Skip to content
2000
image of Transfer Learning for Automated Two-class Classification of Pulmonary Tuberculosis in Chest X-Ray Images

Abstract

Aim

Early and precise diagnosis is essential for effectively treating and managing pulmonary tuberculosis. The purpose of this research is to leverage artificial intelligence (AI), specifically convolutional neural networks (CNNs), to expedite the diagnosis of tuberculosis (TB) using chest X-ray (CXR) images.

Background

, an aerobic bacterium, is the causative agent of TB. The disease remains a global health challenge, particularly in densely populated countries. Early detection chest X-rays is crucial, but limited medical expertise hampers timely diagnosis.

Objective

This study explores the application of CNNs, a highly efficient method, for automated TB detection, especially in areas with limited medical expertise.

Methods

Previously trained models, specifically VGG-16, VGG-19, ResNet 50, and Inception v3, were used to validate the data. Effective feature extraction and classification in medical image analysis, especially in TB diagnosis, is facilitated by the distinct design and capabilities that each model offers. VGG-16 and VGG-19 are very good at identifying minute distinctions and hierarchical characteristics from CXR images; on the other hand, ResNet 50 avoids overfitting while retaining both low and high-level features. The inception v3 model is quite useful for examining various complex patterns in a CXR image with its capacity to extract multi-scale features.

Results

Inception v3 outperformed other models, attaining 97.60% accuracy without pre-processing and 98.78% with pre-processing.

Conclusion

The proposed model shows promising results as a tool for improving TB diagnosis, and reducing the global impact of the disease, but further validation with larger and more diverse datasets is needed.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673375085250704061619
2025-07-21
2025-11-05
Loading full text...

Full text loading...

