Skip to content
2000
image of Novel Metabolic Reprogramming and Circadian Rhythm Related Molecular Subtyping and Prognostic Signature for Ovarian Cancer

Abstract

Introduction

Ovarian cancer (OC), characterized by high mortality and lacking early diagnostic markers, poses a significant health threat. This study investigated the expression of metabolic reprogramming and circadian rhythm-related genes (MRCRRGs) in OC and their association with clinical features.

Methods

OC datasets and MRCRRG lists were sourced from TCGA, GEO, and GeneCards. Comprehensive bioinformatics analyses included calculating Metabolic Reprogramming and Circadian Rhythm Scores (MRCR.Score), identifying MRCR score-related genes (MRCRSRGs), building a Cox regression model, performing clustering for subtype identification, analyzing immune cell infiltration and immune checkpoint gene expression, conducting differential expression analysis, and performing Gene Set Enrichment Analysis (GSEA).

Results

We identified 138 MRCRRGs. MRCR. Score differed significantly between OC and controls. Thirty-four MRCRSRGs were identified, and a Cox model based on four genes was developed. Clustering revealed two distinct OC subtypes with significant overall survival differences. Immune infiltration analysis showed significant expression differences in 26 immune cell types, and immune checkpoint genes differed between subtypes. Differential expression identified 89 genes (88 upregulated, 1 downregulated). A six-gene predictive model demonstrated moderate accuracy. GSEA revealed significant enrichment of key pathways, notably Fcgr3a-mediated IL-10 synthesis.

Discussion

Findings demonstrate strong links between MRCRRGs, OC subtypes, patient survival, and the tumor immune microenvironment. Enrichment of pathways like Fcgr3a-mediated IL10 synthesis suggests novel OC mechanisms. Reliant on bioinformatics, the study provides insights into OC heterogeneity.

Conclusion

This study establishes a foundation for understanding MRCRRG molecular mechanisms in OC. The identified subtypes, prognostic model, immune landscape alterations, and enriched pathways offer valuable insights for future experimental validation and potential diagnostic/therapeutic strategies.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673392695251124162548
2026-01-15
2026-02-21
Loading full text...

Full text loading...

/deliver/fulltext/cmc/10.2174/0109298673392695251124162548/BMS-CMC-2025-163.html?itemId=/content/journals/cmc/10.2174/0109298673392695251124162548&mimeType=html&fmt=ahah

