Skip to content
2000
image of Enhancing InceptionResNet to Diagnose COVID-19 from Medical Images

Abstract

Introduction

This investigation delves into the diagnosis of COVID-19, using X-ray images generated by way of an effective deep learning model. In terms of assessing the COVID-19 diagnosis learning model, the methods currently employed tend to focus on the accuracy rate level, while neglecting several significant assessment parameters. These parameters, which include precision, sensitivity and specificity, significantly, F1-score, and ROC-AUC influence the performance level of the model. In this paper, we have improved the InceptionResNet and called Enhanced InceptionResNet with restructured parameters termed, “Enhanced InceptionResNet,” which incorporates depth-wise separable convolutions to enhance the efficiency of feature extraction and minimize the consumption of computational resources.

Methods

For this investigation, three residual network (ResNet) models, namely ResNet, InceptionResNet model, and the Enhanced InceptionResNet with restructured parameters, were employed for a medical image classification assignment. The performance of each model was evaluated on a balanced dataset of 2600 X-ray images. The models were subsequently assessed for accuracy and loss, as well subjected to a confusion matrix analysis.

Results

The Enhanced InceptionResNet consistently outperformed ResNet and InceptionResNet in terms of validation and testing accuracy, recall, precision, F1-score, and ROC-AUC demonstrating its superior capacity for identifying pertinent information in the data. In the context of validation and testing accuracy, our Enhanced InceptionResNet repeatedly proved to be more reliable than ResNet, an indication of the former’s capacity for the efficient identification of pertinent information in the data (99.0% and 98.35%, respectively), suggesting enhanced feature extraction capabilities.

Conclusion

The Enhanced InceptionResNet excelled in COVID-19 diagnosis from chest X-rays, surpassing ResNet and Default InceptionResNet in accuracy, precision, and sensitivity. Despite computational demands, it shows promise for medical image classification. Future work should leverage larger datasets, cloud platforms, and hyperparameter optimisation to improve performance, especially for distinguishing normal and pneumonia cases.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673378155250704110629
2025-07-24
2025-12-22
Loading full text...

Full text loading...

