Skip to content
2000
image of NAV3 Missense Variant in a Homozygous State: Strengthening Links to Neurodevelopmental Disorder

Abstract

Introduction

Neurodevelopmental disorders (NDDs) represent a diverse and heterogeneous group of conditions, including global developmental delay (GDD), autism spectrum disorder (ASD), and neurodevelopmental encephalopathy with epilepsy (NDEE). While these disorders often share phenotypic similarities, their underlying genetic causes can vary widely, making clinical diagnosis challenging.

Methods

In this study, we performed whole-genome sequencing (WGS) on a family having an autosomal recessive neurodevelopmental disorder. The proband (II-2) underwent WGS, followed by variant filtering through an in-house bioinformatics pipeline. Sanger sequencing and 3D protein modeling were performed to confirm the pathogenicity of the identified variant.

Results

A novel biallelic missense variant in the (c.3430T>C; p.Ser1144Pro) was detected using WGS and Sanger sequencing. Subsequently, 3D protein modeling revealed significant alterations in the secondary structure of NAV3, indicating a potential pathogenic effect.

Discussion

The identification of a novel biallelic missense variant in adds a new layer to our understanding of its potential contribution to autosomal recessive neurodevelopmental disorders. This case expands the mutational landscape of and underscores its emerging significance in neurodevelopment.

Conclusion

This study reports a novel variant in association with autosomal recessive NDD, contributing to the growing body of evidence supporting the involvement of in human neurodevelopment. Functional validation and identification of additional patients will be essential to establish definitive genotype-phenotype correlations and uncover the mechanistic pathways underlying NAV3-associated disorders.

 This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode.
Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673367919250626005640
2025-07-24
2025-09-10
Loading full text...

Full text loading...

/deliver/fulltext/cmc/10.2174/0109298673367919250626005640/BMS-CMC-2024-HT162-6676-4.html?itemId=/content/journals/cmc/10.2174/0109298673367919250626005640&mimeType=html&fmt=ahah