References

  1. Cho K.R. Shih I.M. Ovarian cancer. Annu. Rev. Pathol. 2009 4 1 287 313 10.1146/annurev.pathol.4.110807.092246 18842102
    [Google Scholar]
  2. Sideris M. Menon U. Manchanda R. Screening and prevention of ovarian cancer. Med. J. Aust. 2024 220 5 264 274 10.5694/mja2.52227 38353066
    [Google Scholar]
  3. Karimi-Zarchi M. Mortazavizadeh S.M.R. Bashardust N. Zakerian N. Zaidabadi M. Yazdian-Anari P. Teimoori S. The clinicopathologic characteristics and 5-year survival rate of epithelial ovarian cancer in yazd. Electron. Physician 2015 7 6 1399 1406 10.14661/1399 26516450
    [Google Scholar]
  4. Plewka D. Jakubiec-Bartnik B. Morek M. Bogunia E. Bienioszek M. Wolski H. Kotrych D. Dziekan K. Seremak-Mrozikiewicz A. Plewka A. Survivin in ovary tumors. Ginekol. Pol. 2015 86 7 525 530 10.17772/gp/57855 26376531
    [Google Scholar]
  5. Hanahan D. Weinberg R.A. Hallmarks of cancer: The next generation. Cell 2011 144 5 646 674 10.1016/j.cell.2011.02.013 21376230
    [Google Scholar]
  6. Faubert B. Solmonson A. DeBerardinis R.J. Metabolic reprogramming and cancer progression. Science 2020 368 6487 eaaw5473 10.1126/science.aaw5473 32273439
    [Google Scholar]
  7. Luo B. Song J. Zhang J. Han J. Zhou X. Chen L. The contribution of circadian clock to the biological processes. Front. Mol. Biosci. 2024 11 1387576 10.3389/fmolb.2024.1387576 38903177
    [Google Scholar]
  8. Savvidis C. Kallistrou E. Kouroglou E. Dionysopoulou S. Gavriiloglou G. Ragia D. Tsiama V. Proikaki S. Belis K. Ilias I. Circadian rhythm disruption and endocrine-related tumors. World J. Clin. Oncol. 2024 15 7 818 834 10.5306/wjco.v15.i7.818 39071458
    [Google Scholar]
  9. Yao J. Czaplinska D. Ialchina R. Schnipper J. Liu B. Sandelin A. Pedersen S.F. Cancer cell acid adaptation gene expression response is correlated to tumor-specific tissue expression profiles and patient survival. Cancers 2020 12 8 2183 10.3390/cancers12082183 32764426
    [Google Scholar]
  10. Li D.D. Zhou T. Gao J. Wu G.L. Yang G.R. Circadian rhythms and breast cancer: From molecular level to therapeutic advancements. J. Cancer Res. Clin. Oncol. 2024 150 9 419 10.1007/s00432‑024‑05917‑w 39266868
    [Google Scholar]
  11. Yao Y. Yang X. Fu Y. Zhang Y. Immunological features of various molecular subtypes of cervical cancer and their prognostic implications in the context of disulfidptosis. Front. Oncol. 2025 15 1574911 10.3389/fonc.2025.1574911 40438679
    [Google Scholar]
  12. Colaprico A. Silva T.C. Olsen C. Garofano L. Cava C. Garolini D. Sabedot T.S. Malta T.M. Pagnotta S.M. Castiglioni I. Ceccarelli M. Bontempi G. Noushmehr H. TCGAbiolinks: An R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. 2016 44 8 71 10.1093/nar/gkv1507 26704973
    [Google Scholar]
  13. Goldman M.J. Craft B. Hastie M. Repečka K. McDade F. Kamath A. Banerjee A. Luo Y. Rogers D. Brooks A.N. Zhu J. Haussler D. Visualizing and interpreting cancer genomics data via the Xena platform. Nat. Biotechnol. 2020 38 6 675 678 10.1038/s41587‑020‑0546‑8 32444850
    [Google Scholar]
  14. Lonsdale J. Thomas J. Salvatore M. Phillips R. Lo E. Shad S. Hasz R. Walters G. Garcia F. Young N. Foster B. Moser M. Karasik E. Gillard B. Ramsey K. Sullivan S. Bridge J. Magazine H. Syron J. Fleming J. Siminoff L. Traino H. Mosavel M. Barker L. Jewell S. Rohrer D. Maxim D. Filkins D. Harbach P. Cortadillo E. Berghuis B. Turner L. Hudson E. Feenstra K. Sobin L. Robb J. Branton P. Korzeniewski G. Shive C. Tabor D. Qi L. Groch K. Nampally S. Buia S. Zimmerman A. Smith A. Burges R. Robinson K. Valentino K. Bradbury D. Cosentino M. Diaz-Mayoral N. Kennedy M. Engel T. Williams P. Erickson K. Ardlie K. Winckler W. Getz G. DeLuca D. MacArthur D. Kellis M. Thomson A. Young T. Gelfand E. Donovan M. Meng Y. Grant G. Mash D. Marcus Y. Basile M. Liu J. Zhu J. Tu Z. Cox N.J. Nicolae D.L. Gamazon E.R. Im H.K. Konkashbaev A. Pritchard J. Stevens M. Flutre T. Wen X. Dermitzakis E.T. Lappalainen T. Guigo R. Monlong J. Sammeth M. Koller D. Battle A. Mostafavi S. McCarthy M. Rivas M. Maller J. Rusyn I. Nobel A. Wright F. Shabalin A. Feolo M. Sharopova N. Sturcke A. Paschal J. Anderson J.M. Wilder E.L. Derr L.K. Green E.D. Struewing J.P. Temple G. Volpi S. Boyer J.T. Thomson E.J. Guyer M.S. Ng C. Abdallah A. Colantuoni D. Insel T.R. Koester S.E. Little A.R. Bender P.K. Lehner T. Yao Y. Compton C.C. Vaught J.B. Sawyer S. Lockhart N.C. Demchok J. Moore H.F. The genotype-tissue expression (GTEx) project. Nat. Genet. 2013 45 6 580 585 10.1038/ng.2653 23715323