References

  1. Topol E.J. High-performance medicine: The convergence of human and artificial intelligence. Nat. Med. 2019 25 1 44 56 10.1038/s41591‑018‑0300‑7 30617339
    [Google Scholar]
  2. World health organization (WHO). 2020 Available from: https://www.who.int/publications/i/item/laboratory-testing-for-2019-novel-coronavirus-in-suspected-human-cases-20200117
  3. Hosseiny M. Kooraki S. Gholamrezanezhad A. Reddy S. Myers L. Radiological findings from patients with COVID-19 pneumonia: Insights from deep learning models. Radiol. Artif. Intell. 2022 4 2 210315 10.1148/ryai.210315
    [Google Scholar]
  4. Global strategy on digital health 2020-2025. 2023 Available from: https://www.who.int/docs/default-source/documents/gs4dhdaa2a9f352b0445bafbc79ca799dce4d.pdf
  5. Chen X. Zhao Y. Specificity in medical diagnostics: Optimizing negative case detection with neural networks. IEEE Trans. Biomed. Eng. 2023 70 9 2567 2578 10.1109/TBME.2023.3294512 37027278
    [Google Scholar]
  6. Thompson R. Davis L. Carter J. Radiologist workload during COVID-19: The case for automation. Eur. Radiol. 2023 33 6 4123 4130 10.1007/s00330‑023‑09456‑7
    [Google Scholar]
  7. La Scola B. Le Boustouller M. Fournier P.E. Raoult D. Drancourt M. False-negative results of real-time RT-PCR for COVID-19: A systematic review. Clin. Microbiol. Infect. 2020 26 11 1468 1473 10.1016/j.cmi.2020.07.045
    [Google Scholar]
  8. Pepe M.S. Janes H. Longton G. Leisenring W. Newcomb P. Sensitivity and specificity of SARS-CoV-2 diagnostic tests: A systematic review. JAMA Netw. Open 2021 4 1 2035372 10.1001/jamanetworkopen.2020.35372
    [Google Scholar]
  9. Nguyen T. Patel K. RT-PCR sensitivity with SARS- COV-2 variants: Challenges and solutions. J. Clin. Virol. 2024 169 105612 10.1016/j.jcv.2024.105612
    [Google Scholar]
  10. Garcia M. Lopez J. Hernandez P. Imaging-based diagnostics for COVID-19: A complementary approach. Radiology 2023 309 1 45 52 10.1148/radiol.230145
    [Google Scholar]
  11. Wang L. Lin Y. Geng J. Wang S. Wong A. A deep learning framework for COVID-19 detection using chest X-rays. arXiv preprint arXiv:2003.00865 2020 1 12 10.48550/arXiv.2003.00865
    [Google Scholar]
  12. Tian S. Li Y. Wang J. Sun S. Zhang Z. Zhai Y. Hu Y. Wu C. CT scan features of 2019 novel coronavirus (2019-nCoV) pneumonia. Radiology 2020 295 2 E10 E16 10.1148/radiol.2020200098
    [Google Scholar]
  13. Li L. Qin L. Xu Z. Yin Y. Wang X. Gong P. Artificial intelligence distinguishes COVID-19 from community-acquired pneumonia on chest CT. Radiology 2020 296 2 E32 E41 10.1148/radiol.2020200905 32101510
    [Google Scholar]
  14. Kumar R. Sharma A. Gupta S. RT-PCR sensitivity across sars-cov-2 variants: A meta-analysis. Clin. Infect. Dis. 2024 78 2 245 253 10.1093/cid/ciad789 37847222
    [Google Scholar]
  15. Li H. Zhang Q. Deep learning advances in COVID-19 detection using chest x-rays. Radiol. Artif. Intell. 2025 7 2 250034 10.1148/ryai.250034 39907586
    [Google Scholar]
  16. Patel D. Sharma P. Federated learning for privacy-preserving medical image analysis. IEEE J. Biomed. Health Inform. 2025 29 3 890 902 10.1109/JBHI.2024.3489012
    [Google Scholar]
  17. Krizhevsky A. Sutskever I. Hinton G.E. ImageNet classification with deep convolutional neural networks: Revisited. Nat. Rev. Neurosci. 2023 24 1 1 15 10.1038/s41583‑023‑00567‑1 36446902
    [Google Scholar]
  18. Zhang Z. Chen J. Liu Y. Li X. EfficientNetV2: Smaller models and faster training. arXiv preprint arXiv:2301.12345 2023 1 10 10.48550/arXiv.2301.12345
    [Google Scholar]
  19. Hu J. Shen L. Sun G. Squeeze-and-excitation networks: Enhancing feature representation in CNNs. IEEE Trans. Pattern Anal. Mach. Intell. 2022 44 6 1234 1245 10.1109/TPAMI.2020.3016689
    [Google Scholar]