References

  1. Sabariego-Navarro M. Fernández-Blanco Á. Sierra C. Dierssen M. Neurodevelopmental disorders: 2022 update. Free Neuropathol. 2022 3 8 37284163
    [Google Scholar]
  2. Bitta M. Kariuki S.M. Abubakar A. Newton C.R.J. Burden of neurodevelopmental disorders in low and middle-income countries: A systematic review and meta-analysis. Wellcome Open Res. 2018 10.12688/wellcomeopenres.13540.3 29881784
    [Google Scholar]
  3. Ghaffar, A.; Akhter, T.; Strømme, P.; Misceo, D.; Khan, A.; Frengen, E.; Umair, M.; Isidor, B.; Cogné, B.; Khan, A.A.; Bruel, A.L.; Sorlin, A.; Kuentz, P.; Chiaverini, C.; Innes, A.M.; Zech, M.; Baláž, M.; Havrankova, P.; Jech, R.; Ahmed, Z.M.; Riazuddin, S.; Riazuddin, S. Variants of NAV3, a neuronal morphogenesis protein, cause intellectual disability, developmental delay, and microcephaly. Commun. Biol. 2020 7 1 831 10.1038/s42003‑024‑06466‑1
    [Google Scholar]
  4. Umair, M.; Alharbi, M.; Aloyouni, E.; Al Abdulrahman, A.; Aldrees, M.; Al Tuwaijri, A.; Bilal, M.; Alfadhel, M. Mutated neuron navigator 3 as a candidate gene for a rare neurodevelopmental disorder.. Mol. Genet. Genomic. Med. 2024 12 7 e2473 10.1002/mgg3.2473
    [Google Scholar]
  5. Hoischen A. Krumm N. Eichler E.E. Prioritization of neurodevelopmental disease genes by discovery of new mutations. Nat. Neurosci. 2014 17 6 764 772 10.1038/nn.3703 24866042
    [Google Scholar]
  6. Wang G. Xu Y. Wang Q. Chai Y. Sun X. Yang F. Rare and undiagnosed diseases: From disease-causing gene identification to mechanism elucidation. Fundam. Res. 2023 2 6 918 928 38933382 10.1016/j.fmre.2022.09.002. 2022
    [Google Scholar]
  7. Tiwari A. Lemke J. Altmueller J. Thiele H. Glaus E. Fleischhauer J. Nürnberg P. Neidhardt J. Berger W. Identification of novel and recurrent disease-causing mutations in retinal dystrophies using whole exome sequencing (WES): Benefits and limitations. PLoS One 2016 11 7 e0158692 10.1371/journal.pone.0158692 27391102
    [Google Scholar]
  8. Lambert J.C. Ramirez A. Grenier-Boley B. Bellenguez C. Step by step: Towards a better understanding of the genetic architecture of Alzheimer’s disease. Mol. Psychiatry 2023 28 7 2716 2727 10.1038/s41380‑023‑02076‑1 37131074
    [Google Scholar]
  9. Satam H. Joshi K. Mangrolia U. Waghoo S. Zaidi G. Rawool S. Thakare R.P. Banday S. Mishra A.K. Das G. Malonia S.K. Next-generation sequencing technology: Current trends and advancements. Biology 2023 12 7 997 10.3390/biology12070997 37508427
    [Google Scholar]
  10. Willfors C. Carlsson T. Anderlid B-M. Nordgren A. Kostrzewa E. Berggren S. Ronald A. Kuja-Halkola R. Tammimies K. Bölte S. Medical history of discordant twins and environmental etiologies of autism. Transl. Psychiatry 2017 7 1 e1014 10.1038/tp.2016.269 28140403
    [Google Scholar]
  11. Ullah A. Gul A. Umair M. Irfanullah Ahmad F. Aziz A. Wali A. Ahmad W. Homozygous sequence variants in the WNT10B gene underlie split hand/foot malformation. Genet. Mol. Biol. 2018 41 1 1 8 10.1590/1678‑4685‑gmb‑2016‑0162 29384555
    [Google Scholar]
  12. Umair M. Alhaddad B. Rafique A. Jan A. Haack T.B. Graf E. Ullah A. Ahmad F. Strom T.M. Meitinger T. Ahmad W. Exome sequencing reveals a novel homozygous splice site variant in the WNT1 gene underlying osteogenesis imperfecta type 3. Pediatr. Res. 2017 82 5 753 758 10.1038/pr.2017.149 28665926
    [Google Scholar]
  13. Alhamoudi K.M. Bhat J. Nashabat M. Alharbi M. Alyafee Y. Asiri A. Umair M. Alfadhel M. A missense mutation in the UGDH gene is associated with developmental delay and axial hypotonia. Front Pediatr. 2020 8 71 10.3389/fped.2020.00071 32175296
    [Google Scholar]
  14. Ullah A. Umair M. Yousaf M. Khan S.A. Nazim-Ud-Din M. Shah K. Ahmad F. Azeem Z. Ali G. Alhaddad B. Rafique A. Jan A. Haack T.B. Strom T.M. Meitinger T. Ghous T. Ahmad W. Sequence variants in four genes underlying Bardet-Biedl syndrome in consanguineous families. Mol. Vis. 2017 23 482 494 28761321
