Skip to content
2000
image of Ozone-induced Neurotoxicity: Mechanistic Insights and Implications for Neurodegenerative Diseases

Abstract

Ozone (O), a reactive gas produced by sunlight-driven reactions involving nitrogen oxides and volatile organic compounds, presents serious risks to both respiratory and brain health. While its harmful effects on the lungs are well established, there is increasing evidence connecting ozone exposure to cognitive decline and neurodegenerative conditions like Alzheimer’s and Parkinson’s diseases. Ozone induces oxidative stress and systemic inflammation, and activates microglia, with the potential to reach the brain directly through the olfactory pathway. These mechanisms play a role in key neurodegenerative processes, such as the buildup of amyloid-beta, abnormal tau phosphorylation, and mitochondrial dysfunction. Drawing from findings in both animal and human studies, this review highlights the critical need to reduce ozone exposure to safeguard brain health and alleviate the growing impact of neurological disorders.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673375058250624070823
2025-07-09
2025-09-08
Loading full text...

Full text loading...

References

  1. Seinfeld J.H. Pandis S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Wiley 2016
    [Google Scholar]
  2. D’Amato G. Effects of climatic changes and urban air pollution on the rising trends of respiratory allergy and asthma. Multidiscip. Respir. Med. 2011 6 1 28 37 10.1186/2049‑6958‑6‑1‑28 22958620
    [Google Scholar]
  3. Block M.L. Calderón-Garcidueñas L. Air pollution: Mechanisms of neuroinflammation and CNS disease. Trends Neurosci. 2009 32 9 506 516 10.1016/j.tins.2009.05.009 19716187
    [Google Scholar]
  4. Costa L.G. Cole T.B. Dao K. Chang Y.C. Coburn J. Garrick J.M. Effects of air pollution on the nervous system and its possible role in neurodevelopmental and neurodegenerative disorders. Pharmacol. Ther. 2020 210 107523 10.1016/j.pharmthera.2020.107523 32165138
    [Google Scholar]
  5. Kim S.Y. Kim E. Kim W.J. Health effects of ozone on respiratory diseases. Tuberc. Respir. Dis. 2020 83 Suppl. 1 S6 S11 10.4046/trd.2020.0154 33261243
    [Google Scholar]
  6. Campbell A. Inflammation, neurodegenerative diseases, and environmental exposures. Ann. N. Y. Acad. Sci. 2004 1035 1 117 132 10.1196/annals.1332.008 15681804
    [Google Scholar]
  7. Oberdörster G. Elder A. Rinderknecht A. Nanoparticles and the brain: Cause for concern? J. Nanosci. Nanotechnol. 2009 9 8 4996 5007 10.1166/jnn.2009.GR02 19928180
    [Google Scholar]
  8. Morgan T.E. Davis D.A. Iwata N. Tanner J.A. Snyder D. Ning Z. Kam W. Hsu Y.T. Winkler J.W. Chen J.C. Petasis N.A. Baudry M. Sioutas C. Finch C.E. Glutamatergic neurons in rodent models respond to nanoscale particulate urban air pollutants in vivo and in vitro. Environ. Health Perspect. 2011 119 7 1003 1009 10.1289/ehp.1002973 21724521
    [Google Scholar]
  9. Tyler C.R. Allan A.M. The effects of arsenic exposure on neurological and cognitive dysfunction in human and rodent studies: A review. Curr. Environ. Health Rep. 2014 1 2 132 147 10.1007/s40572‑014‑0012‑1 24860722
    [Google Scholar]
  10. Chen H. Kwong J.C. Copes R. Hystad P. van Donkelaar A. Tu K. Brook J.R. Goldberg M.S. Martin R.V. Murray B.J. Wilton A.S. Kopp A. Burnett R.T. Exposure to ambient air pollution and the incidence of dementia: A population-based cohort study. Environ. Int. 2017 108 271 277 10.1016/j.envint.2017.08.020 28917207
    [Google Scholar]
  11. Levesque S. Surace M.J. McDonald J. Block M.L. Air pollution & the brain: Subchronic diesel exhaust exposure causes neuroinflammation and elevates early markers of neurodegenerative disease. J. Neuroinflammation 2011 8 1 105 10.1186/1742‑2094‑8‑105 21864400
    [Google Scholar]
  12. Davis D.A. Bortolato M. Godar S.C. Sander T.K. Iwata N. Pakbin P. Shih J.C. Berhane K. McConnell R. Sioutas C. Finch C.E. Morgan T.E. Prenatal exposure to urban air nanoparticles in mice causes altered neuronal differentiation and depression-like responses. PLoS One 2013 8 5 e64128 10.1371/journal.pone.0064128 23734187
    [Google Scholar]
  13. Calderón-Garcidueñas L. Reed W. Maronpot R.R. Henriquez-Roldán C. Delgado-Chavez R. Calderón-Garcidueñas A. Dragustinovis I. Franco-Lira M. Aragón-Flores M. Solt A.C. Altenburg M. Torres-Jardón R. Swenberg J.A. Brain inflammation and Alzheimer’s-like pathology in individuals exposed to severe air pollution. Toxicol. Pathol. 2004 32 6 650 658 10.1080/01926230490520232 15513908
    [Google Scholar]
  14. Ritz B. Lee P.C. Hansen J. Lassen C.F. Ketzel M. Sørensen M. Raaschou-Nielsen O. Traffic-related air pollution and Parkinson’s disease in Denmark: A case–control study. Environ. Health Perspect. 2016 124 3 351 356 10.1289/ehp.1409313 26151951
    [Google Scholar]
  15. Singh S A. Suresh S. Vellapandian C. Ozone-induced neurotoxicity: In vitro and in vivo evidence. Ageing Res. Rev. 2023 91 102045 10.1016/j.arr.2023.102045 37652313
    [Google Scholar]
  16. Weuve J. Puett R.C. Schwartz J. Yanosky J.D. Laden F. Grodstein F. Exposure to particulate air pollution and cognitive decline in older women. Arch. Intern. Med. 2012 172 3 219 227 10.1001/archinternmed.2011.683 22332151
    [Google Scholar]
  17. Sunyer J. Suades-González E. García-Esteban R. Rivas I. Pujol J. Alvarez-Pedrerol M. Forns J. Querol X. Basagaña X. Traffic-related air pollution and attention in primary school children. Epidemiology 2017 28 2 181 189 10.1097/EDE.0000000000000603 27922536
    [Google Scholar]