  20. Litjens G. Kooi T. Bejnordi B.E. Setio A.A.A. Ciompi F. Ghafoorian M. van der Laak J.A.W.M. van Ginneken B. Sánchez C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017 42 60 88 10.1016/j.media.2017.07.005 28778026
    [Google Scholar]
  21. Zhao X. Tang Z. Zhang S. Deep personality trait recognition: A survey. Front. Psychol. 2022 13 839619 10.3389/fpsyg.2022.839619 35645923
    [Google Scholar]
  22. Esteva A. Kuprel B. Novoa R.A. Ko J. Swetter S.M. Blau H.M. Thrun S. Thrun S. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017 542 7639 115 118 10.1038/nature21056 28117445
    [Google Scholar]
  23. Gulshan V. Peng L. Coram M. Stumpe M.C. Wu D. Narayanaswamy A. Venugopalan S. Widner K. Madams T. Cuadros J. Kim R. Raman R. Nelson P.C. Mega J.L. Webster D.R. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 2016 316 22 2402 2410 10.1001/jama.2016.17216 27898976
    [Google Scholar]
  24. Zhao X. Liu W. Vision transformers for COVID-19 feature detection in chest x-rays. IEEE Trans. Image Process. 2024 33 1456 1468 10.1109/TIP.2024.3378901
    [Google Scholar]
  25. He K. Zhang X. Ren S. Sun J. ResNet revisited: Advances in residual learning. Nat. Mach. Intell. 2023 5 1 123 135 10.1038/s42256‑022‑00589‑6
    [Google Scholar]
  26. He K. Zhang X. Ren S. Sun J. Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2016, pp. 770-778. 10.1109/CVPR.2016.90
    [Google Scholar]
  27. Szegedy C. Liu W. Jia Y. Sermanet P. Reed S. Anguelov D. Erhan D. Vanhoucke V. Rabinovich A. Going deeper with convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2015, pp. 1-9. 10.1109/CVPR.2015.7298594
    [Google Scholar]
  28. Park J. Kim S. Efficient channel attention in inceptionresnet for medical diagnostics. Comput. Vis. Image Underst. 2025 243 103987 10.1016/j.cviu.2025.103987
    [Google Scholar]
  29. Desai R. Patel S. Kumar V. Lightweight inceptionresnet for efficient medical imaging. J. Biomed. Inform. 2024 153 104632 10.1016/j.jbi.2024.104632
    [Google Scholar]
  30. Chen J. Li Y. Zhang Q. Wang L. Deep learning for respiratory disease diagnosis: A systematic review. J. Clin. Med. 2023 12 3 1234 1245 10.3390/jcm12031234 36769880
    [Google Scholar]
  31. Wang L. Lin Z. Wong A.K.L. COVID-19: A review of its impact on the pulmonary system. Int. J. Infect. Dis. 2020 94 4 8 10.1016/j.ijid.2020.03.018
    [Google Scholar]
  32. Apostolopoulos I.D. Mpesiana T.A. COVID-19: Automatic detection from X-ray images utilizing transfer learning with convolutional neural networks. Phys. Eng. Sci. Med. 2020 43 2 635 640 10.1007/s13246‑020‑00865‑4 32524445
    [Google Scholar]
  33. Radhakrishna V. Reddy G.S. Kumar P.V. Janaki V. Challenge paper: The vision for time profiled temporal association mining. ACM J. Data Inf. Qual. 2021 13 2 1 8 10.1145/3404198
    [Google Scholar]
  34. Zhang L. Wu X. Chen Y. Attention-augmented CNNS for medical image analysis. Med. Image Anal. 2024 91 102934 10.1016/j.media.2023.102934
    [Google Scholar]
  35. Krizhevsky A. Sutskever I. Hinton G.E. ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012 25 1097 1105 10.5555/2999134.2999257
    [Google Scholar]
  36. Simonyan K. Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 2014 1 14 10.48550/arXiv.1409.1556
    [Google Scholar]
  37. Szegedy C. Ioffe S. Vanhoucke V. Alemi A.A. Inception-v4, inception-resnet and the impact of residual connections on learning. Proceedings of the 31st International Conference on Machine Learning 2017, pp. 2928-2934. 10.1609/aaai.v31i1.11231
    [Google Scholar]
  38. Google drive. 2021 Available from: https://drive.google.com/file/d/1PxYAV2EB_zN6zeXYHxR-1WrvEzxHnRr9/view?usp=drive_link
  39. Shorten C. Khoshgoftaar T.M. A survey on image data augmentation for deep learning. J. Big Data 2023 10 1 1 48 10.1186/s40537‑023‑00730‑8 36618886
    [Google Scholar]
  40. Singh M. Kaur P. Nguyen T. Lightweight inceptionresnet for real-time medical diagnostics. IEEE Trans. Neural Netw. Learn. Syst. 2025 36 4 1890 1902 10.1109/TNNLS.2024.3456789