References

  1. Global tuberculosis report. 2024 Available from: https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2024
  2. Rahlwes K.C. Dias B.R.S. Campos P.C. Alvarez-Arguedas S. Shiloh M.U. Pathogenicity and virulence of Mycobacterium tuberculosis. Virulence 2023 14 1 2150449 10.1080/21505594.2022.2150449 36419223
    [Google Scholar]
  3. Yang J. Zhang L. Qiao W. Luo Y. Mycobacterium tuberculosis: Pathogenesis and therapeutic targets. MedComm 2023 4 5 e353 10.1002/mco2.353 37674971
    [Google Scholar]
  4. Self-study modules on tuberculosis transmission and pathogenesis of tuberculosis. 2019 Available from: https://www.cdc.gov/tb/media/pdfs/Self_Study_Module_1_Transmission_and_Pathogenesis_of_Tuberculosis.pdf
  5. Thomson R.M. Carter R. Tolson C. Coulter C. Huygens F. Hargreaves M. Factors associated with the isolation of Nontuberculous mycobacteria (NTM) from a large municipal water system in Brisbane, Australia. BMC Microbiol 2013 13 89 10.1186/1471‑2180‑13‑89
    [Google Scholar]
  6. Kotei E. Thirunavukarasu R. Ensemble technique coupled with deep transfer learning framework for automatic detection of tuberculosis from chest x-ray radiographs. Healthcare 2022 10 11 2335 10.3390/healthcare10112335 36421659
    [Google Scholar]
  7. Ryu Y. J. Diagnosis of pulmonary tuberculosis: Recent advances and diagnostic algorithms. Tuberc Respir Dis 2015 78 2 64 71 10.4046/trd.2015.78.2.64 25861338
    [Google Scholar]
  8. Khandelwal I. Sharma A. Agarwal P.K. Shrivastava R. Bioinformatics database resources. Biotechnology: Concepts, Methodologies, Tools, and Applications. IGI Global 2019 84 119 10.4018/978‑1‑5225‑8903‑7.ch004
    [Google Scholar]
  9. Chauhan R.S. Chanumolu S.K. Rout C. Shrivastava R. Can mycobacterial genomics generate novel targets as speed-breakers against the race for drug resistance. Curr. Pharm. Des 2014 20 27 4319 4345 10.2174/1381612819666131118165427 24245760
    [Google Scholar]
  10. Bartolomeu-Gonçalves G. Souza J.M. Fernandes B.T. Spoladori L.F.A. Correia G.F. Castro I.M. Borges P.H.G. Silva-Rodrigues G. Tavares E.R. Yamauchi L.M. Pelisson M. Perugini M.R.E. Yamada-Ogatta S.F. Tuberculosis diagnosis: Current, ongoing, and future approaches. Diseases 2024 12 9 202 10.3390/diseases12090202 39329871
    [Google Scholar]
  11. WHO operational handbook on tuberculosis: Module 3: Diagnosis: Rapid diagnostics for tuberculosis detection, 2021 update. 2021 Available from: https://www.who.int/publications/i/item/9789240030589
  12. Truenat TM MTB package insert. 2025 Available from: https://www.molbiodiagnostics.com/up loads/product_download/20231107.150156~MTB-pack-insert-V-08.pdf
  13. Scriba T.J. Coussens A.K. Fletcher H.A. Human immunology of tuberculosis. Microbiol. Spectr. 2017 5 1 5.1.15 10.1128/microbiolspec.TBTB2‑0016‑2016 28155806
    [Google Scholar]
  14. Hamada Y. A systematic review on the safety of mycobacterium tuberculosis-specific antigen-based skin tests for tuberculosis infection compared with tuberculin skin tests. Open Forum Infect Dis 2023 10 5 ofad228 10.1093/ofid/ofad228 37234516
    [Google Scholar]
  15. Bhattamisra S.K. Banerjee P. Gupta P. Mayuren J. Patra S. Candasamy M. Artificial intelligence in pharmaceutical and healthcare research. Big Data Cogn. Comput 2023 7 1 10 10.3390/bdcc7010010
    [Google Scholar]
  16. Singh A. Deep learning for automated screening of tuberculosis from indian chest x-rays: Analysis and update. EE/SysSci 2020 2020 1 9 10.48550/arXiv.2011.09778
    [Google Scholar]
