickD. SmithS.C.Jr WhitselL. KaufmanJ.D. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association.Circulation2010121212331237810.1161/CIR.0b013e3181dbece120458016
    [Google Scholar]
  128. BrundelM. ReijmerY.D. van VeluwS.J. KuijfH.J. LuijtenP.R. KappelleL.J. BiesselsG.J. Cerebral microvascular lesions on high-resolution 7-Tesla MRI in patients with type 2 diabetes.Diabetes201463103523352910.2337/db14‑012224760137
    [Google Scholar]
  129. AdamuA. LiS. GaoF. XueG. The role of neuroinflammation in neurodegenerative diseases: Current understanding and future therapeutic targets.Front. Aging Neurosci.202416134798710.3389/fnagi.2024.134798738681666
    [Google Scholar]
  130. ChenT. DaiY. HuC. LinZ. WangS. YangJ. ZengL. LiS. LiW. Cellular and molecular mechanisms of the blood–brain barrier dysfunction in neurodegenerative diseases.Fluids Barriers CNS20242116010.1186/s12987‑024‑00557‑139030617
    [Google Scholar]
  131. AshokA. AndrabiS.S. MansoorS. KuangY. KwonB.K. LabhasetwarV. Antioxidant therapy in oxidative stress-induced neurodegenerative diseases: Role of nanoparticle-based drug delivery systems in clinical translation.Antioxidants202211240810.3390/antiox1102040835204290
    [Google Scholar]
  132. JomovaK. AlomarS.Y. AlwaselS.H. NepovimovaE. KucaK. ValkoM. Several lines of antioxidant defense against oxidative stress: Antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants.Arch. Toxicol.20249851323136710.1007/s00204‑024‑03696‑438483584
    [Google Scholar]
  133. Katanić StankovićJ.S. SelakovićD. RosićG. Oxidative damage as a fundament of systemic toxicities induced by cisplatin—The crucial limitation or potential therapeutic target?Int. J. Mol. Sci.2023241457410.3390/ijms241914574
    [Google Scholar]
  134. RamhøjL. PetersenM.A. BobergJ. EgebjergK.M. MadsenC.B. HassU. Society of toxicology 55th annual meeting and toxexpo (SOT 2016).Society of ToxicologyNew Orleans, Louisiana, March 13–17 2016, pp. 72.
    [Google Scholar]
  135. MengQ. SuC.H. The impact of physical exercise on oxidative and nitrosative stress: Balancing the benefits and risks.Antioxidants202413557310.3390/antiox1305057338790678
    [Google Scholar]
  136. VauzourD. VafeiadouK. Rodriguez-MateosA. RendeiroC. SpencerJ.P.E. The neuroprotective potential of flavonoids: A multiplicity of effects.Genes Nutr.200833-411512610.1007/s12263‑008‑0091‑418937002
    [Google Scholar]
  137. BacanoiuM.V. DanoiuM. RusuL. MarinM.I. New directions to approach oxidative stress related to physical activity and nutraceuticals in normal aging and neurodegenerative aging.Antioxidants2023125100810.3390/antiox1205100837237873
    [Google Scholar]
  138. VallesS.L. SinghS.K. Campos-CamposJ. ColmenaC. Campo-PalacioI. Alvarez-GamezK. CaballeroO. JordaA. Functions of astrocytes under normal conditions and after a brain disease.Int. J. Mol. Sci.2023249843410.3390/ijms2409843437176144
    [Google Scholar]
  139. OdendaalL. QuekH. Cuní-LópezC. WhiteA.R. StewartR. The role of air pollution and olfactory dysfunction in Alzheimer’s disease pathogenesis.BiomedicinesBiomedicines202531246
    [Google Scholar]
  140. A global summary of policies and programmes to reduce air pollution.2021Available from: https://www.unep.org/resources/report/actions-air-quality-global-summary-policies-and-programmes-reduce-air-pollution
