Skip to content
2000
image of The Effect of Everolimus Conjugated Albumin Nanocarrier on the Viability of Lung Cancer A549 Cell Line

Abstract

Introduction

Lung cancer is a leading cause of cancer-related morbidity and mortality. The development and evaluation of effective treatment strategies for lung cancer are of high clinical importance. Everolimus (Eve) has been shown to upregulate the expression of phosphatases and inhibit the migration and proliferation of A549 cancer cells. The present study focuses on the synthesis of biodegradable bovine serum albumin (BSA) nanoparticles for the loading and delivery of Eve.

Methods

In the desolvation process, Eve molecules were kept in the BSA system. The physicochemical properties of the Eve drug containing BSA nanoparticles (Eve@BSA) have been exactly characterized. The loading and release assays of Eve were also studied at different glutaraldehyde percentages, times, and solvents.

Results

Field emission scanning electron microscopy (FE-SEM) analysis of BSA nanoparticles revealed a spherical morphology with an average size of 93.7 ± 3.7 nm. The results demonstrated that BSA nanoparticles are highly efficient carriers, achieving an Eve loading efficiency of approximately 54% at 4% glutaraldehyde. The release of Eve from the BSA nanoparticles was dependent on the solvent and duration of incubation. According to the MTT assay, Eve@BSA exhibited low cytotoxicity and high biocompatibility against L929 fibroblast cells. In contrast, the cytotoxicity of Eve@BSA against A549 cells (IC ≈ 47 μg/mL) was significantly higher than that of free Eve (IC ≈ 283 μg/mL) after 48 hours.

Discussion

The synergistic effects of Eva@BSA nanoformulation due to functional groups-rich BSA seemed to improve in vitro antiproliferation efficacies compared with the single treatment of Eve.

Conclusion

The findings confirm the synergistic anticancer effect of Eve@BSA, indicating that this nanosystem may serve as a promising candidate for the treatment of lung cancer.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673412510251024094728
2026-01-28
2026-02-04
Loading full text...

Full text loading...