  17. Olbrich L. Verghese V.P. Franckling-Smith Z. Sabi I. Ntinginya N.E. Mfinanga A. Banze D. Viegas S. Khosa C. Semphere R. Nliwasa M. McHugh T.D. Larsson L. Razid A. Song R. Corbett E.L. Nabeta P. Trollip A. Graham S.M. Hoelscher M. Geldmacher C. Zar H.J. Michael J.S. Heinrich N. Baard C.B. Munro J.D. Prins M. Benzi N. Bateman L.C. Ryan A. Booi K. Paulo N. Heydenrych A. Petersen W. Brookes R. Mento M. Centner C. Dalgarno C. Rieß F. Mutuku S. Saathoff E. Held K. Ninan M.M. Chacko A. Kumari R. Dhanabhagyam R. Muniswamy N. Nicol M.P. Mtafya B. Mwambola H. Manyama C. Mahiga H. Sichone E. Sudi L. Maueia C. Madeira C. Cambuie J. Ribeiro J. Chiume L. Mnyanga A. Sikwese T. Masakasa H. Kachere D. Kosaka M. Niemann S. Chegou N. Horn L. RaPaed-TB consortium Diagnostic accuracy of a three-gene Mycobacterium tuberculosis host response cartridge using fingerstick blood for childhood tuberculosis: A multicentre prospective study in low-income and middle-income countries. Lancet Infect. Dis. 2024 24 2 140 149 10.1016/S1473‑3099(23)00491‑7 37918414
    [Google Scholar]
  18. Li L. Lyon C.J. LaCourse S.M. Zheng W. Stern J. Escudero J.N. Murithi W.B. Njagi L. John-Stewart G. Hawn T.R. Nduba V. Abdelgaliel W. Tombler T. Horne D. Jiang L. Hu T.Y. Sensitive blood-based detection of HIV-1 and Mycobacterium tuberculosis peptides for disease diagnosis by immuno-affinity liquid chromatography–tandem mass spectrometry: A method development and proof-of-concept study. Clin. Chem. 2023 69 12 1409 1419 10.1093/clinchem/hvad173 37956323
    [Google Scholar]
  19. Moore C.M. Dhillon J. Flynn R. Gizynski K. Adams C. Morgan G. McGurk D. Boada E. Shabestary S. Peat J. O’Halloran J. Stoker N.G. Butcher P.D. Murton H. A novel microfluidic dielectrophoresis technology to enable rapid diagnosis of mycobacteria tuberculosis in clinical samples. J. Mol. Diagn. 2023 25 7 513 523 10.1016/j.jmoldx.2023.04.005 37355278
    [Google Scholar]
  20. Ketchanji Mougang Y.C. Endale Mangamba L.M. Capuano R. Ciccacci F. Catini A. Paolesse R. Mbatchou Ngahane H.B. Palombi L. Di Natale C. On-field test of tuberculosis diagnosis through exhaled breath analysis with a gas sensor array. Biosensors 2023 13 5 570 10.3390/bios13050570 37232931
    [Google Scholar]
  21. Mehrrotraa R. Ansari M.A. Agrawal R. Tripathi P. Bin Heyat M.B. Al-Sarem M. Muaad A.Y.M. Nagmeldin W.A.E. Abdelmaboud A. Saeed F. Ensembling of efficient deep convolutional networks and machine learning algorithms for resource effective detection of tuberculosis using thoracic (chest) radiography. IEEE Access 2022 10 85442 85458 10.1109/ACCESS.2022.3194152
    [Google Scholar]
  22. Verma D. Bose C. Tufchi N. Pant K. Tripathi V. Thapliyal A. An efficient framework for identification of Tuberculosis and Pneumonia in chest X-ray images using Neural Network. Procedia Comput. Sci 2020 171 217 224 10.1016/j.procs.2020.04.023
    [Google Scholar]
  23. Kazemzadeh S. Deep learning for detecting pulmonary tuberculosis via chest radiography: An international study across 10 countries. arXiv 2021 2105.07540 10.48550/arXiv.2105.07540
    [Google Scholar]
  24. Acharya V. Dhiman G. Prakasha K. Bahadur P. Choraria A. M S. J S. Prabhu S. Chadaga K. Viriyasitavat W. Kautish S. AI-assisted tuberculosis detection and classification from chest x-rays using a deep learning normalization-free network model. Comput. Intell. Neurosci. 2022 2022 1 19 10.1155/2022/2399428 36225551
    [Google Scholar]
  25. Dasanayaka C. Dissanayake M.B. Deep learning methods for screening pulmonary tuberculosis using chest x-rays. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2021 9 1 39 49 10.1080/21681163.2020.1808532
    [Google Scholar]
  26. Nafisah S.I. Muhammad G. Tuberculosis detection in chest radiograph using convolutional neural network architecture and explainable artificial intelligence. Neural Comput. Appl. 2024 36 1 111 131 10.1007/s00521‑022‑07258‑6 35462630
    [Google Scholar]