  141. Ambient (outdoor) air pollution.2024Available from: https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
  142. Edenhofer. Climate Change 2014 Mitigation of Climate Change; Cambridge University Press, 2015.
    [Google Scholar]
  143. HoffmanC.M. VersluisA. ChirilaS. KirengaB.J. KhanA. SaeedS. SooronbaevT. TsiligianniI. ArvindD.K. BauldL.C. van den BrandF.A. ChavannesN.H. PinnockH. PowellP.D. van der SchansJ. SiddiqiK. WilliamsS. van der KleijM.J.J.R. The FRESHAIR4Life study: Global implementation research on non-communicable disease prevention targeting adolescents’ exposure to tobacco and air pollution in disadvantaged populations.NPJ Prim. Care Respir. Med.20243411410.1038/s41533‑024‑00367‑w38834570
    [Google Scholar]
  144. BrookR.D. FranklinB. CascioW. HongY. HowardG. LipsettM. LuepkerR. MittlemanM. SametJ. SmithS.C.Jr TagerI. Air pollution and cardiovascular disease: A statement for healthcare professionals from the expert panel on population and prevention science of the American heart association.Circulation2004109212655267110.1161/01.CIR.0000128587.30041.C815173049
    [Google Scholar]
  145. SunQ. YueP. DeiuliisJ.A. LumengC.N. KampfrathT. MikolajM.B. CaiY. OstrowskiM.C. LuB. ParthasarathyS. BrookR.D. Moffatt-BruceS.D. ChenL.C. RajagopalanS. Ambient air pollution exaggerates adipose inflammation and insulin resistance in a mouse model of diet-induced obesity.Circulation2009119453854610.1161/CIRCULATIONAHA.108.79901519153269
    [Google Scholar]
  146. BrookR.D. Cardiovascular effects of air pollution.Clin. Sci.2008115617518710.1042/CS2007044418691154
    [Google Scholar]
  147. HeusinkveldH.J. WahleT. CampbellA. WesterinkR.H.S. TranL. JohnstonH. StoneV. CasseeF.R. SchinsR.P.F. Neurodegenerative and neurological disorders by small inhaled particles.Neurotoxicology2016569410610.1016/j.neuro.2016.07.00727448464
    [Google Scholar]
  148. AfzalS. Abdul ManapA.S. AttiqA. AlbokhadaimI. KandeelM. AlhojailyS.M. From imbalance to impairment: The central role of reactive oxygen species in oxidative stress-induced disorders and therapeutic exploration.Front. Pharmacol.202314126958110.3389/fphar.2023.126958137927596
    [Google Scholar]
  149. ZhangS. MengY. ZhouL. QiuL. WangH. SuD. ZhangB. ChanK.M. HanJ. Targeting epigenetic regulators for inflammation: Mechanisms and intervention therapy.MedComm202234e17310.1002/mco2.17336176733
    [Google Scholar]
  150. KimS. JungU.J. KimS.R. Role of oxidative stress in blood–brain barrier disruption and neurodegenerative diseases.Antioxidants20241312146210.3390/antiox1312146239765790
    [Google Scholar]
  151. JomovaK. RaptovaR. AlomarS.Y. AlwaselS.H. NepovimovaE. KucaK. ValkoM. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging.Arch. Toxicol.202397102499257410.1007/s00204‑023‑03562‑937597078
    [Google Scholar]
  152. ShihR.H. WangC.Y. YangC.M. NF-kappaB signaling pathways in neurological inflammation: A mini review.Front. Mol. Neurosci.201587710.3389/fnmol.2015.0007726733801
    [Google Scholar]
  153. Villavicencio TejoF. QuintanillaR.A. Contribution of the Nrf2 pathway on oxidative damage and mitochondrial failure in Parkinson and Alzheimer’s disease.Antioxidants2021107106910.3390/antiox1007106934356302
    [Google Scholar]
  154. HuangG. ShiL.Z. ChiH. Regulation of JNK and p38 MAPK in the immune system: Signal integration, propagation and termination.Cytokine200948316116910.1016/j.cyto.2009.08.00219740675
    [Google Scholar]
  155. YueJ. LópezJ.M. Understanding MAPK signaling pathways in apoptosis.Int. J. Mol. Sci.2020217234610.3390/ijms21072346
    [Google Scholar]
  156. ZhouH. NiW.J. MengX.M. TangL.Q. MicroRNAs as regulators of immune and inflammatory responses: Potential therapeutic targets in diabetic nephropathy.Front. Cell Dev. Biol.2021861853610.3389/fcell.2020.61853633569382
    [Google Scholar]
  157. GaudetA.D. FonkenL.K. WatkinsL.R. NelsonR.J. PopovichP.G. MicroRNAs: Roles in regulating neuroinflammation.Neuroscientist201824322124510.1177/107385841772115028737113
    [Google Scholar]
  158. KumarS. ReddyP.H. The role of synaptic microRNAs in Alzheimer’s disease.Biochim. Biophys. Acta Mol. Basis Dis.202018661216593710.1016/j.bbadis.2020.16593732827646
    [Google Scholar]
  159. CustodioR.J.P. HoblossZ. MyllysM. HassanR. GonzálezD. ReindersJ. BornhorstJ. WeishauptA.K. SeddekA. AbbasT. FriebelA. HoehmeS. GetzmannS. HengstlerJ.G. van ThrielC. GhallabA. Cognitive functions, neurotransmitter alterations, and hippocampal microstructural changes in mice caused by feeding on Western diet.Cells20231218233110.3390/cells1218233137759553
    [Google Scholar]
  160. SinghD. Astrocytic and microglial cells as the modulators of neuroinflammation in Alzheimer’s disease.J. Neuroinflammation202219120610.1186/s12974‑022‑02565‑035978311
    [Google Scholar]