References

  1. Shojaei S. Pourmadadi M. Homayoonfal M. Behnamrad P. Fathi-karkan S. Rahdar A. Gerayli S. Pandey S. Revolutionizing lung cancer treatment: Nanotechnology-driven advances in targeted drug delivery and novel therapeutic strategies. J. Drug Deliv. Sci. Technol. 2024 101 106186 10.1016/j.jddst.2024.106186
    [Google Scholar]
  2. Thai A.A. Solomon B.J. Sequist L.V. Gainor J.F. Heist R.S. Lung cancer. Lancet 2021 398 10299 535 554 10.1016/S0140‑6736(21)00312‑3 34273294
    [Google Scholar]
  3. Singh P. Semwal P. Gargi B. Painuli S. Aschner M. Alsharif K.F. Khan H. Bachheti R.K. Worku L.A. Global research and current trends on nanotherapy in lung cancer research: A bibliometric analysis of 20 years. Discov. Oncol. 2024 15 1 539 10.1007/s12672‑024‑01332‑2 39384612
    [Google Scholar]
  4. Wang J. Zhou T. Liu Y. Chen S. Yu Z. Application of nanoparticles in the treatment of lung cancer with emphasis on receptors. Front. Pharmacol. 2022 12 781425 10.3389/fphar.2021.781425 35082668
    [Google Scholar]
  5. Yudaev P. Tupikov A. Chistyakov E. Organocyclophosphazenes and materials based on them for pharmaceuticals and biomedicine. Biomolecules 2025 15 2 262 10.3390/biom15020262 40001565
    [Google Scholar]
  6. Islam S. Ahmed M.M.S. Islam M.A. Hossain N. Chowdhury M.A. Advances in nanoparticles in targeted drug delivery–A review. Results in Surfaces and Interfaces 2025 19 100529 10.1016/j.rsurfi.2025.100529
    [Google Scholar]
  7. Hheidari A. Mohammadi J. Ghodousi M. Mahmoodi M. Ebrahimi S. Pishbin E. Rahdar A. Metal-based nanoparticle in cancer treatment: Lessons learned and challenges. Front. Bioeng. Biotechnol. 2024 12 1436297 10.3389/fbioe.2024.1436297 39055339
    [Google Scholar]
  8. Zhu L. Zhong W. Meng X. Yang X. Zhang W. Tian Y. Li Y. Polymeric nanocarriers delivery systems in ischemic stroke for targeted therapeutic strategies. J. Nanobiotechnology 2024 22 1 424 10.1186/s12951‑024‑02673‑4 39026255
    [Google Scholar]
  9. Safaran N. Javadi S. Pourmadadi M. Ghaemi A. Yazdian F. Rashedi H. Rahdar A. Aboudzadeh M.A. Advances in polymeric and non-polymeric nanocarriers for the magnified delivery of levofloxacin against bacterial infection. J. Nanopart. Res. 2024 26 8 190 10.1007/s11051‑024‑06087‑z
    [Google Scholar]
  10. Xiao X. Teng F. Shi C. Chen J. Wu S. Wang B. Meng X. Essiet Imeh A. Li W. Polymeric nanoparticles—Promising carriers for cancer therapy. Front. Bioeng. Biotechnol. 2022 10 1024143 10.3389/fbioe.2022.1024143 36277396
    [Google Scholar]
  11. Qu N. Song K. Ji Y. Liu M. Chen L. Lee R. Teng L. Albumin nanoparticle-based drug delivery systems. Int. J. Nanomedicine 2024 19 6945 6980 10.2147/IJN.S467876 39005962
    [Google Scholar]
  12. Zheng A. Ning Z. Wang X. Li Z. Sun Y. Wu M. Zhang D. Liu X. Chen J. Zeng Y. Human serum albumin as the carrier to fabricate STING-activating peptide nanovaccine for antitumor immunotherapy. Mater. Today Bio 2024 25 100955 10.1016/j.mtbio.2024.100955 38312800
    [Google Scholar]
  13. Adamczyk O. Szota M. Rakowski K. Prochownik M. Doveiko D. Chen Y. Jachimska B. Bovine serum albumin as a platform for designing biologically active nanocarriers: Experimental and computational studies. Int. J. Mol. Sci. 2023 25 1 37 10.3390/ijms25010037 38203208
    [Google Scholar]
  14. Zhou X. Wang M. Wang Y. Liu J. Zhang C. Pan J. Peng Q. Albumin as a functional carrier solubilizing and facilitating fusidic acid transmembrane delivery into Gram-negative bacteria. Int. J. Biol. Macromol. 2024 277 Pt 1 134019 10.1016/j.ijbiomac.2024.134019 39059524
    [Google Scholar]
  15. Ganguly S.C. Mahanti B. Ganguly S. Majumdar S. Bovine serum albumin as a nanocarrier for efficient encapsulation of hydrophobic garcinol-A strategy for modifying the in vitro drug release kinetics. Int. J. Biol. Macromol. 2024 278 Pt 1 134651 10.1016/j.ijbiomac.2024.134651 39134200
    [Google Scholar]
  16. Mardikasari S.A. Katona G. Csóka I. Bovine serum albumin nanoparticles: A promising platform for nasal drug delivery. Expert Opin. Drug Deliv. 2025 22 1 7 10 10.1080/17425247.2024.2436117 39633256
    [Google Scholar]
  17. Asrorov A.M. Mukhamedov N. Kayumov M. Yashinov A.S. Wali A. Yili A. Mirzaakhmedov S.Y. Huang Y. Albumin is a reliable drug-delivering molecule: Highlighting points in cancer therapy. Med. Drug Discov. 2024 22 100186 10.1016/j.medidd.2024.100186
    [Google Scholar]
  18. Ji H. Zheng Z. Li S. Xiao X. Tang W. Zhang X. Guo Q. He Q. Cai S. Jiang P. Wang H. Li L. Xiao X. Wang L. Research progress of serum albumin in the field of drug delivery. Interdisciplinary Medicine 2024 2 3 20240010 10.1002/INMD.20240010
    [Google Scholar]
  19. Morken S. Langer S.W. Sundlöv A. Vestermark L.W. Ladekarl M. Hjortland G.O. Svensson J.B. Tabaksblat E.M. Haslerud T.M. Assmus J. Detlefsen S. Couvelard A. Perren A. Sorbye H. Phase II study of everolimus and temozolomide as first-line treatment in metastatic high-grade gastroenteropancreatic neuroendocrine neoplasms. Br. J. Cancer 2023 129 12 1930 1939 10.1038/s41416‑023‑02462‑0 37872405
    [Google Scholar]