  18. Rodriguez P. López-Landa A. Romo-Parra H. Rubio-Osornio M. Rubio C. Unraveling the ozone impact and oxidative stress on the nervous system. Toxicology 2024 509 153973 10.1016/j.tox.2024.153973 39423999
    [Google Scholar]
  19. Marin-Castañeda L.A. Gonzalez-Garibay G. Garcia-Quintana I. Pacheco-Aispuro G. Rubio C. Mechanisms of ozone-induced neurotoxicity in the development and progression of dementia: A brief review. Front. Aging Neurosci. 2024 16 1494356 10.3389/fnagi.2024.1494356 39529750
    [Google Scholar]
  20. Patial S. Saini Y. Lung macrophages: Current understanding of their roles in Ozone-induced lung diseases. Crit. Rev. Toxicol. 2020 50 4 310 323 10.1080/10408444.2020.1762537 32458707
    [Google Scholar]
  21. Mudway I.S. Kelly F.J. Holgate S.T. Oxidative stress in air pollution research. Free Radic. Biol. Med. 2020 151 2 6 10.1016/j.freeradbiomed.2020.04.031 32360613
    [Google Scholar]
  22. Song K. Li Y. Zhang H. An N. Wei Y. Wang L. Tian C. Yuan M. Sun Y. Xing Y. Gao Y. Oxidative stress-mediated blood-brain barrier (BBB) disruption in neurological diseases. Oxid. Med. Cell. Longev. 2020 2020 1 1 27 10.1155/2020/4356386
    [Google Scholar]
  23. Liu D. Ke Z. Luo J. Thiamine deficiency and neurodegeneration: The interplay among oxidative stress, endoplasmic reticulum stress, and autophagy. Mol. Neurobiol. 2017 54 7 5440 5448 10.1007/s12035‑016‑0079‑9 27596507
    [Google Scholar]
  24. Ma Q. Role of nrf2 in oxidative stress and toxicity. Annu. Rev. Pharmacol. Toxicol. 2013 53 1 401 426 10.1146/annurev‑pharmtox‑011112‑140320 23294312
    [Google Scholar]
  25. Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb. Perspect. Biol. 2009 1 6 a001651 10.1101/cshperspect.a001651 20457564
    [Google Scholar]
  26. Roux P.P. Blenis J. ERK and p38 MAPK-activated protein kinases: A family of protein kinases with diverse biological functions. Microbiol. Mol. Biol. Rev. 2004 68 2 320 344 10.1128/MMBR.68.2.320‑344.2004 15187187
    [Google Scholar]
  27. Cho H.Y. Kleeberger S.R. Nrf2 protects against airway disorders. Toxicol. Appl. Pharmacol. 2010 244 1 43 56 10.1016/j.taap.2009.07.024 19646463
    [Google Scholar]
  28. Verkhratsky A. Butt A. Glial Physiology and Pathophysiology. John Wiley & Sons, Ltd 2013 10.1002/9781118402061
    [Google Scholar]
  29. Rivas-Arancibia S. Hernández-Orozco E. Rodríguez-Martínez E. Valdés-Fuentes M. Cornejo-Trejo V. Pérez-Pacheco N. Dorado-Martínez C. Zequeida-Carmona D. Espinosa-Caleti I. Ozone pollution, oxidative stress, regulatory T cells and antioxidants. Antioxidants 2022 11 8 1553 10.3390/antiox11081553
    [Google Scholar]
  30. Mittal M. Siddiqui M.R. Tran K. Reddy S.P. Malik A.B. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal. 2014 20 7 1126 1167 10.1089/ars.2012.5149 23991888
    [Google Scholar]
  31. Leszek J. Barreto G.E. Gąsiorowski K. Koutsouraki E. Ávila-Rodrigues M. Aliev G. Inflammatory mechanisms and oxidative stress as key factors responsible for progression of neurodegeneration: Role of brain innate immune system. CNS Neurol. Disord. Drug Targets 2016 15 3 329 336 10.2174/1871527315666160202125914 26831258
    [Google Scholar]
  32. Giovannoni F. Quintana F.J. The role of astrocytes in CNS inflammation. Trends Immunol. 2020 41 9 805 819 10.1016/j.it.2020.07.007 32800705
    [Google Scholar]
  33. Kettenmann H. Ransom B.R. Neuroglia. Oxford University Press USA 2005
    [Google Scholar]
  34. Block M.L. Zecca L. Hong J.S. Microglia-mediated neurotoxicity: Uncovering the molecular mechanisms. Nat. Rev. Neurosci. 2007 8 1 57 69 10.1038/nrn2038 17180163
    [Google Scholar]
  35. Ajmani G.S. Suh H.H. Pinto J.M. Effects of ambient air pollution exposure on olfaction: A review. Environ. Health Perspect. 2016 124 11 1683 1693 10.1289/EHP136 27285588
    [Google Scholar]
  36. Muttray A. Gosepath J. Schmall F. Brieger J. Mayer-Popken O. Melia M. Letzel S. An acute exposure to ozone impairs human olfactory functioning. Environ. Res. 2018 167 42 50 10.1016/j.envres.2018.07.006 30007872
    [Google Scholar]
  37. Stark R. The olfactory bulb: A neuroendocrine spotlight on feeding and metabolism. J. Neuroendocrinol. 2024 36 6 e13382 10.1111/jne.13382 38468186
    [Google Scholar]
  38. Genc S. Zadeoglulari Z. Fuss S.H. Genc K. The adverse effects of air pollution on the nervous system. J. Toxicol. 2012 2012 1 1 23 10.1155/2012/782462 22523490
    [Google Scholar]
  39. Kraft A.D. Harry G.J. Features of microglia and neuroinflammation relevant to environmental exposure and neurotoxicity. Int. J. Environ. Res. Public Health 2011 8 7 2980 3018 10.3390/ijerph8072980 21845170
    [Google Scholar]
  40. Heneka M. Obanion M. Inflammatory processes in Alzheimer’s disease. J. Neuroimmunol. 2007 184 1-2 69 91 10.1016/j.jneuroim.2006.11.017 17222916
    [Google Scholar]
  41. Wang X. Sun G. Feng T. Zhang J. Huang X. Wang T. Xie Z. Chu X. Yang J. Wang H. Chang S. Gong Y. Ruan L. Zhang G. Yan S. Lian W. Du C. Yang D. Zhang Q. Lin F. Liu J. Zhang H. Ge C. Xiao S. Ding J. Geng M. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression. Cell Res. 2019 29 10 787 803 10.1038/s41422‑019‑0216‑x 31488882
    [Google Scholar]
  42. Bhusal A. Afridi R. Lee W.H. Suk K. Bidirectional communication between microglia and astrocytes in neuroinflammation. Curr. Neuropharmacol. 2023 21 10 2020 2029 10.2174/1570159X21666221129121715 36453496
    [Google Scholar]
  43. Yang Q. Wang G. Zhang F. Role of peripheral immune cells-mediated inflammation on the process of neurodegenerative diseases. Front. Immunol. 2020 11 582825 10.3389/fimmu.2020.582825 33178212
    [Google Scholar]
