Skip to content
2000
image of Machine Learning, Virtual Screening and Bioactivity Evaluation to Identify AJ-292/12941271 as an Anti-proliferative Agent and Target mTOR Protein

Abstract

Objectives

The objective of this study is to obtain inhibitors against mTOR targets with virtual screening, dynamic simulation and bioactivity assessment. This pursuit aims to obtain a rapid and accurate method for the discovery of new mTOR inhibitors.

Methods

Firstly, the researchers obtained nearly 9000 compounds by using ROC-guided machine learning from a library of over 200000 compounds. Secondly, virtual screening was used to evaluate the affinity of 45 compounds. Further analysis was performed to identify 6 hit compounds. Simultaneously, MTT antitumor activity evaluation and kinase inhibition assays are conducted for the active compounds to discern the most promising candidates. Furthermore, AO staining and JC-1 assays are performed for the selected compounds. Simultaneously, MTT antitumor activity evaluation and kinase inhibition assays are conducted for the active compounds to discern the most promising candidates. Furthermore, AO staining, JC-1 and hemolytic toxicity evaluation assays are performed for the selected compounds.

Results

The kinase assay demonstrates that these 6 compounds display greater sensitivity to mTOR than to PI3K. Among them, compounds AJ-292/12941271 and AG-205/12550019 show better activity against mTOR target than PI3K, with an IC of 2.55 and 4.48 μM, respectively. Additionally, the anti-proliferative activity of the six hit compounds was also considered. Compound AJ-292/12941271 shows the best anticancer activity against A549 cell lines with an IC value of 4.3 μM. Further analysis reveals that compound AJ-292/12941271 induces apoptosis in the A549 cell line in a concentration-dependent or time-dependent manner. Hemolytic toxicity evaluation suggests that the compound AJ-292/12941271 is safe for further study.

Conclusion

This research proposes that the fused method of ROC-based machine learning, virtual screening, and bioactivity evaluation could be used to discover novel mTOR inhibitors quickly and precisely.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673362945250628044807
2025-07-18
2025-09-08
Loading full text...

Full text loading...

