Skip to content
2000
image of Characterization of Tumor Microenvironment and Prognosis of Regulatory T cells-Related Subtypes

Abstract

Introduction

Regulatory T cells (Tregs) play an important role in the tumor microenvironment (TME). Currently, there have been no studies of Treg-related genes (TRGs) in lung adenocarcinoma (LUAD).

Methods

We integrated the Cancer Genome Atlas (TCGA) dataset with the Gene Expression Omnibus (GEO) dataset and divided the TCGA-GEO dataset patient samples into different cohorts by unsupervised clustering analysis based on the expression of TRGs in LUAD. By analyzing the TME characteristics of different cohorts, we assessed immune cell infiltration and function. In addition, we constructed Cox risk proportional regression models based on TRGs to predict patient prognosis.

Results

The results of unsupervised cluster analysis classified the TCGA-GEO dataset as “immune desert”, “immune evasion” and “immune inflammation”. Moreover, there was a significant survival differential among the three cohorts (-value < 0.05). Based on the expression of 61 TRGs in LUAD, we screened TFRC, CTLA4, IL1R2, NPTN NPTN and METTL7A to construct a Cox risk proportional regression model to divide the TCGA-GEO dataset into a training cohort and a test cohort. Survival was significantly worse in the high-risk group than in the low-risk group in both the training and test cohorts (-value < 0.05). Finally, the nomogram scoring system constructed by integrating the model risk scores with clinical parameters can well predict the 1, 3 and 5 year survival of patients.

Conclusion

In conclusion, based on our analysis of the TRGs of LUAD patients, we can classify the patient TME into different immune statuses, which provides insights into adopting appropriate treatment regimens for different patients.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673375015250513094405
2025-07-10
2025-09-08
Loading full text...

Full text loading...

/deliver/fulltext/cmc/10.2174/0109298673375015250513094405/BMS-CMC-2024-962.html?itemId=/content/journals/cmc/10.2174/0109298673375015250513094405&mimeType=html&fmt=ahah