  44. Malange K.F. Navia-Pelaez J.M. Dias E.V. Lemes J.B.P. Choi S.H. Dos Santos G.G. Yaksh T.L. Corr M. Macrophages and glial cells: Innate immune drivers of inflammatory arthritic pain perception from peripheral joints to the central nervous system. Front. Pain Res. 2022 3 1018800 10.3389/fpain.2022.1018800 36387416
    [Google Scholar]
  45. Petralla S. De Chirico F. Miti A. Tartagni O. Massenzio F. Poeta E. Virgili M. Zuccheri G. Monti B. Epigenetics and communication mechanisms in microglia activation with a view on technological approaches. Biomolecules 2021 11 2 306 10.3390/biom11020306 33670563
    [Google Scholar]
  46. Giallongo S. Longhitano L. Denaro S. D’Aprile S. Torrisi F. La Spina E. Giallongo C. Mannino G. Lo Furno D. Zappalà A. Giuffrida R. Parenti R. Li Volti G. Tibullo D. Vicario N. The role of epigenetics in neuroinflammatory-driven diseases. Int. J. Mol. Sci. 2022 23 23 15218 10.3390/ijms232315218 36499544
    [Google Scholar]
  47. Stephenson J. Nutma E. van der Valk P. Amor S. Inflammation in CNS neurodegenerative diseases. Immunology 2018 154 2 204 219 10.1111/imm.12922 29513402
    [Google Scholar]
  48. Wang X. Michaelis E.K. Selective neuronal vulnerability to oxidative stress in the brain. Front. Aging Neurosci. 2010 2 12 10.3389/fnagi.2010.00012 20552050
    [Google Scholar]
  49. Brown G.C. Borutaite V. Nitric oxide inhibition of mitochondrial respiration and its role in cell death. Free Radic. Biol. Med. 2002 33 11 1440 1450 10.1016/S0891‑5849(02)01112‑7 12446201
    [Google Scholar]
  50. Swerdlow R.H. Khan S.M. A “mitochondrial cascade hypothesis” for sporadic Alzheimer’s disease. Med. Hypotheses 2004 63 1 8 20 10.1016/j.mehy.2003.12.045 15193340
    [Google Scholar]
  51. Minocherhomji S. Tollefsbol T.O. Singh K.K. Mitochondrial regulation of epigenetics and its role in human diseases. Epigenetics 2012 7 4 326 334 10.4161/epi.19547 22419065
    [Google Scholar]
  52. Enweasor C. Flayer C.H. Haczku A. Ozone-Induced Oxidative Stress, Neutrophilic Airway Inflammation, and Glucocorticoid Resistance in Asthma. Front. Immunol. 2021 12 631092 10.3389/fimmu.2021.631092 33717165
    [Google Scholar]
  53. Hernández-Cruz E.Y. Oxidative stress and its role in Cd-induced epigenetic modifications: Use of antioxidants as a possible preventive strategy. Oxygen 2022 2 177 210 10.3390/oxygen2020015
    [Google Scholar]
  54. Gackière F. Vinay L. Contribution of the potassium-chloride cotransporter KCC2 to the strength of inhibition in the neonatal rodent spinal cord in vitro. J. Neurosci. 2015 35 13 5307 5316 10.1523/JNEUROSCI.1674‑14.2015 25834055
    [Google Scholar]
  55. Power M.C. Adar S.D. Yanosky J.D. Weuve J. Exposure to air pollution as a potential contributor to cognitive function, cognitive decline, brain imaging, and dementia: A systematic review of epidemiologic research. Neurotoxicology 2016 56 235 253 10.1016/j.neuro.2016.06.004 27328897
    [Google Scholar]
  56. Liu R. Young M.T. Chen J.C. Kaufman J.D. Chen H. Ambient air pollution exposures and risk of Parkinson disease. Environ. Health Perspect. 2016 124 11 1759 1765 10.1289/EHP135 27285422
    [Google Scholar]
  57. Rasheed M. Liang J. Wang C. Deng Y. Chen Z. Epigenetic regulation of neuroinflammation in Parkinson’s disease. Int J Mol Sci 2021 22 4956 10.3390/ijms22094956
    [Google Scholar]
  58. Clemente-Suárez V. Redondo-Flórez L. Beltrán-Velasco A. Ramos-Campo D. Belinchón-deMiguel P. Martinez-Guardado I. Dalamitros A. Yáñez-Sepúlveda R. Martín-Rodríguez A. Tornero-Aguilera J. Mitochondria and brain disease: A comprehensive review of pathological mechanisms and therapeutic opportunities. Biomedicines 2023 11 9 2488 10.3390/biomedicines11092488 37760929
    [Google Scholar]
  59. Lissner L.J. Wartchow K.M. Toniazzo A.P. Gonçalves C.A. Rodrigues L. Object recognition and Morris water maze to detect cognitive impairment from mild hippocampal damage in rats: A reflection based on the literature and experience. Pharmacol. Biochem. Behav. 2021 210 173273 10.1016/j.pbb.2021.173273 34536480
    [Google Scholar]
  60. Alvarado M.C. Bachevalier J. Comparison of the effects of damage to the perirhinal and parahippocampal cortex on transverse patterning and location memory in rhesus macaques. J. Neurosci. 2005 25 6 1599 1609 10.1523/JNEUROSCI.4457‑04.2005 15703414
    [Google Scholar]
  61. Bello-Medina P.C. Rodríguez-Martínez E. Prado-Alcalá R.A. Rivas-Arancibia S. Ozone pollution, oxidative stress, synaptic plasticity, and neurodegeneration. Neurología 2022 37 4 277 286 [English Edition]. 10.1016/j.nrl.2018.10.003
    [Google Scholar]
  62. Bello-Medina P.C. Prado-Alcalá R.A. Rivas-Arancibia S. Effect of ozone exposure on dendritic spines of CA1 pyramidal neurons of the dorsal hippocampus and on object–place recognition memory in rats. Neuroscience 2019 402 1 10 10.1016/j.neuroscience.2019.01.018 30685541
    [Google Scholar]
  63. Lu B. Figurov A. Role of neurotrophins in synapse development and plasticity. Rev. Neurosci. 1997 8 1 1 12 10.1515/REVNEURO.1997.8.1.1 9402641
    [Google Scholar]
  64. Pimentel-Coelho P.M. Rivest S. The early contribution of cerebrovascular factors to the pathogenesis of Alzheimer’s disease. Eur. J. Neurosci. 2012 35 12 1917 1937 10.1111/j.1460‑9568.2012.08126.x 22708603
    [Google Scholar]
  65. Kyi-Tha-Thu C. Fujitani Y. Hirano S. Win-Shwe T.T. Early-life exposure to traffic-related air pollutants induced anxiety-like behaviors in rats via neurotransmitters and neurotrophic factors. Int. J. Mol. Sci. 2022 24 1 586 10.3390/ijms24010586 36614034
    [Google Scholar]
  66. Goldman S.M. Environmental toxins and Parkinson’s disease. Annu. Rev. Pharmacol. Toxicol. 2014 54 1 141 164 10.1146/annurev‑pharmtox‑011613‑135937 24050700
    [Google Scholar]