    [Google Scholar]
  15. Vathipadiekal V. Wang V. Wei W. Waldron L. Drapkin R. Gillette M. Skates S. Birrer M. Creation of a human secretome: A novel composite library of human secreted proteins: Validation using ovarian cancer gene expression data and a virtual secretome array. Clin. Cancer Res. 2015 21 21 4960 4969 10.1158/1078‑0432.CCR‑14‑3173 25944803
    [Google Scholar]
  16. Bowen N.J. Walker L.D. Matyunina L.V. Logani S. Totten K.A. Benigno B.B. McDonald J.F. Gene expression profiling supports the hypothesis that human ovarian surface epithelia are multipotent and capable of serving as ovarian cancer initiating cells. BMC Med. Genomics 2009 2 1 71 10.1186/1755‑8794‑2‑71 20040092
    [Google Scholar]
  17. Barrett T. Wilhite S.E. Ledoux P. Evangelista C. Kim I.F. Tomashevsky M. Marshall K.A. Phillippy K.H. Sherman P.M. Holko M. Yefanov A. Lee H. Zhang N. Robertson C.L. Serova N. Davis S. Soboleva A. NCBI GEO: Archive for functional genomics data sets—update. Nucleic Acids Res. 2012 41 D1 D991 D995 10.1093/nar/gks1193 23193258
    [Google Scholar]
  18. Leek J.T. Johnson W.E. Parker H.S. Jaffe A.E. Storey J.D. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 2012 28 6 882 883 10.1093/bioinformatics/bts034 22257669
    [Google Scholar]
  19. Ritchie M.E. Phipson B. Wu D. Hu Y. Law C.W. Shi W. Smyth G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015 43 7 47 10.1093/nar/gkv007 25605792
    [Google Scholar]
  20. Ben Salem K. Ben Abdelaziz A. Principal component analysis (PCA). Tunis. Med. 2021 99 4 383 389 35244921
    [Google Scholar]
  21. Stelzer G. Rosen N. Plaschkes I. The genecards suite: From gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinform. 2016 54 1.30.1 1.30.33 10.1002/cpbi.5
    [Google Scholar]
  22. Honkoop H. de Bakker D.E.M. Aharonov A. Kruse F. Shakked A. Nguyen P.D. de Heus C. Garric L. Muraro M.J. Shoffner A. Tessadori F. Peterson J.C. Noort W. Bertozzi A. Weidinger G. Posthuma G. Grün D. van der Laarse W.J. Klumperman J. Jaspers R.T. Poss K.D. van Oudenaarden A. Tzahor E. Bakkers J. Single-cell analysis uncovers that metabolic reprogramming by ErbB2 signaling is essential for cardiomyocyte proliferation in the regenerating heart. eLife 2019 8 50163 10.7554/eLife.50163 31868166
    [Google Scholar]
  23. Zhou R. Chen X. Liang J. Chen Q. Tian H. Yang C. Liu C. A circadian rhythm-related gene signature associated with tumor immunity, cisplatin efficacy, and prognosis in bladder cancer. Aging 2021 13 23 25153 25179 10.18632/aging.203733 34862329
    [Google Scholar]
  24. Xiao B. Liu L. Li A. Xiang C. Wang P. Li H. Xiao T. Identification and verification of immune-related gene prognostic signature based on ssGSEA for osteosarcoma. Front. Oncol. 2020 10 607622 10.3389/fonc.2020.607622 33384961
    [Google Scholar]
  25. Robin X. Turck N. Hainard A. Tiberti N. Lisacek F. Sanchez J.C. Müller M. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 2011 12 1 77 10.1186/1471‑2105‑12‑77 21414208
    [Google Scholar]
  26. Therneau T.M. A package for survival analysis in R. R package version 3.4-0 2022
    [Google Scholar]
  27. Wilkerson M.D. Hayes D.N. ConsensusClusterPlus: A class discovery tool with confidence assessments and item tracking. Bioinformatics 2010 26 12 1572 1573 10.1093/bioinformatics/btq170 20427518
    [Google Scholar]
  28. Rich J.T. Neely J.G. Paniello R.C. Voelker C.C.J. Nussenbaum B. Wang E.W. A practical guide to understanding Kaplan-Meier curves. Otolaryngol. Head Neck Surg. 2010 143 3 331 336 10.1016/j.otohns.2010.05.007 20723767