References

  1. Molina J.R. Yang P. Cassivi S.D. Schild S.E. Adjei A.A. Non-small cell lung cancer: Epidemiology, risk factors, treatment, and survivorship. Mayo Clin. Proc. 2008 83 5 584 594 10.1016/S0025‑6196(11)60735‑0 18452692
    [Google Scholar]
  2. Aberle D.R. Adams A.M. Berg C.D. Black W.C. Clapp J.D. Fagerstrom R.M. Gareen I.F. Gatsonis C. Marcus P.M. Sicks J.D. National Lung Screening Trial Research Team Reduced lung-cancer mortality with low-dose computed tomographic screening. N. Engl. J. Med. 2011 365 5 395 409 10.1056/NEJMoa1102873 21714641
    [Google Scholar]
  3. Miller M. Hanna N. Advances in systemic therapy for non-small cell lung cancer. BMJ 2021 375 n2363 10.1136/bmj.n2363 34753715
    [Google Scholar]
  4. Chaft J.E. Shyr Y. Sepesi B. Forde P.M. Preoperative and postoperative systemic therapy for operable non–small-cell lung cancer. J. Clin. Oncol. 2022 40 6 546 555 10.1200/JCO.21.01589 34985966
    [Google Scholar]
  5. Duma N. Santana-Davila R. Molina J.R. Non–small cell lung cancer: Epidemiology, screening, diagnosis, and treatment. Mayo Clin. Proc. 2019 94 8 1623 1640 10.1016/j.mayocp.2019.01.013 31378236
    [Google Scholar]
  6. Thai A.A. Solomon B.J. Sequist L.V. Gainor J.F. Heist R.S. Lung cancer. Lancet 2021 398 10299 535 554 10.1016/S0140‑6736(21)00312‑3 34273294
    [Google Scholar]
  7. Zhang Y. Zhang Z. The history and advances in cancer immunotherapy: Understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell. Mol. Immunol. 2020 17 8 807 821 10.1038/s41423‑020‑0488‑6 32612154
    [Google Scholar]
  8. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  9. Sakaguchi S. Sakaguchi N. Asano M. Itoh M. Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 1995 155 3 1151 1164 10.4049/jimmunol.155.3.1151 7636184
    [Google Scholar]
  10. Sakaguchi S. Mikami N. Wing J.B. Tanaka A. Ichiyama K. Ohkura N. Regulatory T cells and human disease. Annu. Rev. Immunol. 2020 38 1 541 566 10.1146/annurev‑immunol‑042718‑041717 32017635
    [Google Scholar]
  11. Zou W. Regulatory T cells, tumour immunity and immunotherapy. Nat. Rev. Immunol. 2006 6 4 295 307 10.1038/nri1806 16557261
    [Google Scholar]
  12. Togashi Y. Shitara K. Nishikawa H. Regulatory T cells in cancer immunosuppression - Implications for anticancer therapy. Nat. Rev. Clin. Oncol. 2019 16 6 356 371 10.1038/s41571‑019‑0175‑7 30705439
    [Google Scholar]
  13. Tay C. Tanaka A. Sakaguchi S. Tumor-infiltrating regulatory T cells as targets of cancer immunotherapy. Cancer Cell 2023 41 3 450 465 10.1016/j.ccell.2023.02.014 36917950
    [Google Scholar]
  14. Gan M. Liu N. Li W. Chen M. Bai Z. Liu D. Liu S. Metabolic targeting of regulatory T cells in oral squamous cell carcinoma: New horizons in immunotherapy. Mol. Cancer 2024 23 1 273 10.1186/s12943‑024‑02193‑7 39696340
    [Google Scholar]
  15. Buechler M.B. Fu W. Turley S.J. Fibroblast- macrophage reciprocal interactions in health, fibrosis, and cancer. Immunity 2021 54 5 903 915 10.1016/j.immuni.2021.04.021 33979587
    [Google Scholar]
  16. He S. Zheng L. Qi C. Myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment and their targeting in cancer therapy. Mol. Cancer 2025 24 1 5 10.1186/s12943‑024‑02208‑3 39780248
    [Google Scholar]
  17. Li C. Jiang P. Wei S. Xu X. Wang J. Regulatory T cells in tumor microenvironment: New mechanisms, potential therapeutic strategies and future prospects. Mol. Cancer 2020 19 1 116 10.1186/s12943‑020‑01234‑1 32680511
    [Google Scholar]
  18. Ghorani E. Swanton C. Quezada S.A. Cancer cell-intrinsic mechanisms driving acquired immune tolerance. Immunity 2023 56 10 2270 2295 10.1016/j.immuni.2023.09.004 37820584