  67. Sherman S.M. Guillery R.W. The role of the thalamus in the flow of information to the cortex. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2002 357 1428 1695 1708 10.1098/rstb.2002.1161 12626004
    [Google Scholar]
  68. Hsieh H.L. Yang C.M. Role of redox signaling in neuroinflammation and neurodegenerative diseases. BioMed Res. Int. 2013 2013 1 18 10.1155/2013/484613 24455696
    [Google Scholar]
  69. Halliwell B. Oxidative stress and neurodegeneration: Where are we now? J. Neurochem. 2006 97 6 1634 1658 10.1111/j.1471‑4159.2006.03907.x 16805774
    [Google Scholar]
  70. Katan M.B. Apolipoprotein E isoforms, serum cholesterol, and cancer. Int. J. Epidemiol. 2004 33 1 9 9 10.1093/ije/dyh312 15075136
    [Google Scholar]
  71. Guo C. Sun L. Chen X. Zhang D. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen. Res. 2013 8 21 2003 2014 25206509
    [Google Scholar]
  72. Gu Y. Nieves J.W. Stern Y. Luchsinger J.A. Scarmeas N. Food combination and Alzheimer disease risk: A protective diet. Arch. Neurol. 2010 67 6 699 706 10.1001/archneurol.2010.84 20385883
    [Google Scholar]
  73. Bartzokis G. Alzheimer’s disease as homeostatic responses to age-related myelin breakdown. Neurobiol. Aging 2011 32 8 1341 1371 10.1016/j.neurobiolaging.2009.08.007 19775776
    [Google Scholar]
  74. Clifford A. Lang L. Chen R. Anstey K.J. Seaton A. Exposure to air pollution and cognitive functioning across the life course – A systematic literature review. Environ. Res. 2016 147 383 398 10.1016/j.envres.2016.01.018 26945620
    [Google Scholar]
  75. Grandjean P. Landrigan P.J. Neurobehavioural effects of developmental toxicity. Lancet Neurol. 2014 13 3 330 338 10.1016/S1474‑4422(13)70278‑3 24556010
    [Google Scholar]
  76. Ranft U. Schikowski T. Sugiri D. Krutmann J. Krämer U. Long-term exposure to traffic-related particulate matter impairs cognitive function in the elderly. Environ. Res. 2009 109 8 1004 1011 10.1016/j.envres.2009.08.003 19733348
    [Google Scholar]
  77. Tonne C. Elbaz A. Beevers S. Singh-Manoux A. Traffic-related air pollution in relation to cognitive function in older adults. Epidemiology 2014 25 5 674 681 10.1097/EDE.0000000000000144 25036434
    [Google Scholar]
  78. Huangfu P. Atkinson R. Long-term exposure to NO2 and O3 and all-cause and respiratory mortality: A systematic review and meta-analysis. Environ. Int. 2020 144 105998 10.1016/j.envint.2020.105998 33032072
    [Google Scholar]
  79. Lee S. Tian D. He R. Cragg J.J. Carlsten C. Giang A. Gill P.K. Johnson K.M. Brigham E. Ambient air pollution exposure and adult asthma incidence: A systematic review and meta-analysis. Lancet Planet. Health 2024 8 12 e1065 e1078 10.1016/S2542‑5196(24)00279‑1 39674196
    [Google Scholar]
  80. Hajat A. Hsia C. O’Neill M.S. Socioeconomic disparities and air pollution exposure: A global review. Curr. Environ. Health Rep. 2015 2 4 440 450 10.1007/s40572‑015‑0069‑5 26381684
    [Google Scholar]
  81. Woodruff T.J. Parker J.D. Darrow L.A. Slama R. Bell M.L. Choi H. Glinianaia S. Hoggatt K.J. Karr C.J. Lobdell D.T. Wilhelm M. Methodological issues in studies of air pollution and reproductive health. Environ. Res. 2009 109 3 311 320 10.1016/j.envres.2008.12.012 19215915
    [Google Scholar]
  82. Gustavson K. von Soest T. Karevold E. Røysamb E. Attrition and generalizability in longitudinal studies: Findings from a 15-year population-based study and a Monte Carlo simulation study. BMC Public Health 2012 12 1 918 10.1186/1471‑2458‑12‑918 23107281
    [Google Scholar]
  83. Patel C.J. Kerr J. Thomas D.C. Mukherjee B. Ritz B. Chatterjee N. Jankowska M. Madan J. Karagas M.R. McAllister K.A. Mechanic L.E. Fallin M.D. Ladd-Acosta C. Blair I.A. Teitelbaum S.L. Amos C.I. Opportunities and challenges for environmental exposure assessment in population-based studies. Cancer Epidemiol. Biomarkers Prev. 2017 26 9 1370 1380 10.1158/1055‑9965.EPI‑17‑0459 28710076
    [Google Scholar]
  84. Rauh V.A. Margolis A.E. Research Review: Environmental exposures, neurodevelopment, and child mental health – New paradigms for the study of brain and behavioral effects. J. Child Psychol. Psychiatry 2016 57 7 775 793 10.1111/jcpp.12537 26987761
    [Google Scholar]
  85. Jung C.R. Lin Y.T. Hwang B.F. Air pollution and newly diagnostic autism spectrum disorders: A population-based cohort study in Taiwan. PLoS One 2013 8 9 e75510 10.1371/journal.pone.0075510 24086549
    [Google Scholar]
  86. Kilian J. Kitazawa M. The emerging risk of exposure to air pollution on cognitive decline and Alzheimer’s disease – Evidence from epidemiological and animal studies. Biomed. J. 2018 41 3 141 162 10.1016/j.bj.2018.06.001 30080655
    [Google Scholar]
  87. Li M. Ma Y.H. Fu Y. Liu J.Y. Hu H.Y. Zhao Y.L. Huang L.Y. Tan L. Association between air pollution and CSF sTREM2 in cognitively normal older adults: The CABLE study. Ann. Clin. Transl. Neurol. 2022 9 11 1752 1763 10.1002/acn3.51671 36317226
    [Google Scholar]
  88. O’Brien R.J. Wong P.C. Amyloid precursor protein processing and Alzheimer’s disease. Annu. Rev. Neurosci. 2011 34 1 185 204 10.1146/annurev‑neuro‑061010‑113613 21456963
    [Google Scholar]
  89. Rawat P. Sehar U. Bisht J. Selman A. Culberson J. Reddy P.H. Phosphorylated Tau in Alzheimer’s disease and other tauopathies. Int. J. Mol. Sci. 2022 23 21 12841 10.3390/ijms232112841 36361631
    [Google Scholar]
  90. Croze M.L. Zimmer L. Lee H. Ozone atmospheric pollution and Alzheimer’s disease: From epidemiological facts to molecular mechanisms. J. Alzheimers Dis. 2018 62 2 503 522 10.3233/JAD‑170857 29480184
    [Google Scholar]