    [Google Scholar]
  29. Shi Z. Shen J. Qiu J. Zhao Q. Hua K. Wang H. CXCL10 potentiates immune checkpoint blockade therapy in homologous recombination-deficient tumors. Theranostics 2021 11 15 7175 7187 10.7150/thno.59056 34158843
    [Google Scholar]
  30. Jiang P. Gu S. Pan D. Fu J. Sahu A. Hu X. Li Z. Traugh N. Bu X. Li B. Liu J. Freeman G.J. Brown M.A. Wucherpfennig K.W. Liu X.S. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat. Med. 2018 24 10 1550 1558 10.1038/s41591‑018‑0136‑1 30127393
    [Google Scholar]
  31. Fu J. Li K. Zhang W. Wan C. Zhang J. Jiang P. Liu X.S. Large-scale public data reuse to model immunotherapy response and resistance. Genome Med. 2020 12 1 21 10.1186/s13073‑020‑0721‑z 32102694
    [Google Scholar]
  32. Gao J. Aksoy B.A. Dogrusoz U. Dresdner G. Gross B. Sumer S.O. Sun Y. Jacobsen A. Sinha R. Larsson E. Cerami E. Sander C. Schultz N. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 2013 6 269 pl1 10.1126/scisignal.2004088 23550210
    [Google Scholar]
  33. Yu G. Wang L.G. Han Y. He Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 2012 16 5 284 287 10.1089/omi.2011.0118 22455463
    [Google Scholar]
  34. Engebretsen S. Bohlin J. Statistical predictions with glmnet. Clin. Epigenetics 2019 11 1 123 10.1186/s13148‑019‑0730‑1 31443682
    [Google Scholar]
  35. Park S.H. Goo J.M. Jo C.H. Receiver operating characteristic (ROC) curve: Practical review for radiologists. Korean J. Radiol. 2004 5 1 11 18 10.3348/kjr.2004.5.1.11 15064554
    [Google Scholar]
  36. Wu J. Zhang H. Li L. Hu M. Chen L. Xu B. Song Q. A nomogram for predicting overall survival in patients with low-grade endometrial stromal sarcoma: A population-based analysis. Cancer Commun. 2020 40 7 301 312 10.1002/cac2.12067 32558385
    [Google Scholar]
  37. Van Calster B. Wynants L. Verbeek J.F.M. Verbakel J.Y. Christodoulou E. Vickers A.J. Roobol M.J. Steyerberg E.W. Reporting and interpreting decision curve analysis: A guide for investigators. Eur. Urol. 2018 74 6 796 804 10.1016/j.eururo.2018.08.038 30241973
    [Google Scholar]
  38. Zeng D. Ye Z. Shen R. Yu G. Wu J. Xiong Y. Zhou R. Qiu W. Huang N. Sun L. Li X. Bin J. Liao Y. Shi M. Liao W. IOBR: Multi-omics immuno-oncology biological research to decode tumor microenvironment and signatures. Front. Immunol. 2021 12 687975 10.3389/fimmu.2021.687975 34276676
    [Google Scholar]
  39. Chen W. Miao J. Chen J. Chen J. Development of machine learning models for diagnostic biomarker identification and immune cell infiltration analysis in PCOS. J. Ovarian Res. 2025 18 1 1 10.1186/s13048‑024‑01583‑1 39754246
    [Google Scholar]
  40. Wen S. Lv X. Ma X. Deng S. Xie J. Yuan E. Immunogenic cell death (ICD) genes predict immunotherapy response and therapeutic targets in acute myeloid leukemia (AML). Front. Genet. 2024 15 1419819 10.3389/fgene.2024.1419819 39205940
    [Google Scholar]
  41. Huang W. Li J. Zhou S. Li Y. Yuan X. Discovering a four-gene prognostic model based on single-cell data and gene expression data of pancreatic adenocarcinoma. Front. Endocrinol. 2022 13 883548 10.3389/fendo.2022.883548 35800432
    [Google Scholar]
  42. Bai J. Pu X. Zhang Y. Dai E. Renal tubular gene biomarkers identification based on immune infiltrates in focal segmental glomerulosclerosis. Ren. Fail. 2022 44 1 966 986 10.1080/0886022X.2022.2081579 35713363
    [Google Scholar]
  43. Zhang Q. Liu J. Yao D. Shi J.X. Liu Y.J. Wei Y.G. Guo S. Comprehensive analysis to identify rh family c glycoprotein (RHCG) as the causative gene for psoriasis and search for alternative treatment modalities. Drug Des. Devel. Ther. 2023 17 2593 2611 10.2147/DDDT.S421300 37664450
    [Google Scholar]
  44. Li M Mei Y Pan A Exploration of key ferroptosis-related genes as therapeutic targets for sepsis based on bioinformatics and the depiction of their immune profiles characterization. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2024 36 10 1025 1032 10.3760/cma.j.cn121430‑20240524‑00457
    [Google Scholar]