    [Google Scholar]
  19. Beyer M. Schultze J.L. Regulatory T cells in cancer. Blood 2006 108 3 804 811 10.1182/blood‑2006‑02‑002774 16861339
    [Google Scholar]
  20. Hegde P.S. Karanikas V. Evers S. The where, the when, and the how of immune monitoring for cancer immunotherapies in the era of checkpoint inhibition. Clin. Cancer Res. 2016 22 8 1865 1874 10.1158/1078‑0432.CCR‑15‑1507 27084740
    [Google Scholar]
  21. Fan Y. Zhou Y. Lou M. Li X. Zhu X. Yuan K. m6A regulator-mediated methylation modification patterns and characterisation of tumour microenvironment infiltration in non-small cell lung cancer. J. Inflamm. Res. 2022 15 1969 1989 10.2147/JIR.S356841 35356071
    [Google Scholar]
  22. Chong W. Shang L. Liu J. Fang Z. Du F. Wu H. Liu Y. Wang Z. Chen Y. Jia S. Chen L. Li L. Chen H. m6A regulator-based methylation modification patterns characterized by distinct tumor microenvironment immune profiles in colon cancer. Theranostics 2021 11 5 2201 2217 10.7150/thno.52717 33500720
    [Google Scholar]
  23. Huppert L.A. Green M.D. Kim L. Chow C. Leyfman Y. Daud A.I. Lee J.C. Tissue-specific tregs in cancer metastasis: Opportunities for precision immunotherapy. Cell. Mol. Immunol. 2022 19 1 33 45 10.1038/s41423‑021‑00742‑4 34417572
    [Google Scholar]
  24. Yu J. Xie M. Ge S. Chai P. Zhou Y. Ruan J. Hierarchical clustering of Cutaneous melanoma based on immunogenomic profiling. Front. Oncol. 2020 10 580029 10.3389/fonc.2020.580029 33330057
    [Google Scholar]
  25. He Y. Jiang Z. Chen C. Wang X. Classification of triple-negative breast cancers based on immunogenomic profiling. J. Exp. Clin. Cancer Res. 2018 37 1 327 10.1186/s13046‑018‑1002‑1 30594216
    [Google Scholar]
  26. Zhang Y. Liu N. Wang S. A differential privacy protecting K-means clustering algorithm based on contour coefficients. PLoS One 2018 13 11 e0206832 10.1371/journal.pone.0206832 30462662
    [Google Scholar]
  27. Hänzelmann S. Castelo R. Guinney J. GSVA: gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics 2013 14 1 7 10.1186/1471‑2105‑14‑7 23323831
    [Google Scholar]
  28. Hu J. Zhang L. Xia H. Yan Y. Zhu X. Sun F. Sun L. Li S. Li D. Wang J. Han Y. Zhang J. Bian D. Yu H. Chen Y. Fan P. Ma Q. Jiang G. Wang C. Zhang P. Tumor microenvironment remodeling after neoadjuvant immunotherapy in non-small cell lung cancer revealed by single-cell RNA sequencing. Genome Med. 2023 15 1 14 10.1186/s13073‑023‑01164‑9 36869384
    [Google Scholar]
  29. Iasonos A. Schrag D. Raj G.V. Panageas K.S. How to build and interpret a nomogram for cancer prognosis. J. Clin. Oncol. 2008 26 8 1364 1370 10.1200/JCO.2007.12.9791 18323559
    [Google Scholar]
  30. Li J.H. Liu S. Zhou H. Qu L.H. Yang J.H. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014 42 D1 D92 D97 10.1093/nar/gkt1248 24297251
    [Google Scholar]
  31. Meyer M.L. Fitzgerald B.G. Paz-Ares L. Cappuzzo F. Jänne P.A. Peters S. Hirsch F.R. New promises and challenges in the treatment of advanced non-small-cell lung cancer. Lancet 2024 404 10454 803 822 10.1016/S0140‑6736(24)01029‑8 39121882
    [Google Scholar]
  32. Meyer M.L. Peters S. Mok T.S. Lam S. Yang P.C. Aggarwal C. Brahmer J. Dziadziuszko R. Felip E. Ferris A. Forde P.M. Gray J. Gros L. Halmos B. Herbst R. Jänne P.A. Johnson B.E. Kelly K. Leighl N.B. Liu S. Lowy I. Marron T.U. Paz-Ares L. Rizvi N. Rudin C.M. Shum E. Stahel R. Trunova N. Bunn P.A. Hirsch F.R. Lung cancer research and treatment: Global perspectives and strategic calls to action. Ann. Oncol. 2024 35 12 1088 1104 10.1016/j.annonc.2024.10.006 39413875