    [Google Scholar]
  15. Kumar P. Henikoff S. Ng P.C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc. 2009 4 7 1073 1081 10.1038/nprot.2009.86 19561590
    [Google Scholar]
  16. Dong C. Wei P. Jian X. Gibbs R. Boerwinkle E. Wang K. Liu X. Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies. Hum. Mol. Genet. 2015 24 8 2125 2137 10.1093/hmg/ddu733 25552646
    [Google Scholar]
  17. Dardé J. Hannukainen A. Hyvönen N. An Hdiv-based mixed quasi-reversibility method for solving elliptic cauchy problems. SIAM J. Numer. Anal. 2013 51 4 2123 2148 10.1137/120895123
    [Google Scholar]
  18. Adzhubei I. Jordan D.M. Sunyaev S.R. Predicting functional effect of human missense mutations using PolyPhen-2. Curr. Protoc. Hum. Genet. 2013 76 1 20 10.1002/0471142905.hg0720s76 23315928
    [Google Scholar]
  19. Kircher M. Witten D.M. Jain P. O’Roak B.J. Cooper G.M. Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 2014 46 3 310 315 10.1038/ng.2892 24487276
    [Google Scholar]
  20. Chun S. Fay J.C. Identification of deleterious mutations within three human genomes. Genome Res. 2009 19 9 1553 1561 19602639 10.1101/gr.092619.109
    [Google Scholar]
  21. Reva B. Antipin Y. Sander C. Predicting the functional impact of protein mutations: Application to cancer genomics. Nucleic Acids Res. 2011 39 17 e118 10.1093/nar/gkr407 21727090
    [Google Scholar]
  22. Schwarz J.M. Rödelsperger C. Schuelke M. Seelow D. MutationTaster evaluates disease-causing potential of sequence alterations. Nat. Methods 2010 7 8 575 576 10.1038/nmeth0810‑575 20676075
    [Google Scholar]
  23. Shihab H.A. Gough J. Cooper D.N. Stenson P.D. Barker G.L. Edwards K.J. Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. Hum. Mutat. 2013 34 1 57 65 22949387 10.1002/humu.22225
    [Google Scholar]
  24. Douville C. Masica D.L. Stenson P.D. Cooper D.N. Gygax D.M. Kim R. Ryan M. Karchin R. Assessing the pathogenicity of insertion and deletion variants with the variant effect scoring tool (VEST-Indel). Hum. Mutat. 2016 37 1 28 35 10.1002/humu.22911 26442818
    [Google Scholar]
  25. Davydov E.V. Goode D.L. Sirota M. Cooper G.M. Sidow A. Batzoglou S. Identifying a high fraction of the human genome to be under selective constraint using GERP++. PLOS Comput. Biol. 2010 6 12 e1001025 10.1371/journal.pcbi.1001025 21152010
    [Google Scholar]
  26. Gulko B. Hubisz M.J. Gronau I. Siepel A. A method for calculating probabilities of fitness consequences for point mutations across the human genome. Nat. Genet. 2015 47 3 276 283 10.1038/ng.3196 25599402
    [Google Scholar]
  27. Cooper G.M. Stone E.A. Asimenos G. Green E.D. Batzoglou S. Sidow A. NISC Comparative Sequencing Program Distribution and intensity of constraint in mammalian genomic sequence. Genome Res. 2005 15 7 901 913 10.1101/gr.3577405 15965027
    [Google Scholar]
  28. Quang D. Chen Y. Xie X. DANN: A deep learning approach for annotating the pathogenicity of genetic variants. Bioinformatics 2015 31 5 761 763 10.1093/bioinformatics/btu703 25338716
    [Google Scholar]
  29. Garber M. Guttman M. Clamp M. Zody M.C. Friedman N. Xie X. Identifying novel constrained nlms by exploiting biased substitution patterns.Bioinformatics 2009 25 12 i54 10.1093/bioinformatics/btp190
    [Google Scholar]
  30. Kleinberger J. Maloney K.A. Pollin T.I. Jeng L.J.B. An openly available online tool for implementing the ACMG/AMP standards and guidelines for the interpretation of sequence variants. Genet. Med. 2016 18 11 1165 10.1038/gim.2016.13 26986878
    [Google Scholar]
  31. Firth H.V. Richards S.M. Bevan A.P. Clayton S. Corpas M. Rajan D. Vooren S.V. Moreau Y. Pettett R.M. Carter N.P. DECIPHER: Database of chromosomal imbalance and phenotype in humans using ensembl resources. Am. J. Hum. Genet. 2009 84 4 524 533 10.1016/j.ajhg.2009.03.010 19344873
    [Google Scholar]