  27. Suárez I. Fünger S. M. Rademacher J. Fätkenheuer G. Kröger S. Rybniker J. The diagnosis and treatment of tuberculosis. Dtsch Arztebl Int 2019 116 43 729 735 10.3238/arztebl.2019.0729 31755407
    [Google Scholar]
  28. Sood S. Kaur S. Shrivastava R. A lacZ reporter-based strategy for rapid expression analysis and target validation of mycobacterium tuberculosis latent infection genes. Curr. Microbiol. 2016 72 2 213 219 10.1007/s00284‑015‑0942‑3 26597215
    [Google Scholar]
  29. Pasa F. Golkov V. Pfeiffer F. Cremers D. Pfeiffer D. Efficient deep network architectures for fast chest x-ray tuberculosis screening and visualization. Sci. Rep. 2019 9 1 6268 10.1038/s41598‑019‑42557‑4 31000728
    [Google Scholar]
  30. Rahman T. Khandakar A. Kadir M.A. Islam K.R. Islam K.F. Mazhar R. Hamid T. Islam M.T. Kashem S. Mahbub Z.B. Ayari M.A. Chowdhury M.E.H. Reliable tuberculosis detection using chest X-ray with deep learning, segmentation, and visualization. IEEE Access 2020 8 191586 191601 10.1109/ACCESS.2020.3031384
    [Google Scholar]
  31. Health B.P. Belarus tuberculosis portal. 2024 Available from: https://grantome.com/grant/NIH/AAI12021001-1-0-5
  32. NIAID TB portal program dataset. 2024 Available from: https://data.tbportals. niaid.nih.gov/
  33. Abbas A. Abdelsamea M.M. Gaber M.M. DeTrac: Transfer learning of class decomposed medical images in convolutional neural networks. IEEE Access 2020 8 74901 74913 10.1109/ACCESS.2020.2989273
    [Google Scholar]
  34. RSNA pneumonia detection challenge. 2018 Available from: https://www.rsna.org/rsnai/ai-image-challenge/rsna-pneumonia-detection-challenge-2018
  35. Giełczyk A. Marciniak A. Tarczewska M. Lutowski Z. Pre-processing methods in chest X-ray image classification. PLoS One 2022 17 4 e0265949 10.1371/journal.pone.0265949 35381050
    [Google Scholar]
  36. Verma R. Kumar N. Patil A. Kurian N.C. Rane S. Graham S. Vu Q.D. Zwager M. Raza S.E.A. Rajpoot N. Wu X. Chen H. Huang Y. Wang L. Jung H. Brown G.T. Liu Y. Liu S. Jahromi S.A.F. Khani A.A. Montahaei E. Baghshah M.S. Behroozi H. Semkin P. Rassadin A. Dutande P. Lodaya R. Baid U. Baheti B. Talbar S. Mahbod A. Ecker R. Ellinger I. Luo Z. Dong B. Xu Z. Yao Y. Lv S. Feng M. Xu K. Zunair H. Hamza A.B. Smiley S. Yin T.K. Fang Q.R. Srivastava S. Mahapatra D. Trnavska L. Zhang H. Narayanan P.L. Law J. Yuan Y. Tejomay A. Mitkari A. Koka D. Ramachandra V. Kini L. Sethi A. MoNuSAC2020: A multi-organ nuclei segmentation and classification challenge. IEEE Trans. Med. Imaging 2021 40 12 3413 3423 10.1109/TMI.2021.3085712 34086562
    [Google Scholar]
  37. Juneja M. Minhas J.S. Singla N. Kaur R. Jindal P. Denoising techniques for cephalometric x-ray images: A comprehensive review. Multimedia Tools Appl. 2023 83 17 49953 49991 10.1007/s11042‑023‑17495‑z
    [Google Scholar]
  38. Bhardawaj F. Jain S. CAD system design for two-class brain tumor classification using transfer learning. Curr. Cancer Ther. Rev. 2024 20 2 223 232 10.2174/1573394719666230816091316
    [Google Scholar]
  39. Zunair H. Ben Hamza A. PEEKABOO: Hiding parts of an image for unsupervised object localization. 2024 Available from: https://github.com/hasibzunair/peekaboo
  40. Gargya S. Jain S. CAD system design for pituitary tumor classification based on transfer learning technique. Curr. Med. Imaging 2023 20 1 e15734056246146 10.2174/0115734056246146231018110415 37916629
    [Google Scholar]
  41. Zunair H. Ben Hamza A. Learning to recognize occluded and small objects with partial inputs. 2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) Waikoloa, HI, USA, 03-08 January 2024, pp. 664-673. 10.1109/WACV57701.2024.00073
    [Google Scholar]
  42. Jonathan J. Barakabitze A. A. ML technologies for diagnosing and treatment of tuberculosis: A survey. Health Technol 2023 13 17 33 10.1007/s12553‑023‑00727‑5