  91. Lin Y.C. Fan K.C. Wu C.D. Pan W.C. Chen J.C. Chao Y.P. Lai Y.J. Chiu Y.L. Chuang Y.F. Yearly change in air pollution and brain aging among older adults: A community-based study in Taiwan. Environ. Int. 2024 190 108876 10.1016/j.envint.2024.108876 39002330
    [Google Scholar]
  92. Willis A.W. Evanoff B.A. Lian M. Galarza A. Wegrzyn A. Schootman M. Racette B.A. Metal emissions and urban incident Parkinson disease: A community health study of Medicare beneficiaries by using geographic information systems. Am. J. Epidemiol. 2010 172 12 1357 1363 10.1093/aje/kwq303 20959505
    [Google Scholar]
  93. Chan N.K. Differences in Cortical Thickness Between Cognitively Impaired Persons With and Without Apathy May Reflect Discrete Mechanisms of Neuropathophysiology. Canada University of Toronto 2021
    [Google Scholar]
  94. Calderón-Garcidueñas L. Mora-Tiscareño A. Ontiveros E. Gómez-Garza G. Barragán-Mejía G. Broadway J. Chapman S. Valencia-Salazar G. Jewells V. Maronpot R.R. Henríquez-Roldán C. Pérez-Guillé B. Torres-Jardón R. Herrit L. Brooks D. Osnaya-Brizuela N. Monroy M.E. González-Maciel A. Reynoso-Robles R. Villarreal-Calderon R. Solt A.C. Engle R.W. Air pollution, cognitive deficits and brain abnormalities: A pilot study with children and dogs. Brain Cogn. 2008 68 2 117 127 10.1016/j.bandc.2008.04.008 18550243
    [Google Scholar]
  95. Valko M. Leibfritz D. Moncol J. Cronin M.T.D. Mazur M. Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007 39 1 44 84 10.1016/j.biocel.2006.07.001 16978905
    [Google Scholar]
  96. Gao Q. Zang E. Bi J. Dubrow R. Lowe S.R. Chen H. Zeng Y. Shi L. Chen K. Long-term ozone exposure and cognitive impairment among Chinese older adults: A cohort study. Environ. Int. 2022 160 107072 10.1016/j.envint.2021.107072 34979350
    [Google Scholar]
  97. Wilker E.H. Preis S.R. Beiser A.S. Wolf P.A. Au R. Kloog I. Li W. Schwartz J. Koutrakis P. DeCarli C. Seshadri S. Mittleman M.A. Long-term exposure to fine particulate matter, residential proximity to major roads and measures of brain structure. Stroke 2015 46 5 1161 1166 10.1161/STROKEAHA.114.008348 25908455
    [Google Scholar]
  98. Lockhart S.N. DeCarli C. Structural imaging measures of brain aging. Neuropsychol. Rev. 2014 24 3 271 289 10.1007/s11065‑014‑9268‑3 25146995
    [Google Scholar]
  99. Kim C.S. Rohr A.C. Review and analysis of personal-ambient ozone measurements. J. Air Waste Manag. Assoc. 2021 71 11 1333 1346 10.1080/10962247.2021.1942318 34156323
    [Google Scholar]
  100. Pearson J.F. Bachireddy C. Shyamprasad S. Goldfine A.B. Brownstein J.S. Association between fine particulate matter and diabetes prevalence in the U.S. Diabetes Care 2010 33 10 2196 2201 10.2337/dc10‑0698 20628090
    [Google Scholar]
  101. Selkoe D.J. Alzheimer’s disease: Genes, proteins, and therapy. Physiol. Rev. 2001 81 2 741 766 10.1152/physrev.2001.81.2.741 11274343
    [Google Scholar]
  102. Costa L.G. Cole T.B. Coburn J. Chang Y.C. Dao K. Roque P. Neurotoxicants are in the air: Convergence of human, animal, and in vitro studies on the effects of air pollution on the brain. BioMed Res. Int. 2014 2014 1 8 10.1155/2014/736385 24524086
    [Google Scholar]
  103. Heppner F.L. Ransohoff R.M. Becher B. Immune attack: The role of inflammation in Alzheimer disease. Nat. Rev. Neurosci. 2015 16 6 358 372 10.1038/nrn3880 25991443
    [Google Scholar]
  104. Schapira A.H.V. Mitochondria in the aetiology and pathogenesis of Parkinson’s disease. Lancet Neurol. 2008 7 1 97 109 10.1016/S1474‑4422(07)70327‑7 18093566
    [Google Scholar]
  105. Hirsch E. Hunot S. Hirsch E.C. Hunot S. Neuroinflammation in Parkinson’s disease: A target for neuroprotection? Lancet Neurol. 8, 382-397. Lancet Neurol. 2009 8 382 397 10.1016/S1474‑4422(09)70062‑6 19296921
    [Google Scholar]
  106. Gao C. Jiang J. Tan Y. Chen S. Microglia in neurodegenerative diseases: Mechanism and potential therapeutic targets. Signal Transduct. Target. Ther. 2023 8 1 359 10.1038/s41392‑023‑01588‑0 37735487
    [Google Scholar]
  107. Lawrence J.M. Schardien K. Wigdahl B. Nonnemacher M.R. Roles of neuropathology-associated reactive astrocytes: A systematic review. Acta Neuropathol. Commun. 2023 11 1 42 10.1186/s40478‑023‑01526‑9 36915214
    [Google Scholar]
  108. Van Eldik L.J. Carrillo M.C. Cole P.E. Feuerbach D. Greenberg B.D. Hendrix J.A. Kennedy M. Kozauer N. Margolin R.A. Molinuevo J.L. Mueller R. Ransohoff R.M. Wilcock D.M. Bain L. Bales K. The roles of inflammation and immune mechanisms in Alzheimer’s disease. Alzheimers Dement. 2016 2 2 99 109 10.1016/j.trci.2016.05.001 29067297
    [Google Scholar]
  109. Kölliker-Frers R. Udovin L. Otero-Losada M. Kobiec T. Herrera M.I. Palacios J. Razzitte G. Capani F. Neuroinflammation: An integrating overview of reactive-neuroimmune cell interactions in health and disease. Mediators Inflamm. 2021 2021 1 20 10.1155/2021/9999146 34158806
    [Google Scholar]
  110. Grammas P. Neurovascular dysfunction, inflammation and endothelial activation: Implications for the pathogenesis of Alzheimer’s disease. J. Neuroinflammation 2011 8 1 26 10.1186/1742‑2094‑8‑26 21439035
    [Google Scholar]
  111. Iadecola C. The pathobiology of vascular dementia. Neuron 2013 80 4 844 866 10.1016/j.neuron.2013.10.008 24267647
    [Google Scholar]
  112. Doty R.L. Olfactory dysfunction in Parkinson disease. Nat. Rev. Neurol. 2012 8 6 329 339 10.1038/nrneurol.2012.80 22584158
    [Google Scholar]
  113. Noyce A.J. Bestwick J.P. Silveira-Moriyama L. Hawkes C.H. Giovannoni G. Lees A.J. Schrag A. Meta-analysis of early nonmotor features and risk factors for Parkinson disease. Ann. Neurol. 2012 72 6 893 901 10.1002/ana.23687 23071076