    [Google Scholar]
  33. Reck M. Remon J. Hellmann M.D. First-line immunotherapy for non–small-cell lung cancer. J. Clin. Oncol. 2022 40 6 586 597 10.1200/JCO.21.01497 34985920
    [Google Scholar]
  34. Doroshow D.B. Sanmamed M.F. Hastings K. Politi K. Rimm D.L. Chen L. Melero I. Schalper K.A. Herbst R.S. Immunotherapy in non–small cell lung cancer: Facts and hopes. Clin. Cancer Res. 2019 25 15 4592 4602 10.1158/1078‑0432.CCR‑18‑1538 30824587
    [Google Scholar]
  35. Hendriks L.E.L. Remon J. Faivre-Finn C. Garassino M.C. Heymach J.V. Kerr K.M. Tan D.S.W. Veronesi G. Reck M. Non-small-cell lung cancer. Nat. Rev. Dis. Primers 2024 10 1 71 10.1038/s41572‑024‑00551‑9 39327441
    [Google Scholar]
  36. Wang Y. Safi M. Hirsch F.R. Lu S. Peters S. Govindan R. Rosell R. Park K. Zhang J.J. Immunotherapy for advanced-stage squamous cell lung cancer: The state of the art and outstanding questions. Nat. Rev. Clin. Oncol. 2025 22 3 200 214 10.1038/s41571‑024‑00979‑8 39762577
    [Google Scholar]
  37. Lainé A. Labiad O. Hernandez-Vargas H. This S. Sanlaville A. Léon S. Dalle S. Sheppard D. Travis M.A. Paidassi H. Marie J.C. Regulatory T cells promote cancer immune-escape through integrin αvβ8-mediated TGF-β activation. Nat. Commun. 2021 12 1 6228 10.1038/s41467‑021‑26352‑2 34711823
    [Google Scholar]
  38. Huang H. Wang Z. Zhang Y. Pradhan R.N. Ganguly D. Chandra R. Murimwa G. Wright S. Gu X. Maddipati R. Müller S. Turley S.J. Brekken R.A. Mesothelial cell-derived antigen-presenting cancer-associated fibroblasts induce expansion of regulatory T cells in pancreatic cancer. Cancer Cell 2022 40 6 656 673.e7 10.1016/j.ccell.2022.04.011 35523176
    [Google Scholar]
  39. Wu S.P. Liao R.Q. Tu H.Y. Wang W.J. Dong Z.Y. Huang S.M. Guo W.B. Gou L.Y. Sun H.W. Zhang Q. Xie Z. Yan L.X. Su J. Yang J.J. Zhong W.Z. Zhang X.C. Wu Y.L. Stromal PD-L1–positive regulatory T cells and PD-1–positive CD8-positive T cells define the response of different subsets of non–small cell lung cancer to PD-1/PD-L1 blockade immunotherapy. J. Thorac. Oncol. 2018 13 4 521 532 10.1016/j.jtho.2017.11.132 29269008
    [Google Scholar]
  40. Zhang A. Fan T. Liu Y. Yu G. Li C. Jiang Z. Regulatory T cells in immune checkpoint blockade antitumor therapy. Mol. Cancer 2024 23 1 251 10.1186/s12943‑024‑02156‑y 39516941
    [Google Scholar]
  41. Yan Y. Huang L. Liu Y. Yi M. Chu Q. Jiao D. Wu K. Metabolic profiles of regulatory T cells and their adaptations to the tumor microenvironment: Implications for antitumor immunity. J. Hematol. Oncol. 2022 15 1 104 10.1186/s13045‑022‑01322‑3 35948909
    [Google Scholar]
  42. Hegde P.S. Chen D.S. Top 10 challenges in cancer immunotherapy. Immunity 2020 52 1 17 35 10.1016/j.immuni.2019.12.011 31940268
    [Google Scholar]
  43. Petroni G. Buqué A. Zitvogel L. Kroemer G. Galluzzi L. Immunomodulation by targeted anticancer agents. Cancer Cell 2021 39 3 310 345 10.1016/j.ccell.2020.11.009 33338426
    [Google Scholar]
  44. Ding Q.Q. Chauvin J.M. Zarour H.M. Targeting novel inhibitory receptors in cancer immunotherapy. Semin. Immunol. 2020 49 101436 10.1016/j.smim.2020.101436 33288379
    [Google Scholar]
  45. Solomon I. Amann M. Goubier A. Arce Vargas F. Zervas D. Qing C. Henry J.Y. Ghorani E. Akarca A.U. Marafioti T. Śledzińska A. Werner Sunderland M. Franz Demane D. Clancy J.R. Georgiou A. Salimu J. Merchiers P. Brown M.A. Flury R. Eckmann J. Murgia C. Sam J. Jacobsen B. Marrer-Berger E. Boetsch C. Belli S. Leibrock L. Benz J. Koll H. Sutmuller R. Peggs K.S. Quezada S.A. CD25-Treg-depleting antibodies preserving IL-2 signaling on effector T cells enhance effector activation and antitumor immunity. Nat. Cancer 2020 1 12 1153 1166 10.1038/s43018‑020‑00133‑0 33644766