    [Google Scholar]
  43. Urooj S. Suchitra S. Krishnasamy L. Sharma N. Pathak N. Stochastic learning-based artificial neural network model for an automatic tuberculosis detection system using chest X-Ray images. IEEE Access 2022 10 103632 103643 10.1109/ACCESS.2022.3208882
    [Google Scholar]
  44. Dongare A. D. Kharde R. R. Kachare A. D. Introduction to artificial neural network. IJEIT 2012 2 1 189 194
    [Google Scholar]
  45. Bhardwaj C. Jain S. Sood M. Transfer learning based robust automatic detection system for diabetic retinopathy grading. Neural Comput. Appl. 2021 33 20 13999 14019 10.1007/s00521‑021‑06042‑2
    [Google Scholar]
  46. O’Shea K. Nash R. An introduction to convolutional neural networks. arXiv 2015 1511.08458 10.48550/arXiv.1511.08458
    [Google Scholar]
  47. Aggarwal A. Jain S. Jindal H. Computational model for the detection of diabetic retinopathy in 2-D color fundus retina scan. Curr. Med. Imaging 2024 20 e15734056248183 10.2174/0115734056248183231010111937 38333976
    [Google Scholar]
  48. Li Z. Liu F. Yang W. Peng S. Zhou J. A survey of convolutional neural networks: Analysis, applications, and prospects. IEEE Trans. Neural Netw. Learn. Syst. 2022 33 12 6999 7019 10.1109/TNNLS.2021.3084827 34111009
    [Google Scholar]
  49. Zunair H. Hamza A.B. Synthesis of COVID-19 chest X-rays using unpaired image-to-image translation. Soc. Netw. Anal. Min. 2021 11 1 23 10.1007/s13278‑021‑00731‑5 33643491
    [Google Scholar]
  50. Gu J. Wang Z. Kuen J. Ma L. Shahroudy A. Shuai B. Liu T. Wang X. Wang G. Cai J. Chen T. Recent advances in convolutional neural networks. Pattern Recognit. 2018 77 354 377 10.1016/j.patcog.2017.10.013
    [Google Scholar]
  51. Tammina S. Transfer learning using VGG-16 with Deep Convolutional Neural Network for Classifying Images. IJSRP 2019 9 10 p9420 10.29322/IJSRP.9.10.2019.p9420
    [Google Scholar]
  52. Xiao J. Wang J. Cao S. Li B. Application of a novel and improved VGG-19 network in the detection of workers wearing masks. J. Phys. Conf. Ser. 2020 1518 1 012041 10.1088/1742‑6596/1518/1/012041 34191934
    [Google Scholar]
  53. Wen L. A transfer convolutional neural network for fault diagnosis based on ResNet-50. Neural Comput. Appl. 2019 32 6111 6124 10.1007/s00521‑019‑04097‑w
    [Google Scholar]
  54. Lin C. Li L. Luo W. Wang K.C.P. Guo J. Transfer learning based traffic sign recognition using inception-v3 model. Period. Polytech. Transp. Eng 2018 47 3 242 250 10.3311/PPtr.11480
    [Google Scholar]
  55. Shah S.R. Qadri S. Bibi H. Shah S.M.W. Sharif M.I. Marinello F. Comparing inception V3, VGG 16, VGG 19, CNN, and ResNet 50: A case study on early detection of a rice disease. Agronomy 2023 13 6 1633 10.3390/agronomy13061633
    [Google Scholar]
  56. He K. Zhang X. Ren S. Sun J. Deep residual learning for image recognition. arXiv 2015 1512.03385 10.48550/arXiv.1512.03385
    [Google Scholar]
  57. Hussein S. Cao K. Song Q. Bagci U. Risk stratification of lung nodules using 3d cnn-based multi-task learning. Lect. Notes Comput. Sci. 2017 10265 249 260 10.1007/978‑3‑319‑59050‑9_20
    [Google Scholar]
  58. Zunair H. Ben Hamza A. Melanoma detection using adversarial training and deep transfer learning. Phys. Med. Biol. 2020 65 13 135005 10.1088/1361‑6560/ab86d3 32252036
    [Google Scholar]
  59. Ahsan M. Gomes R. Denton A. Application of a convolutional neural network using transfer learning for tuberculosis detection. 2019 IEEE International Conference on Electro Information Technology (EIT) Brookings, SD, USA, 20-22 May 2019, pp. 427-433. 10.1109/EIT.2019.8833768
    [Google Scholar]
  60. Jaeger S. Candemir S. Antani S. Wáng Y.X. Lu P.X. Thoma G. Two public chest X-ray datasets for computer-aided screening of pulmonary diseases. Quant. Imaging Med. Surg. 2014 4 6 475 477 10.3978/j.issn.2223‑4292.2014.11.20 25525580