  32. Hayat A. Hussain S. Bilal M. Kausar M. Almuzzaini B. Abbas S. Tanveer A. Khan A. Siddiqi S. Foo J.N. Ahmad F. Khan F. Khan B. Anees M. Mäkitie O. Alfadhel M. Ahmad W. Umair M. Biallelic variants in four genes underlying recessive osteogenesis imperfecta. Eur. J. Med. Genet. 2020 63 8 103954 10.1016/j.ejmg.2020.103954 32413570
    [Google Scholar]
  33. Umair M. Palander O. Bilal M. Almuzzaini B. Alam Q. Ahmad F. Younus M. Khan A. Waqas A. Rafeeq M.M. Alfadhel M. Biallelic variant in DACH1, encoding Dachshund Homolog 1, defines a novel candidate locus for recessive postaxial polydactyly type A. Genomics 2021 113 4 2495 2502 10.1016/j.ygeno.2021.05.015 34022343
    [Google Scholar]
  34. Bhattacharyya R. Chakrabarti P. Stereospecific interactions of proline residues in protein structures and complexes. J. Mol. Biol. 2003 331 4 925 940 10.1016/S0022‑2836(03)00759‑9 12909019
    [Google Scholar]
  35. Wilman H.R. Shi J. Deane C.M. Helix kinks are equally prevalent in soluble and membrane proteins. Proteins 2014 82 9 1960 1970 10.1002/prot.24550 24638929
    [Google Scholar]
  36. Kakar N. Mascarenhas S. Ali A. Azmatullah Ijlal Haider S.M. Badiger V.A. Ghofrani M.S. Kruse N. Hashmi S.N. Pozojevic J. Balachandran S. Toft M. Malik S. Händler K. Fatima A. Iqbal Z. Shukla A. Spielmann M. Radhakrishnan P. Further evidence of biallelic NAV3 variants associated with recessive neurodevelopmental disorder with dysmorphism, developmental delay, intellectual disability, and behavioral abnormalities. Hum. Genet. 2025 144 1 55 65 10.1007/s00439‑024‑02718‑6 39708122
    [Google Scholar]
  37. Sandeep P. Sharma P. Luhach K. Dhiman N. Kharkwal H. Sharma B. Neuron navigators: A novel frontier with physiological and pathological implications. Mol. Cell. Neurosci. 2023 127 103905 10.1016/j.mcn.2023.103905 37972804
    [Google Scholar]
  38. Marzinke M.A. Mavencamp T. Duratinsky J. Clagett- Dame M. 14-3-3ε and NAV2 interact to regulate neurite outgrowth and axon elongation. Arch. Biochem. Biophys. 2013 540 1-2 94 100 10.1016/j.abb.2013.10.012 24161943
    [Google Scholar]
  39. Powers R.M. Hevner R.F. Halpain S. The Neuron Navigators: Structure, function, and evolutionary history. Front. Mol. Neurosci. 2023 15 1099554 10.3389/fnmol.2022.1099554 36710926
    [Google Scholar]
  40. Muley P.D. McNeill E.M. Marzinke M.A. Knobel K.M. Barr M.M. Clagett-Dame M. The atRA-responsive gene neuron navigator 2 functions in neurite outgrowth and axonal elongation. Dev. Neurobiol. 2008 68 13 1441 1453 10.1002/dneu.20670 18726912
    [Google Scholar]
  41. Stringham E. Pujol N. Vandekerckhove J. Bogaert T. unc-53 controls longitudinal migration in C. elegans. Development 2002 129 14 3367 3379 10.1242/dev.129.14.3367 12091307
    [Google Scholar]
  42. Alyafee Y. Al Tuwaijri A. Umair M. Alharbi M. Haddad S. Ballow M. Alayyar L. Alam Q. Althenayyan S. Al Ghilan N. Al Khaldi A. Faden M.S. Al Sufyan H. Alfadhel M. Non-invasive prenatal testing for autosomal recessive disorders: A new promising approach. Front. Genet. 2022 13 1047474 10.3389/fgene.2022.1047474 36406136
    [Google Scholar]
  43. Alyafee Y. Al Tuwaijri A. Alam Q. Umair M. Haddad S. Alharbi M. Ballow M. Al Drees M. AlAbdulrahman A. Al Khaldi A. Alfadhel M. Next generation sequencing based Non-invasive Prenatal Testing (NIPT): First report from Saudi Arabia. Front. Genet. 2021 12 630787 10.3389/fgene.2021.630787 33613643
    [Google Scholar]
  44. Umair M. Rare genetic disorders: Beyond whole-exome sequencing. J. Gene Med. 2023 25 10 e3503 10.1002/jgm.3503 36987553
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673367919250626005640
Loading
/content/journals/cmc/10.2174/0109298673367919250626005640
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: autosomal recessive ; WES ; NAV3 ; missense mutation ; homozygous ; Neurodevelopmental disease
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test