    [Google Scholar]
  46. Dovedi S.J. Elder M.J. Yang C. Sitnikova S.I. Irving L. Hansen A. Hair J. Jones D.C. Hasani S. Wang B. Im S.A. Tran B. Subramaniam D.S. Gainer S.D. Vashisht K. Lewis A. Jin X. Kentner S. Mulgrew K. Wang Y. Overstreet M.G. Dodgson J. Wu Y. Palazon A. Morrow M. Rainey G.J. Browne G.J. Neal F. Murray T.V. Toloczko A.D. Dall’Acqua W. Achour I. Freeman D.J. Wilkinson R.W. Mazor Y. Design and efficacy of a monovalent bispecific PD-1/CTLA4 antibody that enhances CTLA4 blockade on PD-1+ activated T cells. Cancer Discov. 2021 11 5 1100 1117 10.1158/2159‑8290.CD‑20‑1445 33419761
    [Google Scholar]
  47. Chen D.S. Mellman I. Elements of cancer immunity and the cancer–immune set point. Nature 2017 541 7637 321 330 10.1038/nature21349 28102259
    [Google Scholar]
  48. Liu Y. Xun Z. Ma K. Liang S. Li X. Zhou S. Sun L. Liu Y. Du Y. Guo X. Cui T. Zhou H. Wang J. Yin D. Song R. Zhang S. Cai W. Meng F. Guo H. Zhang B. Yang D. Bao R. Hu Q. Wang J. Ye Y. Liu L. Identification of a tumour immune barrier in the HCC microenvironment that determines the efficacy of immunotherapy. J. Hepatol. 2023 78 4 770 782 10.1016/j.jhep.2023.01.011 36708811
    [Google Scholar]
  49. Lei X. Lei Y. Li J.K. Du W.X. Li R.G. Yang J. Li J. Li F. Tan H.B. Immune cells within the tumor microenvironment: Biological functions and roles in cancer immunotherapy. Cancer Lett. 2020 470 126 133 10.1016/j.canlet.2019.11.009 31730903
    [Google Scholar]
  50. Osipov A. Saung M.T. Zheng L. Murphy A.G. Small molecule immunomodulation: The tumor microenvironment and overcoming immune escape. J. Immunother. Cancer 2019 7 1 224 10.1186/s40425‑019‑0667‑0 31439034
    [Google Scholar]
  51. O’Donnell J.S. Teng M.W.L. Smyth M.J. Cancer immunoediting and resistance to T cell-based immunotherapy. Nat. Rev. Clin. Oncol. 2019 16 3 151 167 10.1038/s41571‑018‑0142‑8 30523282
    [Google Scholar]
  52. Yi L. Pan H. Ning Z. Xu L. Zhang H. Peng L. Liu Y. Yang Y. Si W. Wang Y. Zhu X. Huang S. Meng Z. Xie J. Clinical and biomarker analyses of SHR-1701 combined with famitinib in patients with previously treated advanced biliary tract cancer or pancreatic ductal adenocarcinoma: A phase II trial. Signal Transduct. Target. Ther. 2024 9 1 347 10.1038/s41392‑024‑02052‑3 39668159
    [Google Scholar]
  53. Yi M. Li T. Niu M. Zhang H. Wu Y. Wu K. Dai Z. Targeting cytokine and chemokine signaling pathways for cancer therapy. Signal Transduct. Target. Ther. 2024 9 1 176 10.1038/s41392‑024‑01868‑3 39034318
    [Google Scholar]
  54. Choi S.H. Myers J.T. Tomchuck S.L. Bonner M. Eid S. Kingsley D.T. VanHeyst K.A. Kim S.J. Kim B.G. Huang A.Y.C. Oral transforming growth factor-beta receptor 1 inhibitor vactosertib promotes osteosarcoma regression by targeting tumor proliferation and enhancing anti-tumor immunity. Cancer Commun. 2024 44 8 884 888 10.1002/cac2.12589 38970391
    [Google Scholar]
  55. Wang H. Wang T. Yan S. Tang J. Zhang Y. Wang L. Xu H. Tu C. Crosstalk of pyroptosis and cytokine in the tumor microenvironment: From mechanisms to clinical implication. Mol. Cancer 2024 23 1 268 10.1186/s12943‑024‑02183‑9 39614288
    [Google Scholar]
  56. Iglesias-Escudero M. Arias-González N. Martínez-Cáceres E. Regulatory cells and the effect of cancer immunotherapy. Mol. Cancer 2023 22 1 26 10.1186/s12943‑023‑01714‑0 36739406
    [Google Scholar]
  57. Koyama S. Nishikawa H. Mechanisms of regulatory T cell infiltration in tumors: Implications for innovative immune precision therapies. J. Immunother. Cancer 2021 9 7 e002591 10.1136/jitc‑2021‑002591 34330764