  20. Gao F. Li R. Wei P.F. Ou L. Li M. Bai Y. Luo W.J. Fan Z. Synergistic anticancer effects of everolimus (RAD001) and Rhein on gastric cancer cells via phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway. Bioengineered 2022 13 3 6332 6342 10.1080/21655979.2021.2005988 35209807
    [Google Scholar]
  21. Zheng K. Gao Y. Xu J. mTOR Inhibitor Everolimus modulates tumor growth in small-cell carcinoma of the ovary, hypercalcemic type and augments the drug sensitivity of cancer cells to cisplatin. Biomed 2025 13 1 10.3390/biomedicines13010001 39857585
    [Google Scholar]
  22. Medici B. Caffari E. Maculan Y. Benatti S. Piacentini F. Dominici M. Gelsomino F. Everolimus in the treatment of neuroendocrine tumors: Lights and shadows. Biomedicines 2025 13 2 455 10.3390/biomedicines13020455 40002868
    [Google Scholar]
  23. Tanjung Y. Dewi M. Gatera V. Barliana M. Joni I.M. Chaerunisaa A. Factors affecting the synthesis of bovine serum albumin nanoparticles using the desolvation method. Nanotechnol. Sci. Appl. 2024 17 21 40 10.2147/NSA.S441324 38314401
    [Google Scholar]
  24. Kumari B. Patil P.M. Development and validation of stability indicating assay method of everolimus and its marketed formulation. World J. Pharm. Life Sci 2021 7 86 98
    [Google Scholar]
  25. Katona G. Sipos B. Csóka I. Risk-assessment-based optimization favoursthe development of albumin nanoparticles with proper characteristics prior to drug loading. Pharmaceutics 2022 14 10 2036 10.3390/pharmaceutics14102036 36297472
    [Google Scholar]
  26. Delaney L.J. Isguven S. Eisenbrey J.R. Hickok N.J. Forsberg F. Making waves: How ultrasound-targeted drug delivery is changing pharmaceutical approaches. Mater. Adv. 2022 3 7 3023 3040 10.1039/D1MA01197A 35445198
    [Google Scholar]
  27. Mashreghi M. Sabeti B. Chekin F. Magnetite graphene oxide-albumin conjugate: Carrier for the imatinib anticancer drug. J. Mater. Sci. Mater. Med. 2023 34 7 32 10.1007/s10856‑023‑06735‑1 37450082
    [Google Scholar]
  28. Cong X. Zhang Z. Li H. Yang Y.G. Zhang Y. Sun T. Nanocarriers for targeted drug delivery in the vascular system: Focus on endothelium. J. Nanobiotechnol. 2024 22 1 620 10.1186/s12951‑024‑02892‑9 39396002
    [Google Scholar]
  29. Zhang Y. Ye Z. He R. Li Y. Xiong B. Yi M. Chen Y. Liu J. Lu B. Bovine serum albumin-based and dual-responsive targeted hollow mesoporous silica nanoparticles for breast cancer therapy. Colloids Surf. B Biointerfaces 2023 224 113201 10.1016/j.colsurfb.2023.113201 36822117
    [Google Scholar]
  30. Hoogenboezem E.N. Duvall C.L. Harnessing albumin as a carrier for cancer therapies. Adv. Drug Deliv. Rev. 2018 130 73 89 10.1016/j.addr.2018.07.011 30012492
    [Google Scholar]
  31. Kasper M. Gabriel D. Möller M. Bauer D. Wildschütz L. Courthion H. Böhm M.R.R. Busch M. Loser K. Thanos S. Gurny R. Heiligenhaus A. Novel everolimus-loaded nanocarriers for topical treatment of murine experimental autoimmune uveoretinitis (EAU). Exp. Eye Res. 2018 168 49 56 10.1016/j.exer.2018.01.003 29326066
    [Google Scholar]
  32. Pandolfi L. Marengo A. Japiassu K.B. Frangipane V. Tsapis N. Bincoletto V. Codullo V. Bozzini S. Morosini M. Lettieri S. Vertui V. Piloni D. Arpicco S. Fattal E. Meloni F. Liposomes loaded with everolimus and coated with hyaluronic acid: A promising approach for lung fibrosis. Int. J. Mol. Sci. 2021 22 14 7743 10.3390/ijms22147743 34299359
    [Google Scholar]
  33. Pathak D. Design and optimization of everolimus drug loaded protein nanoparticles to treat glioblastomas. Int. Res. J. Pharm. Med. Sci. 2022 6 1 1 4
    [Google Scholar]
  34. Misra R. Hazra S. Saleem S. Nehru S. Drug-loaded polymer-coated silver nanoparticles for lung cancer theranostics. Med. Oncol. 2024 41 6 132 10.1007/s12032‑024‑02372‑y 38687401
    [Google Scholar]
  35. Amin H. Osman S.K. Mohammed A.M. Zayed G. Gefitinib-loaded starch nanoparticles for battling lung cancer: Optimization by full factorial design and in vitro cytotoxicity evaluation. Saudi Pharm. J. 2023 31 1 29 54 10.1016/j.jsps.2022.11.004 36685309
    [Google Scholar]
  36. Munusamy M.A. Bharathi M. Hirad A.H. Alarfaj A.A. Hussein-Al-Ali S.H. Sampath S. Kudumba A. An escin-loaded glutaraldehyde-albumin nanoparticle system for enhancing anticancer activity on lung cancer A549 cells. Results Chem. 2025 13 102021 10.1016/j.rechem.2025.102021
    [Google Scholar]
  37. Elshami F.I. Shereef H.A. El-Mehasseb I.M. Shaban S.Y. van Eldik R. Hydroxychloroquine-loaded chitosan nanoparticles induce anticancer activity in A549 lung cancer cells: Design, BSA binding, molecular docking, mechanistic, and biological evaluation. Int. J. Mol. Sci. 2023 24 18 14103 10.3390/ijms241814103 37762406
    [Google Scholar]
  38. Durga B.B. Ramachandran V. Senthil B. Soloman V.G. Elshikh M.S. Almutairi S.M. Wen Z.H. Lo Y.H. Unleashing of cytotoxic effects of thymoquinone-bovine serum albumin nanoparticles on A549 lung cancer cells. Open Life Sci. 2024 19 1 20221000 10.1515/biol‑2022‑1000 39655191
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673412510251024094728
Loading
/content/journals/cmc/10.2174/0109298673412510251024094728
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: glutaraldehyde ; lung cancer ; cytotoxicity ; drug delivery ; Bovine serum albumin ; everolimus
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test