    [Google Scholar]
  114. Liu C.C. Kanekiyo T. Xu H. Bu G. Bu G. Apolipoprotein E and Alzheimer disease: Risk, mechanisms and therapy. Nat. Rev. Neurol. 2013 9 2 106 118 10.1038/nrneurol.2012.263 23296339
    [Google Scholar]
  115. Mertaş B. Boşgelmez İ.İ. The role of genetic, environmental, and dietary factors in Alzheimer’s disease: A narrative review. Int J Mol Sci 2021 22 3 1222 10.3390/ijms26031222
    [Google Scholar]
  116. Dash U.C. Bhol N.K. Swain S.K. Samal R.R. Nayak P.K. Raina V. Panda S.K. Kerry R.G. Duttaroy A.K. Jena A.B. Oxidative stress and inflammation in the pathogenesis of neurological disorders: Mechanisms and implications. Acta Pharm. Sin. B 2024 15 1 15 34 10.1016/j.apsb.2024.10.004 40041912
    [Google Scholar]
  117. Motsinger-Reif A.A. Reif D.M. Akhtari F.S. House J.S. Campbell C.R. Messier K.P. Fargo D.C. Bowen T.A. Nadadur S.S. Schmitt C.P. Pettibone K.G. Balshaw D.M. Lawler C.P. Newton S.A. Collman G.W. Miller A.K. Merrick B.A. Cui Y. Anchang B. Harmon Q.E. McAllister K.A. Woychik R. Gene-environment interactions within a precision environmental health framework. Cell Genomics 2024 4 7 100591 10.1016/j.xgen.2024.100591 38925123
    [Google Scholar]
  118. Prince M. Wimo A. Guerchet M. Ali G-C. Wu Y-T. Prina M. The global impact of Dementia. An analysis of prevalence, incidence, cost and trends. 2015 Available from: https://www.alzint.org/u/WorldAlzheimerReport2015.pdf
  119. Lelieveld J. Evans J.S. Fnais M. Giannadaki D. Pozzer A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015 525 7569 367 371 10.1038/nature15371 26381985
    [Google Scholar]
  120. Yan M.H. Wang X. Zhu X. Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free Radic. Biol. Med. 2013 62 90 101 10.1016/j.freeradbiomed.2012.11.014 23200807
    [Google Scholar]
  121. Di Meo S. Reed T.T. Venditti P. Victor V.M. Role of ROS and RNS sources in physiological and pathological conditions. Oxid. Med. Cell. Longev. 2016 2016 1 1245049 10.1155/2016/1245049 27478531
    [Google Scholar]
  122. Ramesh G. MacLean A.G. Philipp M.T. Cytokines and chemokines at the crossroads of neuroinflammation, neurodegeneration, and neuropathic pain. Mediators Inflamm. 2013 2013 1 20 10.1155/2013/480739 23997430
    [Google Scholar]
  123. Yang X. Chen C. Wang K. Chen M. Wang Y. Chen Z. Zhao W. Ou S. Elucidating the molecular mechanisms of ozone therapy for neuropathic pain management by integrated transcriptomic and metabolomic approach. Front. Genet. 2023 14 1231682 10.3389/fgene.2023.1231682 37779912
    [Google Scholar]
  124. da Fonseca A.C.C. Matias D. Garcia C. Amaral R. Geraldo L.H. Freitas C. Lima F.R.S. The impact of microglial activation on blood-brain barrier in brain diseases. Front. Cell. Neurosci. 2014 8 362 10.3389/fncel.2014.00362 25404894
    [Google Scholar]
  125. Kim H. Leng K. Park J. Sorets A.G. Kim S. Shostak A. Embalabala R.J. Mlouk K. Katdare K.A. Rose I.V.L. Sturgeon S.M. Neal E.H. Ao Y. Wang S. Sofroniew M.V. Brunger J.M. McMahon D.G. Schrag M.S. Kampmann M. Lippmann E.S. Reactive astrocytes transduce inflammation in a blood-brain barrier model through a TNF-STAT3 signaling axis and secretion of alpha 1-antichymotrypsin. Nat. Commun. 2022 13 1 6581 10.1038/s41467‑022‑34412‑4 36323693
    [Google Scholar]
  126. Zhang Y. Qi Y. Gao Y. Chen W. Zhou T. Zang Y. Li J. Astrocyte metabolism and signaling pathways in the CNS. Front. Neurosci. 2023 17 1217451 10.3389/fnins.2023.1217451 37732313
    [Google Scholar]
  127. Brook R.D. Rajagopalan S. Pope C.A. III Brook J.R. Bhatnagar A. Diez-Roux A.V. Holguin F. Hong Y. Luepker R.V. Mittleman M.A. Peters A. Siscovick D. Smith S.C. Jr Whitsel L. Kaufman J.D. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation 2010 121 21 2331 2378 10.1161/CIR.0b013e3181dbece1 20458016
    [Google Scholar]
  128. Brundel M. Reijmer Y.D. van Veluw S.J. Kuijf H.J. Luijten P.R. Kappelle L.J. Biessels G.J. Cerebral microvascular lesions on high-resolution 7-Tesla MRI in patients with type 2 diabetes. Diabetes 2014 63 10 3523 3529 10.2337/db14‑0122 24760137
    [Google Scholar]
  129. Adamu A. Li S. Gao F. Xue G. The role of neuroinflammation in neurodegenerative diseases: Current understanding and future therapeutic targets. Front. Aging Neurosci. 2024 16 1347987 10.3389/fnagi.2024.1347987 38681666
    [Google Scholar]
  130. Chen T. Dai Y. Hu C. Lin Z. Wang S. Yang J. Zeng L. Li S. Li W. Cellular and molecular mechanisms of the blood–brain barrier dysfunction in neurodegenerative diseases. Fluids Barriers CNS 2024 21 1 60 10.1186/s12987‑024‑00557‑1 39030617
    [Google Scholar]
  131. Ashok A. Andrabi S.S. Mansoor S. Kuang Y. Kwon B.K. Labhasetwar V. Antioxidant therapy in oxidative stress-induced neurodegenerative diseases: Role of nanoparticle-based drug delivery systems in clinical translation. Antioxidants 2022 11 2 408 10.3390/antiox11020408 35204290
    [Google Scholar]
  132. Jomova K. Alomar S.Y. Alwasel S.H. Nepovimova E. Kuca K. Valko M. Several lines of antioxidant defense against oxidative stress: Antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. Arch. Toxicol. 2024 98 5 1323 1367 10.1007/s00204‑024‑03696‑4 38483584
    [Google Scholar]
  133. Katanić Stanković J.S. Selaković D. Rosić G. Oxidative damage as a fundament of systemic toxicities induced by cisplatin—The crucial limitation or potential therapeutic target? Int J Mol Sci 2023 24 14574 10.3390/ijms241914574
    [Google Scholar]
  134. Ramhøj L. Petersen M.A. Boberg J. Egebjerg K.M. Madsen C.B. Hass U. Society of toxicology 55th annual meeting and toxexpo (SOT 2016). Society of Toxicology New Orleans, Louisiana, March 13–17 2016, pp 72.