    [Google Scholar]
  61. Caseneuve G. Valova I. LeBlanc N. Thibodeau M. Chest X-Ray image preprocessing for disease classification. Procedia Comput. Sci.. 2021 192 658 665 10.1016/j.procs.2021.08.068
    [Google Scholar]
  62. Hwang S. A novel approach for tuberculosis screening based on deep convolutional neural networks. Proceedings of the SPIE San Diego, California, United States, 24 March 2016, pp. 97852W.
    [Google Scholar]
  63. Lopes U.K. Valiati J.F. Pre-trained convolutional neural networks as feature extractors for tuberculosis detection. Comput. Biol. Med. 2017 89 135 143 10.1016/j.compbiomed.2017.08.001 28800442
    [Google Scholar]
  64. Li X. Li C. Zhu D. COVID-MobileXpert: On-Device COVID-19 patient triage and follow-up using chest x-rays. 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) Seoul, Korea (South), 16-19 December 2020, pp. 1063-1067 10.1109/BIBM49941.2020.9313217
    [Google Scholar]
  65. Tiwari R.S. Dandabani L. Das T.K. Khan S.B. Basheer S. Alqahtani M.S. Cloud-based quad deep ensemble framework for the detection of COVID-19 omicron and delta variants. Diagnostics 2023 13 22 3419 10.3390/diagnostics13223419 37998555
    [Google Scholar]
  66. Bhatt R. Patil G. Shandilya A. Gupta S. Joshi M. Joshi B. Nanotechnology perceptions early detection of lung cancer using cloud-based deep learning and chest x-rays. Nanotechnol. Percept. 2024 20 S13 2405 2418 10.13140/RG.2.2.24335.29602
    [Google Scholar]
  67. Alis D. Choosing the right artificial intelligence solutions for your radiology department: Key factors to consider. Diagn Interv Radiol 2024 30 6 357 365 10.4274/dir.2024.232658 38682670
    [Google Scholar]
  68. Adams S.J. Henderson R.D.E. Yi X. Babyn P. Artificial intelligence solutions for analysis of x-ray images. Can. Assoc. Radiol. J. 2021 72 1 60 72 10.1177/0846537120941671 32757950
    [Google Scholar]
  69. Chawla N.V. Raval M.S. Vatsa M. Akhter Y. Singh R. AI-based radiodiagnosis using chest X-rays: A review. Front Big Data 2023 6 1120989 10.3389/fdata.2023.1120989 37091458
    [Google Scholar]
  70. Gibson E. Georgescu B. Ceccaldi P. Trigan P.H. Yoo Y. Das J. Re T.J. Rs V. Balachandran A. Eibenberger E. Chekkoury A. Brehm B. Bodanapally U.K. Nicolaou S. Sanelli P.C. Schroeppel T.J. Flohr T. Comaniciu D. Lui Y.W. Artificial intelligence with statistical confidence scores for detection of acute or subacute hemorrhage on noncontrast CT head scans. Radiol. Artif. Intell. 2022 4 3 e210115 10.1148/ryai.210115 35652116
    [Google Scholar]
  71. Rajkomar A. Dean J. Kohane I. Machine learning in medicine. N. Engl. J. Med. 2018 380 14 133 144 10.1056/NEJMra1814259 35652116
    [Google Scholar]
  72. Vayena E. Blasimme A. Cohen I. Machine learning in health care: A review. JAMA 2018 320 6 541 542
    [Google Scholar]
  73. Morrison H. McShane H. Local pulmonary immunological biomarkers in tuberculosis. Front Immunol 2021 12 640916 10.3389/fimmu.2021.640916 33746984
    [Google Scholar]
  74. Szegedy C. Vanhoucke V. Ioffe S. Shlens J. Rethinking the inception architecture for computer vision. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Las Vegas, NV, USA, 27-30 June 2016, pp. 2818-2826. 10.1109/CVPR.2016.308
    [Google Scholar]
  75. Sharma A. Sharma A. Malhotra R. Singh P. Chakrabortty R.K. Mahajan S. Pandit A.K. An accurate artificial intelligence system for the detection of pulmonary and extra pulmonary tuberculosis. Tuberculosis 2021 131 102143 10.1016/j.tube.2021.102143 34794086
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673375085250704061619
Loading
/content/journals/cmc/10.2174/0109298673375085250704061619
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test