    [Google Scholar]
  58. Fuji S. Inoue Y. Utsunomiya A. Moriuchi Y. Uchimaru K. Choi I. Otsuka E. Henzan H. Kato K. Tomoyose T. Yamamoto H. Kurosawa S. Matsuoka K. Yamaguchi T. Fukuda T. Pretransplantation anti-CCR4 antibody mogamulizumab against adult T-cell leukemia/lymphoma is associated with significantly increased risks of severe and corticosteroid-refractory graft-versus-host disease, nonrelapse mortality, and overall mortality. J. Clin. Oncol. 2016 34 28 3426 3433 10.1200/JCO.2016.67.8250 27507878
    [Google Scholar]
  59. Doi T. Muro K. Ishii H. Kato T. Tsushima T. Takenoyama M. Oizumi S. Gemmoto K. Suna H. Enokitani K. Kawakami T. Nishikawa H. Yamamoto N. A phase I study of the anti-CC chemokine receptor 4 antibody, mogamulizumab, in combination with nivolumab in patients with advanced or metastatic solid tumors. Clin. Cancer Res. 2019 25 22 6614 6622 10.1158/1078‑0432.CCR‑19‑1090 31455681
    [Google Scholar]
  60. Danielsson J. Mu X. Lang L. Wang H. Binolfi A. Theillet F.X. Bekei B. Logan D.T. Selenko P. Wennerström H. Oliveberg M. Thermodynamics of protein destabilization in live cells. Proc. Natl. Acad. Sci. USA 2015 112 40 12402 12407 10.1073/pnas.1511308112 26392565
    [Google Scholar]
  61. Wong T.S. Rajagopalan S. Townsley F.M. Freund S.M. Petrovich M. Loakes D. Fersht A.R. Physical and functional interactions between human mitochondrial single-stranded DNA-binding protein and tumour suppressor p53. Nucleic Acids Res. 2008 37 2 568 581 10.1093/nar/gkn974 19066201
    [Google Scholar]
  62. Hyman A.A. Weber C.A. Jülicher F. Liquid-liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 2014 30 1 39 58 10.1146/annurev‑cellbio‑100913‑013325 25288112
    [Google Scholar]
  63. Aguzzi A. Altmeyer M. Phase separation: Linking cellular compartmentalization to disease. Trends Cell Biol. 2016 26 7 547 558 10.1016/j.tcb.2016.03.004 27051975
    [Google Scholar]
  64. Basan M. Risler T. Joanny J.F. Sastre-Garau X. Prost J. Homeostatic competition drives tumor growth and metastasis nucleation. HFSP J. 2009 3 4 265 272 10.2976/1.3086732 20119483
    [Google Scholar]
  65. Joyce J.A. Fearon D.T. T cell exclusion, immune privilege, and the tumor microenvironment. Science 2015 348 6230 74 80 10.1126/science.aaa6204 25838376
    [Google Scholar]
  66. Tanaka A. Sakaguchi S. Regulatory T cells in cancer immunotherapy. Cell Res. 2017 27 1 109 118 10.1038/cr.2016.151 27995907
    [Google Scholar]
  67. Junttila M.R. de Sauvage F.J. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 2013 501 7467 346 354 10.1038/nature12626 24048067
    [Google Scholar]
  68. Binnewies M. Roberts E.W. Kersten K. Chan V. Fearon D.F. Merad M. Coussens L.M. Gabrilovich D.I. Ostrand-Rosenberg S. Hedrick C.C. Vonderheide R.H. Pittet M.J. Jain R.K. Zou W. Howcroft T.K. Woodhouse E.C. Weinberg R.A. Krummel M.F. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 2018 24 5 541 550 10.1038/s41591‑018‑0014‑x 29686425
    [Google Scholar]
  69. Tang R. Wang H. Liu J. Song L. Hou H. Liu M. Wang J. Wang J. TFRC, associated with hypoxia and immune, is a prognostic factor and potential therapeutic target for bladder cancer. Eur. J. Med. Res. 2024 29 1 112 10.1186/s40001‑024‑01688‑9 38336764
    [Google Scholar]
  70. Wang D.R. Wu X.L. Sun Y.L. Therapeutic targets and biomarkers of tumor immunotherapy: Response versus non-response. Signal Transduct. Target. Ther. 2022 7 1 331 10.1038/s41392‑022‑01136‑2 36123348
    [Google Scholar]