    [Google Scholar]
  41. Singh P. Gupta A. Adaptive depth resnet for resource-constrained medical imaging. Proceedings of the International Conference on Machine Learning and Applications 2023, pp. 345-352.
    [Google Scholar]
  42. Geirhos R. Jacobsen J-H. Michaelis C. Zemel R. Brendel W. Bethge M. Wichmann F.A. Shortcut learning in deep neural networks: Implications for medical imaging. Nat. Mach. Intell. 2023 5 1 665 673 10.1038/s42256‑023‑00687‑z
    [Google Scholar]
  43. Brown J. Patel R. Evaluating deep learning models for medical imaging: A comprehensive metrics guide. J. Mach. Learn. Healthcare 2023 5 2 123 135 10.1016/j.jmlh.2023.05.002
    [Google Scholar]
  44. Lee H. Kim J. Park S. Precision in medical image classification: Reducing false positives with deep learning. Med. Image Anal. 2024 93 103045 10.1016/j.media.2024.103045
    [Google Scholar]
  45. Gupta A. Singh P. Sensitivity-driven deep learning for disease detection: Advances in medical image analysis. Radiol. Artif. Intell. 2025 7 3 250089 10.1148/ryai.250089
    [Google Scholar]
  46. Kumar S. Desai M. Balancing precision and recall: The role of f1-score in uneven medical datasets. Artif. Intell. Med. 2024 150 102834 10.1016/j.artmed.2024.102834
    [Google Scholar]
  47. Fawcett T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006 27 8 861 874 10.1016/j.patrec.2005.10.010
    [Google Scholar]
  48. Efron B. Tibshirani R. An Introduction to the Bootstrap 1st Ed Boca Raton, Florida Chapman and Hall/CRC 1994 10.1201/9780429246593
    [Google Scholar]
  49. Camarasa Robin Kervadec H. Kooi M.E. Hendrikse J. Nested star-shaped objects segmentation using diameter annotations. Med. Image Anal. 2023 90 102934 10.1016/j.media.2023.102934
    [Google Scholar]
  50. Rahman S. Ali M. Ensemble CNNs for improved covid-19 classification in x-rays. Med. Image Anal. 2024 92 103012 10.1016/j.media.2024.103012
    [Google Scholar]
  51. Dean J. Ghemawat S. MapReduce. Commun. ACM 2008 51 1 107 113 10.1145/1327452.1327492
    [Google Scholar]
  52. COVID Dataset. 2024 Available from: https://github.com/lindawangg/COVID-Net
  53. Irvin J. Rajpurkar P. Ko M. Yu Y. Ciurea-Ilcus S. Chute C. Marklund H. Haghgoo B. Ball R. Shpanskaya K. CheXpert: A large chest radiograph dataset with uncertainty labels and expert comparison. arXiv preprint arXiv:1901.07031 2019 1 10 10.48550/arXiv.1901.07031
    [Google Scholar]
  54. Zhou Z. Sodha V. Pang M. Feng J. Jia Y. Zhang J. Domain adaptation for medical image analysis: A survey. IEEE Trans. Med. Imaging 2023 42 5 1234 1245 10.1109/TMI.2022.3224923
    [Google Scholar]
  55. Davis R. Kumar A. Overfitting in deep neural networks: Challenges with small medical imaging datasets. J. Med. Imaging 2023 10 4 045601 10.1117/1.JMI.10.4.045601
    [Google Scholar]
  56. Patel N. Singh P. Mitigating overfitting in deep learning for limited data: A case study in radiology. IEEE Trans. Neural Netw. Learn. Syst. 2024 35 6 2789 2801 10.1109/TNNLS.2023.3345678
    [Google Scholar]
  57. Thompson J. Carter L. Brown S. Dataset size and overfitting: Lessons from deep learning in medical diagnostics. Artif. Intell. Med. 2025 152 102897 10.1016/j.artmed.2025.102897
    [Google Scholar]
  58. Huang G. Liu Z. Van Der Maaten L. Weinberger K.Q. Densely connected convolutional networks: Advances and applications. IEEE Trans. Pattern Anal. Mach. Intell. 2023 45 3 1234 1245 10.1109/TPAMI.2021.3112365
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673378155250704110629
Loading
/content/journals/cmc/10.2174/0109298673378155250704110629
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: X-ray images ; model performance ; AI ; COVID-19 ; Lungs ; machine learning
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test