    [Google Scholar]
  135. Meng Q. Su C.H. The impact of physical exercise on oxidative and nitrosative stress: Balancing the benefits and risks. Antioxidants 2024 13 5 573 10.3390/antiox13050573 38790678
    [Google Scholar]
  136. Vauzour D. Vafeiadou K. Rodriguez-Mateos A. Rendeiro C. Spencer J.P.E. The neuroprotective potential of flavonoids: A multiplicity of effects. Genes Nutr. 2008 3 3-4 115 126 10.1007/s12263‑008‑0091‑4 18937002
    [Google Scholar]
  137. Bacanoiu M.V. Danoiu M. Rusu L. Marin M.I. New directions to approach oxidative stress related to physical activity and nutraceuticals in normal aging and neurodegenerative aging. Antioxidants 2023 12 5 1008 10.3390/antiox12051008 37237873
    [Google Scholar]
  138. Valles S.L. Singh S.K. Campos-Campos J. Colmena C. Campo-Palacio I. Alvarez-Gamez K. Caballero O. Jorda A. Functions of astrocytes under normal conditions and after a brain disease. Int. J. Mol. Sci. 2023 24 9 8434 10.3390/ijms24098434 37176144
    [Google Scholar]
  139. Odendaal L. Quek H. Cuní-López C. White A.R. Stewart R. The role of air pollution and olfactory dysfunction in Alzheimer’s disease pathogenesis. Biomedicines Biomedicines 2025 3 1 246
    [Google Scholar]
  140. A global summary of policies and programmes to reduce air pollution. 2021 Available from: https://www.unep.org/resources/report/actions-air-quality-global-summary-policies-and-programmes-reduce-air-pollution
  141. Ambient (outdoor) air pollution. 2024 Available from: https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
  142. Climate Change 2014 Mitigation of Climate Change; Cambridge University Press, 2015.
    [Google Scholar]
  143. Hoffman C.M. Versluis A. Chirila S. Kirenga B.J. Khan A. Saeed S. Sooronbaev T. Tsiligianni I. Arvind D.K. Bauld L.C. van den Brand F.A. Chavannes N.H. Pinnock H. Powell P.D. van der Schans J. Siddiqi K. Williams S. van der Kleij M.J.J.R. The FRESHAIR4Life study: Global implementation research on non-communicable disease prevention targeting adolescents’ exposure to tobacco and air pollution in disadvantaged populations. NPJ Prim. Care Respir. Med. 2024 34 1 14 10.1038/s41533‑024‑00367‑w 38834570
    [Google Scholar]
  144. Brook R.D. Franklin B. Cascio W. Hong Y. Howard G. Lipsett M. Luepker R. Mittleman M. Samet J. Smith S.C. Jr Tager I. Air pollution and cardiovascular disease: A statement for healthcare professionals from the expert panel on population and prevention science of the American heart association. Circulation 2004 109 21 2655 2671 10.1161/01.CIR.0000128587.30041.C8 15173049
    [Google Scholar]
  145. Sun Q. Yue P. Deiuliis J.A. Lumeng C.N. Kampfrath T. Mikolaj M.B. Cai Y. Ostrowski M.C. Lu B. Parthasarathy S. Brook R.D. Moffatt-Bruce S.D. Chen L.C. Rajagopalan S. Ambient air pollution exaggerates adipose inflammation and insulin resistance in a mouse model of diet-induced obesity. Circulation 2009 119 4 538 546 10.1161/CIRCULATIONAHA.108.799015 19153269
    [Google Scholar]
  146. Brook R.D. Cardiovascular effects of air pollution. Clin. Sci. 2008 115 6 175 187 10.1042/CS20070444 18691154
    [Google Scholar]
  147. Heusinkveld H.J. Wahle T. Campbell A. Westerink R.H.S. Tran L. Johnston H. Stone V. Cassee F.R. Schins R.P.F. Neurodegenerative and neurological disorders by small inhaled particles. Neurotoxicology 2016 56 94 106 10.1016/j.neuro.2016.07.007 27448464
    [Google Scholar]
  148. Afzal S. Abdul Manap A.S. Attiq A. Albokhadaim I. Kandeel M. Alhojaily S.M. From imbalance to impairment: The central role of reactive oxygen species in oxidative stress-induced disorders and therapeutic exploration. Front. Pharmacol. 2023 14 1269581 10.3389/fphar.2023.1269581 37927596
    [Google Scholar]
  149. Zhang S. Meng Y. Zhou L. Qiu L. Wang H. Su D. Zhang B. Chan K.M. Han J. Targeting epigenetic regulators for inflammation: Mechanisms and intervention therapy. MedComm 2022 3 4 e173 10.1002/mco2.173 36176733
    [Google Scholar]
  150. Kim S. Jung U.J. Kim S.R. Role of oxidative stress in blood–brain barrier disruption and neurodegenerative diseases. Antioxidants 2024 13 12 1462 10.3390/antiox13121462 39765790
    [Google Scholar]
  151. Jomova K. Raptova R. Alomar S.Y. Alwasel S.H. Nepovimova E. Kuca K. Valko M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Arch. Toxicol. 2023 97 10 2499 2574 10.1007/s00204‑023‑03562‑9 37597078
    [Google Scholar]
  152. Shih R.H. Wang C.Y. Yang C.M. NF-kappaB signaling pathways in neurological inflammation: A mini review. Front. Mol. Neurosci. 2015 8 77 10.3389/fnmol.2015.00077 26733801
    [Google Scholar]
  153. Villavicencio Tejo F. Quintanilla R.A. Contribution of the Nrf2 pathway on oxidative damage and mitochondrial failure in Parkinson and Alzheimer’s disease. Antioxidants 2021 10 7 1069 10.3390/antiox10071069 34356302
    [Google Scholar]
  154. Huang G. Shi L.Z. Chi H. Regulation of JNK and p38 MAPK in the immune system: Signal integration, propagation and termination. Cytokine 2009 48 3 161 169 10.1016/j.cyto.2009.08.002 19740675
    [Google Scholar]
  155. Yue J. López J.M. Understanding MAPK signaling pathways in apoptosis. Int. J. Mol. Sci. 2020 21 7 2346 10.3390/ijms21072346
    [Google Scholar]
  156. Zhou H. Ni W.J. Meng X.M. Tang L.Q. MicroRNAs as regulators of immune and inflammatory responses: Potential therapeutic targets in diabetic nephropathy. Front. Cell Dev. Biol. 2021 8 618536 10.3389/fcell.2020.618536 33569382
    [Google Scholar]
  157. Gaudet A.D. Fonken L.K. Watkins L.R. Nelson R.J. Popovich P.G. MicroRNAs: Roles in regulating neuroinflammation. Neuroscientist 2018 24 3 221 245 10.1177/1073858417721150 28737113
    [Google Scholar]
  158. Kumar S. Reddy P.H. The role of synaptic microRNAs in Alzheimer’s disease. Biochim. Biophys. Acta Mol. Basis Dis. 2020 1866 12 165937 10.1016/j.bbadis.2020.165937 32827646