References

  1. Bray F. Laversanne M. Sung H. Ferlay J. Siegel R.L. Soerjomataram I. Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024 74 3 229 263 10.3322/caac.21834 38572751
    [Google Scholar]
  2. Sugimoto Y. Ratcliffe P. J. Isoform-resolved mRNA profiling of ribosome load defines interplay of HIF and mTOR dysregulation in kidney cancer. Nat Struct Mol Biol 2022 29 9 871 880 10.1038/s41594‑022‑00819‑2 36097292
    [Google Scholar]
  3. Zhu K. Wu Y. He P. Fan Y. Zhong X. Zheng H. Luo T. PI3K/AKT/mTOR-targeted therapy for breast cancer. Cells 2022 11 16 2508 10.3390/cells11162508 36010585
    [Google Scholar]
  4. Iksen S. Pothongsrisit S. Pongrakhananon V. Targeting the PI3K/AKT/mTOR signaling pathway in lung cancer: An update regarding potential drugs and natural products. Molecules 2021 26 13 4100 10.3390/molecules26134100 34279440
    [Google Scholar]
  5. Porta C. Paglino C. Mosca A. Targeting PI3K/Akt/mTOR signaling in cancer. Front Oncol 2014 4 64 10.3389/fonc.2014.00064 24782981
    [Google Scholar]
  6. Zou Z. Tao T. Li H. Zhu X. mTOR signaling pathway and mTOR inhibitors in cancer: Progress and challenges. Cell Biosci. 2020 10 1 31 10.1186/s13578‑020‑00396‑1 32175074
    [Google Scholar]
  7. Qiu J. Feng M. Yang G. Cao Z. Liu Y. You L. Zhang T. mTOR inhibitor, gemcitabine and PD-L1 antibody blockade combination therapy suppresses pancreatic cancer progression via metabolic reprogramming and immune microenvironment remodeling in Trp53flox/+LSL-KrasG12D/+Pdx-1-Cre murine models. Cancer Lett. 2023 554 216020 10.1016/j.canlet.2022.216020 36442772
    [Google Scholar]
  8. Chapman N.M. Chi H. mTOR signaling, Tregs and immune modulation. Immunotherapy 2014 6 12 1295 1311 10.2217/imt.14.84 25524385
    [Google Scholar]
  9. Murugan A.K. mTOR: Role in cancer, metastasis and drug resistance. Semin. Cancer Biol. 2019 59 92 111 10.1016/j.semcancer.2019.07.003 31408724
    [Google Scholar]
  10. Abraham R.T. Gibbons J.J. The mammalian target of rapamycin signaling pathway: Twists and turns in the road to cancer therapy. Clin. Cancer Res. 2007 13 11 3109 3114 10.1158/1078‑0432.CCR‑06‑2798 17545512
    [Google Scholar]
  11. Martelli A.M. Buontempo F. McCubrey J.A. Drug discovery targeting the mTOR pathway. Clin. Sci. 2018 132 5 543 568 10.1042/CS20171158 29523752
    [Google Scholar]
  12. Xu T. Sun D. Chen Y. Ouyang L. Targeting mTOR for fighting diseases: A revisited review of mTOR inhibitors. Eur. J. Med. Chem. 2020 199 112391 10.1016/j.ejmech.2020.112391 32416459
    [Google Scholar]
  13. Gu X. Yu J.J. Ilter D. Blenis N. Henske E.P. Blenis J. Integration of mTOR and estrogen-ERK2 signaling in lymphangioleiomyomatosis pathogenesis. Proc Natl Acad Sci U S A 2013 110 37 14960 14965 10.1073/pnas.1309110110 23983265
    [Google Scholar]
  14. Waldner M. Fantus D. Solari M. Thomson A.W. New perspectives on mTOR inhibitors (rapamycin, rapalogs and TORKinibs) in transplantation. Br. J. Clin. Pharmacol. 2016 82 5 1158 1170 10.1111/bcp.12893 26810941
    [Google Scholar]
  15. Park H.K. Metformin and cancer in type 2 diabetes. Diabetes Metab J 2013 37 2 113 116 10.4093/dmj.2013.37.2.113
    [Google Scholar]
  16. Zhang Y. Sowers J. R. Ren J. Pathophysiological insights into cardiovascular health in metabolic syndrome. Exp Diabetes Res 2012 2012 320534 10.1155/2012/320534 22844270
    [Google Scholar]
  17. Baker M. Sarcoidosis incidence after mTOR inhibitor treatment. Semin Arthritis Rheum 2022 57 152102 10.1016/j.semarthrit.2022.152102 36182721
    [Google Scholar]
  18. Khan N.A. Donatelli C.V. Tonelli A.R. Wiesen J. Ribeiro Neto M.L. Sahoo D. Culver D.A. Toxicity risk from glucocorticoids in sarcoidosis patients. Respir. Med. 2017 132 9 14 10.1016/j.rmed.2017.09.003 29229111