  161. MisraniA. TabassumS. YangL. Mitochondrial dysfunction and oxidative stress in Alzheimer’s disease.Front. Aging Neurosci.20211361758810.3389/fnagi.2021.61758833679375
    [Google Scholar]
  162. NouraeinejadA. The functional and structural changes in the hippocampus of COVID-19 patients.Acta Neurol. Belg.202312341247125610.1007/s13760‑023‑02291‑137226033
    [Google Scholar]
  163. SanfeliuC. BartraC. SuñolC. Rodríguez-FarréE. New insights in animal models of neurotoxicity-induced neurodegeneration.Front. Neurosci.202417124872710.3389/fnins.2023.124872738260026
    [Google Scholar]
  164. OthmanM.Z. HassanZ. Che HasA.T. Morris water maze: A versatile and pertinent tool for assessing spatial learning and memory.Exp. Anim.202271326428010.1538/expanim.21‑012035314563
    [Google Scholar]
  165. FellowsR.P. BangenK.J. GravesL.V. Delano-WoodL. BondiM.W. Pathological functional impairment: Neuropsychological correlates of the shared variance between everyday functioning and brain volumetrics.Front. Aging Neurosci.20221495214510.3389/fnagi.2022.95214536620766
    [Google Scholar]
  166. JonkmanL.E. KenkhuisB. GeurtsJ.J.G. van de BergW.D.J. Post-mortem MRI and histopathology in neurologic disease: A translational approach.Neurosci. Bull.201935222924310.1007/s12264‑019‑00342‑330790214
    [Google Scholar]
  167. LiK. QianZ. HanY. ChangE.I.C. WeiB. LaiM. LiaoJ. FanY. XuY. Weakly supervised histopathology image segmentation with self-attention.Med. Image Anal.20238610279110.1016/j.media.2023.10279136933385
    [Google Scholar]
  168. JiangF. BelloS.T. GaoQ. LaiY. LiX. HeL. Advances in the electrophysiological recordings of long-term potentiation.Int. J. Mol. Sci.2023248713410.3390/ijms2408713437108295
    [Google Scholar]
  169. ChatterjeeD. GerlaiR. High precision liquid chromatography analysis of dopaminergic and serotoninergic responses to acute alcohol exposure in zebrafish.Behav. Brain Res.2009200120821310.1016/j.bbr.2009.01.01619378384
    [Google Scholar]
  170. MuzioL. ViottiA. MartinoG. Microglia in neuroinflammation and neurodegeneration: From understanding to therapy.Front. Neurosci.20211574206510.3389/fnins.2021.74206534630027
    [Google Scholar]
  171. HaberL.T. BradleyM.A. BuergerA.N. BehrsingH. BurlaS. ClappP.W. DotsonS. FisherC. GencoK.R. KruszewskiF.H. McCulloughS.D. PageK.E. PatelV. PechacekN. RoperC. SharmaM. JarabekA.M. New approach methodologies (NAMs) for the in vitro assessment of cleaning products for respiratory irritation: Workshop report.Front Toxicol20246143179010.3389/ftox.2024.143179039439531
    [Google Scholar]
  172. PechtelP. PizzagalliD.A. Effects of early life stress on cognitive and affective function: An integrated review of human literature.Psychopharmacology (Berl.)20112141557010.1007/s00213‑010‑2009‑220865251
    [Google Scholar]
  173. MurmanD. The impact of age on cognition.Semin. Hear.201536311112110.1055/s‑0035‑155511527516712
    [Google Scholar]
  174. NakahataN. NakamuraT. KawarabayashiT. SeinoY. IchiiS. IkedaY. AmariM. TakatamaM. MurashitaK. IharaK. ItohK. NakajiS. ShojiM. Age-related cognitive decline and prevalence of mild cognitive impairment in the Iwaki health promotion project.J. Alzheimers Dis.20218431233124510.3233/JAD‑21069934633321
    [Google Scholar]
  175. ZhangH. ShiL. EbeltS.T. D’SouzaR.R. SchwartzJ.D. ScovronickN. ChangH.H. Short-term associations between ambient air pollution and emergency department visits for Alzheimer’s disease and related dementias.Environ. Epidemiol.202371e23710.1097/EE9.000000000000023736777523
    [Google Scholar]
  176. SimonD.K. TannerC.M. BrundinP. Parkinson disease epidemiology, pathology, genetics, and pathophysiology.Clin. Geriatr. Med.202036111210.1016/j.cger.2019.08.00231733690
    [Google Scholar]
  177. RaufA. BadoniH. Abu-IzneidT. OlatundeA. RahmanM.M. PainuliS. SemwalP. WilairatanaP. MubarakM.S. Neuroinflammatory markers: Key indicators in the pathology of neurodegenerative diseases.Molecules20222710319410.3390/molecules2710319435630670
    [Google Scholar]
  178. CoutuJ.P. GoldblattA. RosasH.D. SalatD.H. White matter changes are associated with ventricular expansion in aging, mild cognitive impairment, and Alzheimer’s disease.J. Alzheimers Dis.201549232934210.3233/JAD‑15030626444767
    [Google Scholar]
  179. de Prado BertP. MercaderE.M.H. PujolJ. SunyerJ. MortamaisM. The effects of air pollution on the brain: A review of studies interfacing environmental epidemiology and neuroimaging.Curr. Environ. Health Rep.20185335136410.1007/s40572‑018‑0209‑930008171
    [Google Scholar]
  180. Win-ShweT.T. FujimakiH. Nanoparticles and neurotoxicity.Int. J. Mol. Sci.20111296267628010.3390/ijms1209626722016657
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673375058250624070823
Loading
/content/journals/cmc/10.2174/0109298673375058250624070823
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test