    [Google Scholar]
  159. Custodio R.J.P. Hobloss Z. Myllys M. Hassan R. González D. Reinders J. Bornhorst J. Weishaupt A.K. Seddek A. Abbas T. Friebel A. Hoehme S. Getzmann S. Hengstler J.G. van Thriel C. Ghallab A. Cognitive functions, neurotransmitter alterations, and hippocampal microstructural changes in mice caused by feeding on western diet. Cells 2023 12 18 2331 10.3390/cells12182331 37759553
    [Google Scholar]
  160. Singh D. Astrocytic and microglial cells as the modulators of neuroinflammation in Alzheimer’s disease. J. Neuroinflammation 2022 19 1 206 10.1186/s12974‑022‑02565‑0 35978311
    [Google Scholar]
  161. Misrani A. Tabassum S. Yang L. Mitochondrial dysfunction and oxidative stress in Alzheimer’s disease. Front. Aging Neurosci. 2021 13 617588 10.3389/fnagi.2021.617588 33679375
    [Google Scholar]
  162. Nouraeinejad A. The functional and structural changes in the hippocampus of COVID-19 patients. Acta Neurol. Belg. 2023 123 4 1247 1256 10.1007/s13760‑023‑02291‑1 37226033
    [Google Scholar]
  163. Sanfeliu C. Bartra C. Suñol C. Rodríguez-Farré E. New insights in animal models of neurotoxicity-induced neurodegeneration. Front. Neurosci. 2024 17 1248727 10.3389/fnins.2023.1248727 38260026
    [Google Scholar]
  164. Othman M.Z. Hassan Z. Che Has A.T. Morris water maze: A versatile and pertinent tool for assessing spatial learning and memory. Exp. Anim. 2022 71 3 264 280 10.1538/expanim.21‑0120 35314563
    [Google Scholar]
  165. Fellows R.P. Bangen K.J. Graves L.V. Delano-Wood L. Bondi M.W. Pathological functional impairment: Neuropsychological correlates of the shared variance between everyday functioning and brain volumetrics. Front. Aging Neurosci. 2022 14 952145 10.3389/fnagi.2022.952145 36620766
    [Google Scholar]
  166. Jonkman L.E. Kenkhuis B. Geurts J.J.G. van de Berg W.D.J. Post-mortem MRI and histopathology in neurologic disease: A translational approach. Neurosci. Bull. 2019 35 2 229 243 10.1007/s12264‑019‑00342‑3 30790214
    [Google Scholar]
  167. Li K. Qian Z. Han Y. Chang E.I.C. Wei B. Lai M. Liao J. Fan Y. Xu Y. Weakly supervised histopathology image segmentation with self-attention. Med. Image Anal. 2023 86 102791 10.1016/j.media.2023.102791 36933385
    [Google Scholar]
  168. Jiang F. Bello S.T. Gao Q. Lai Y. Li X. He L. Advances in the electrophysiological recordings of long-term potentiation. Int. J. Mol. Sci. 2023 24 8 7134 10.3390/ijms24087134 37108295
    [Google Scholar]
  169. Chatterjee D. Gerlai R. High precision liquid chromatography analysis of dopaminergic and serotoninergic responses to acute alcohol exposure in zebrafish. Behav. Brain Res. 2009 200 1 208 213 10.1016/j.bbr.2009.01.016 19378384
    [Google Scholar]
  170. Muzio L. Viotti A. Martino G. Microglia in neuroinflammation and neurodegeneration: From understanding to therapy. Front. Neurosci. 2021 15 742065 10.3389/fnins.2021.742065 34630027
    [Google Scholar]
  171. Haber L.T. Bradley M.A. Buerger A.N. Behrsing H. Burla S. Clapp P.W. Dotson S. Fisher C. Genco K.R. Kruszewski F.H. McCullough S.D. Page K.E. Patel V. Pechacek N. Roper C. Sharma M. Jarabek A.M. New approach methodologies (NAMs) for the in vitro assessment of cleaning products for respiratory irritation: Workshop report. Front Toxicol 2024 6 1431790 10.3389/ftox.2024.1431790 39439531
    [Google Scholar]
  172. Pechtel P. Pizzagalli D.A. Effects of early life stress on cognitive and affective function: An integrated review of human literature. Psychopharmacology (Berl.) 2011 214 1 55 70 10.1007/s00213‑010‑2009‑2 20865251
    [Google Scholar]
  173. Murman D. The impact of age on cognition. Semin. Hear. 2015 36 3 111 121 10.1055/s‑0035‑1555115 27516712
    [Google Scholar]
  174. Nakahata N. Nakamura T. Kawarabayashi T. Seino Y. Ichii S. Ikeda Y. Amari M. Takatama M. Murashita K. Ihara K. Itoh K. Nakaji S. Shoji M. Age-related cognitive decline and prevalence of mild cognitive impairment in the Iwaki health promotion project. J. Alzheimers Dis. 2021 84 3 1233 1245 10.3233/JAD‑210699 34633321
    [Google Scholar]
  175. Zhang H. Shi L. Ebelt S.T. D’Souza R.R. Schwartz J.D. Scovronick N. Chang H.H. Short-term associations between ambient air pollution and emergency department visits for Alzheimer’s disease and related dementias. Environ. Epidemiol. 2023 7 1 e237 10.1097/EE9.0000000000000237 36777523
    [Google Scholar]
  176. Simon D.K. Tanner C.M. Brundin P. Parkinson disease epidemiology, pathology, genetics, and pathophysiology. Clin. Geriatr. Med. 2020 36 1 1 12 10.1016/j.cger.2019.08.002 31733690
    [Google Scholar]
  177. Rauf A. Badoni H. Abu-Izneid T. Olatunde A. Rahman M.M. Painuli S. Semwal P. Wilairatana P. Mubarak M.S. Neuroinflammatory markers: Key indicators in the pathology of neurodegenerative diseases. Molecules 2022 27 10 3194 10.3390/molecules27103194 35630670
    [Google Scholar]
  178. Coutu J.P. Goldblatt A. Rosas H.D. Salat D.H. White matter changes are associated with ventricular expansion in aging, mild cognitive impairment, and Alzheimer’s disease. J. Alzheimers Dis. 2015 49 2 329 342 10.3233/JAD‑150306 26444767
    [Google Scholar]
  179. de Prado Bert P. Mercader E.M.H. Pujol J. Sunyer J. Mortamais M. The effects of air pollution on the brain: A review of studies interfacing environmental epidemiology and neuroimaging. Curr. Environ. Health Rep. 2018 5 3 351 364 10.1007/s40572‑018‑0209‑9 30008171
    [Google Scholar]
  180. Win-Shwe T.T. Fujimaki H. Nanoparticles and neurotoxicity. Int. J. Mol. Sci. 2011 12 9 6267 6280 10.3390/ijms12096267 22016657
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673375058250624070823
Loading
/content/journals/cmc/10.2174/0109298673375058250624070823
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test