    [Google Scholar]
  19. Oleksak P. Nepovimova E. Chrienova Z. Musilek K. Patocka J. Kuca K. Contemporary mTOR inhibitor scaffolds to diseases breakdown: A patent review (2015–2021). Eur. J. Med. Chem. 2022 238 114498 10.1016/j.ejmech.2022.114498 35688004
    [Google Scholar]
  20. Jorga K. Schmitz D. Cmiljanovic N. Fabbro D. Dimitrijevic S. Abstract 378: Exploring intermittent dosing schedules for the Pan PI3K/mTor inhibitor PQR309. Cancer Res. 2016 76 14_Supplement 378 10.1158/1538‑7445.AM2016‑378
    [Google Scholar]
  21. Rageot D. Discovery and preclinical characterization of 5- 4,6-Bis({3-oxa-8-azabicyclo 3.2.1 octan-8-y1})-1,3,5-triazin-2-yl -4- (difluoromethyl)pyridin-2-amine (PQR620), a highly potent and selective mTORC1/2 inhibitor for cancer and neurological disorders. J. Med. Chem. 2018 61 22 10084 10105 10.1021/acs.jmedchem.8b01262 30359003
    [Google Scholar]
  22. Deng L.J. Deng W.Q. Fan S.R. Chen M.F. Qi M. Lyu W.Y. Qi Q. Tiwari A.K. Chen J.X. Zhang D.M. Chen Z.S. m6A modification: Recent advances, anticancer targeted drug discovery and beyond. Mol. Cancer 2022 21 1 52 10.1186/s12943‑022‑01510‑2 35164788
    [Google Scholar]
  23. Xiong F. Yu M. Xu H. Zhong Z. Li Z. Guo Y. Zhang T. Zeng Z. Jin F. He X. Discovery of TIGIT inhibitors based on DEL and machine learning. Front Chem. 2022 10 982539 10.3389/fchem.2022.982539 35958238
    [Google Scholar]
  24. Mysinger M.M. Carchia M. Irwin J.J. Shoichet B.K. Directory of useful decoys, enhanced (DUD-E): Better ligands and decoys for better benchmarking. J. Med. Chem. 2012 55 14 6582 6594 10.1021/jm300687e 22716043
    [Google Scholar]
  25. Berthold M.R. KNIME: The Konstanz Information Miner. 31st Annual Conference of the German-Classification-Society Albert Ludwigs Univ Freiburg 2008 319 326 10.1145/1656274.1656280
    [Google Scholar]
  26. Demsar J. Orange: Data mining toolbox in python. J. Mach. Learn. Res. 2013 14 2013 2349 2353
    [Google Scholar]
  27. Wang L. T6496 targeting EGFR mediated by T790M or C797S mutant: Machine learning, virtual screening and bioactivity evaluation study. J Biomol Struct Dyn 2025 43 6 3144 3155 10.1080/07391102.2023.2300756 38174383
    [Google Scholar]
  28. Xu S. Huang X. An Y. Lv X. Xu S. Wang L. Zhu W. In silico screening applied in drug discovery: T001-10026247 as a novel fourth-generation EGFR inhibitor. New J. Chem. 2023 47 44 20405 20416 10.1039/D3NJ03597B
    [Google Scholar]
  29. Wang L. In silico screening combined with bioactivity evaluation to identify AMI-1 as a novel anticancer compound by targeting AXL. J Biomol Struct Dyn 2024 42 15 7686 7698 10.1080/07391102.2023.2255654 37691424
    [Google Scholar]
  30. Yang Y. Based on virtual screening methods and biological activity assessment, AK-968/13030056 has been identified as a potential mTOR inhibitor. J Mol Struct 2024 1302 137425 10.1016/j.molstruc.2023.137425
    [Google Scholar]
  31. Gherghi I. Girousi S.T. Voulgaropoulos A.N. Tzimou-Tsitouridou R. Study of interactions between DNA-ethidium bromide (EB) and DNA-acridine orange (AO), in solution, using hanging mercury drop electrode (HMDE). Talanta 2003 61 2 103 112 10.1016/S0039‑9140(03)00238‑8 18969168
    [Google Scholar]
  32. Gan W. Wang C. Pan Q. Li Y. Guo Y. Fan D. Peng Y. Rao Z. Xu S. Zheng P. Zhu W. Discovery of novel 4-arylamino-quinazoline derivatives as EGFRL858R/T790M inhibitors with the potential to inhibit the non-small cell lung cancers. Bioorg. Chem. 2022 127 Oct 105994 10.1016/j.bioorg.2022.105994 35792314
    [Google Scholar]
  33. Smiley S.T. Reers M. Mottola-Hartshorn C. Lin M. Chen A. Smith T.W. Steele G.D. Jr Chen L.B. Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1. Proc. Natl. Acad. Sci. USA 1991 88 9 3671 3675 10.1073/pnas.88.9.3671 2023917