  71. Laletin V. Bernard P.L. Costa da Silva C. Guittard G. Nunes J.A. Negative intracellular regulators of T-cell receptor (TCR) signaling as potential antitumor immunotherapy targets. J. Immunother. Cancer 2023 11 5 e005845 10.1136/jitc‑2022‑005845 37217244
    [Google Scholar]
  72. Skoulidis F. Araujo H.A. Do M.T. Qian Y. Sun X. Cobo A.G. Le J.T. Montesion M. Palmer R. Jahchan N. Juan J.M. Min C. Yu Y. Pan X. Arbour K.C. Vokes N. Schmidt S.T. Molkentine D. Owen D.H. Memmott R. Patil P.D. Marmarelis M.E. Awad M.M. Murray J.C. Hellyer J.A. Gainor J.F. Dimou A. Bestvina C.M. Shu C.A. Riess J.W. Blakely C.M. Pecot C.V. Mezquita L. Tabbó F. Scheffler M. Digumarthy S. Mooradian M.J. Sacher A.G. Lau S.C.M. Saltos A.N. Rotow J. Johnson R.P. Liu C. Stewart T. Goldberg S.B. Killam J. Walther Z. Schalper K. Davies K.D. Woodcock M.G. Anagnostou V. Marrone K.A. Forde P.M. Ricciuti B. Venkatraman D. Van Allen E.M. Cummings A.L. Goldman J.W. Shaish H. Kier M. Katz S. Aggarwal C. Ni Y. Azok J.T. Segal J. Ritterhouse L. Neal J.W. Lacroix L. Elamin Y.Y. Negrao M.V. Le X. Lam V.K. Lewis W.E. Kemp H.N. Carter B. Roth J.A. Swisher S. Lee R. Zhou T. Poteete A. Kong Y. Takehara T. Paula A.G. Parra Cuentas E.R. Behrens C. Wistuba I.I. Zhang J. Blumenschein G.R. Gay C. Byers L.A. Gibbons D.L. Tsao A. Lee J.J. Bivona T.G. Camidge D.R. Gray J.E. Leighl N.B. Levy B. Brahmer J.R. Garassino M.C. Gandara D.R. Garon E.B. Rizvi N.A. Scagliotti G.V. Wolf J. Planchard D. Besse B. Herbst R.S. Wakelee H.A. Pennell N.A. Shaw A.T. Jänne P.A. Carbone D.P. Hellmann M.D. Rudin C.M. Albacker L. Mann H. Zhu Z. Lai Z. Stewart R. Peters S. Johnson M.L. Wong K.K. Huang A. Winslow M.M. Rosen M.J. Winters I.P. Papadimitrakopoulou V.A. Cascone T. Jewsbury P. Heymach J.V. CTLA4 blockade abrogates KEAP1/STK11-related resistance to PD-(L)1 inhibitors. Nature 2024 635 8038 462 471 10.1038/s41586‑024‑07943‑7 39385035
    [Google Scholar]
  73. Sun Q. Hong Z. Zhang C. Wang L. Han Z. Ma D. Immune checkpoint therapy for solid tumours: Clinical dilemmas and future trends. Signal Transduct. Target. Ther. 2023 8 1 320 10.1038/s41392‑023‑01522‑4 37635168
    [Google Scholar]
  74. Zhang Y. Ma D. Gong Y. Wang F. Wu J. Wu C. IL1R2 is a novel prognostic biomarker for lung adenocarcinoma. Curr. Mol. Med. 2024 24 5 620 629 10.2174/1566524023666230420092142 37078353
    [Google Scholar]
  75. Kettunen E. Hernandez-Vargas H. Cros M.P. Durand G. Le Calvez-Kelm F. Stuopelyte K. Jarmalaite S. Salmenkivi K. Anttila S. Wolff H. Herceg Z. Husgafvel-Pursiainen K. Asbestos-associated genome-wide DNA methylation changes in lung cancer. Int. J. Cancer 2017 141 10 2014 2029 10.1002/ijc.30897 28722770
    [Google Scholar]
  76. Rodriguez-Pinto D. Sparkowski J. Keough M.P. Phoenix K.N. Vumbaca F. Han D.K. Gundelfinger E.D. Beesley P. Claffey K.P. Identification of novel tumor antigens with patient-derived immune-selected antibodies. Cancer Immunol. Immunother. 2009 58 2 221 234 10.1007/s00262‑008‑0543‑0 18568347
    [Google Scholar]
  77. Liu Z. Chen Y. Shen T. Evidence based on an integrative analysis of multi-omics data on METTL7A as a molecular marker in pan-cancer. Biomolecules 2023 13 2 195 10.3390/biom13020195 36830565
    [Google Scholar]
  78. Pan Y.Q. Xiao Y. Li Z. Tao L. Chen G. Zhu J.F. Lv L. Liu J.C. Qi J.Q. Shao A. Comprehensive analysis of the significance of METTL7A gene in the prognosis of lung adenocarcinoma. Front. Oncol. 2022 12 1071100 10.3389/fonc.2022.1071100 36620541
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673375015250513094405
Loading
/content/journals/cmc/10.2174/0109298673375015250513094405
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test