    [Google Scholar]
  34. Sun X. Design, synthesis and pharmacological evaluation of 2-arylurea-1,3,5-triazine derivative (XIN-9): A novel potent dual PI3K/mTOR inhibitor for cancer therapy. Bioorg. Chem. 2023 131 Feb 106336 10.1016/j.bioorg.2022.106336 36587506
    [Google Scholar]
  35. Swanson K. Walther P. Leitz J. Mukherjee S. Wu J.C. Shivnaraine R.V. Zou J. ADMET-AI: A machine learning ADMET platform for evaluation of large-scale chemical libraries. Bioinformatics 2024 40 7 btae416 10.1093/bioinformatics/btae416 38913862
    [Google Scholar]
  36. Lavecchia A. Machine-learning approaches in drug discovery: Methods and applications. Drug Discov. Today 2015 20 3 318 331 10.1016/j.drudis.2014.10.012 25448759
    [Google Scholar]
  37. Lo Y.C. Rensi S.E. Torng W. Altman R.B. Machine learning in chemoinformatics and drug discovery. Drug Discov. Today 2018 23 8 1538 1546 10.1016/j.drudis.2018.05.010 29750902
    [Google Scholar]
  38. Vamathevan J. Clark D. Czodrowski P. Dunham I. Ferran E. Lee G. Li B. Madabhushi A. Shah P. Spitzer M. Zhao S. Applications of machine learning in drug discovery and development. Nat. Rev. Drug Discov. 2019 18 6 463 477 10.1038/s41573‑019‑0024‑5 30976107
    [Google Scholar]
  39. Wang Z. Sun H. Yao X. Li D. Xu L. Li Y. Tian S. Hou T. Comprehensive evaluation of ten docking programs on a diverse set of protein–ligand complexes: The prediction accuracy of sampling power and scoring power. Phys. Chem. Chem. Phys. 2016 18 18 12964 12975 10.1039/C6CP01555G 27108770
    [Google Scholar]
  40. Gonzalez J. Clement C. Discovery of linear and cyclic tetrapeptides inhibitors of Y-49 beta-lactamase by structure-based drug design (SBDD) and molecular docking platforms empowered by MOE, AutoDock Vina and StarDrop-ADMET (Optibrium) module. Abstracts of Papers of the American Chemical Society vol. 256, 2018.
    [Google Scholar]
  41. Lim S. K. Othman R. Yusof R. Heh C. H. Rational drug discovery of HCV helicase inhibitor: Improved docking accuracy with multiple seeding in AutoDock Vina and in situ minimization. Curr Comput Aided Drug Des 2017 13 2 160 169 10.2174/1573409912666161130122622 27903217
    [Google Scholar]
  42. Dey R. Shaw S. Bhatt H. Patel B. Yadav R. Chaube U. Synthesis, biological screening, and binding mode analysis of some N-substituted tetrahydroquinoline analogs as apoptosis inducers and anticancer agents. J. Mol. Struct. 2024 1318 139330 10.1016/j.molstruc.2024.139330
    [Google Scholar]
  43. Ferreira R.S. Simeonov A. Jadhav A. Eidam O. Mott B.T. Keiser M.J. McKerrow J.H. Maloney D.J. Irwin J.J. Shoichet B.K. Complementarity between a docking and a high-throughput screen in discovering new cruzain inhibitors. J. Med. Chem. 2010 53 13 4891 4905 10.1021/jm100488w 20540517
    [Google Scholar]
  44. Adasme M.F. Linnemann K.L. Bolz S.N. Kaiser F. Salentin S. Haupt V.J. Schroeder M. PLIP 2021: Expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic Acids Res. 2021 49 W1 W530 W534 10.1093/nar/gkab294 33950214
    [Google Scholar]
  45. Huang Q. Xie L. Chen X. Yu H. Lv Y. Huang X. Ying J. Zheng C. Cheng Y. Huang J. Synthesis and anticancer activity of novel rapamycin C-28 containing triazole moiety compounds. Arch. Pharm. 2018 351 11 1800123 10.1002/ardp.201800123 30357890
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673362945250628044807
Loading
/content/journals/cmc/10.2174/0109298673362945250628044807
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keywords: anti-proliferative ; bioactivity ; virtual screening ; inhibitors ; Machine learning ; mTOR inhibitor
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test