  45. Predictions of the future cancer incidence and mortality burden worldwide up until 2050. 2020 Available from: https://gco.iarc.fr/tomorrow
  46. Liberto J.M. Chen S.Y. Shih I.M. Wang T.H. Wang T.L. Pisanic T.R. Current and emerging methods for ovarian cancer screening and diagnostics: A comprehensive review. Cancers 2022 14 12 2885 10.3390/cancers14122885 35740550
    [Google Scholar]
  47. Schiliro C. Firestein B.L. Mechanisms of metabolic reprogramming in cancer cells supporting enhanced growth and proliferation. Cells 2021 10 5 1056 10.3390/cells10051056 33946927
    [Google Scholar]
  48. Munteanu C. Turti S. Achim L. Muresan R. Souca M. Prifti E. Mârza S.M. Papuc I. The relationship between circadian rhythm and cancer disease. Int. J. Mol. Sci. 2024 25 11 5846 10.3390/ijms25115846 38892035
    [Google Scholar]
  49. Wang L. Zhu H. Shi Z. Chen B. Huang H. Lin G. Li J. Yu H. Xu S. Chen G. Ou R. Dai C. MK8722 initiates early-stage autophagy while inhibiting late-stage autophagy via FASN-dependent reprogramming of lipid metabolism. Theranostics 2024 14 1 75 95 10.7150/thno.83051 38164137
    [Google Scholar]
  50. Wang Z. Chen W. Zuo L. Xu M. Wu Y. Huang J. Zhang X. Li Y. Wang J. Chen J. Wang H. Sun H. The Fibrillin-1/VEGFR2/STAT2 signaling axis promotes chemoresistance via modulating glycolysis and angiogenesis in ovarian cancer organoids and cells. Cancer Commun. 2022 42 3 245 265 10.1002/cac2.12274 35234370
    [Google Scholar]
  51. Malhan D. Hesse J. Nelson N. Stankov K. Nguyen J. Aboumanify O. Garmshausen J. Rogmans G. Czogalla B. Gerber J. Koch M. Kupec T. Tomé O. Witteler R. Deryal M. Eichbaum M. Sehouli J. Braicu E.I. Relógio A. Circadian rhythm disruption by PARP inhibitors correlates with treatment toxicity in patients with ovarian cancer and is a predictor of side effects. EBioMedicine 2025 117 105764 10.1016/j.ebiom.2025.105764 40382284
    [Google Scholar]
  52. Liang Y. Wang S. Huang X. Chai R. Tang Q. Yang R. Huang X. Wang X. Zheng K. Dysregulation of circadian clock genes as significant clinic factor in the tumorigenesis of hepatocellular carcinoma. Comput. Math. Methods Med. 2021 2021 1 14 10.1155/2021/8238833 34745328
    [Google Scholar]
  53. Xian H. Li Y. Zou B. Chen Y. Yin H. Li X. Pan Y. Identification of TIMELESS and RORA as key clock molecules of non-small cell lung cancer and the comprehensive analysis. BMC Cancer 2022 22 1 107 10.1186/s12885‑022‑09203‑1 35078435
    [Google Scholar]
  54. Guo S. Liu Y. Sun Y. Zhou H. Gao Y. Wang P. Zhi H. Zhang Y. Gan J. Ning S. Metabolic-related gene prognostic index for predicting prognosis, immunotherapy response, and candidate drugs in ovarian cancer. J. Chem. Inf. Model. 2024 64 3 1066 1080 10.1021/acs.jcim.3c01473 38238993
    [Google Scholar]
  55. Du K. Zou J. Wang B. Liu C. Khan M. Xie T. Huang X. Shen P. Tian Y. Yuan Y. A metabolism-related gene prognostic index bridging metabolic signatures and antitumor immune cycling in head and neck squamous cell carcinoma. Front. Immunol. 2022 13 857934 10.3389/fimmu.2022.857934 35844514
    [Google Scholar]
  56. Shi T. Shen X. Gao G. Gene expression profiles of peripheral blood monocytes in osteoarthritis and analysis of differentially expressed genes. BioMed Res. Int. 2019 2019 1 12 10.1155/2019/4291689 31886215
    [Google Scholar]
  57. Wang J. Chi S. Huang Z. Ye X. Shi G. Chen D. Lou C. Comprehensive characterization of differentially expressed genes in thyroid cancer. Future Oncol. 2017 13 24 2159 2169 10.2217/fon‑2017‑0168 28984479
    [Google Scholar]
  58. Lasser S.A. Ozbay Kurt F.G. Arkhypov I. Utikal J. Umansky V. Myeloid-derived suppressor cells in cancer and cancer therapy. Nat. Rev. Clin. Oncol. 2024 21 2 147 164 10.1038/s41571‑023‑00846‑y 38191922
    [Google Scholar]
  59. Liu J.L. Xu X. Rixiati Y. Wang C.Y. Ni H.L. Chen W.S. Gong H.M. Zhang Z.L. Li S. Shen T. Li J.M. Dysfunctional circadian clock accelerates cancer metastasis by intestinal microbiota triggering accumulation of myeloid-derived suppressor cells. Cell Metab. 2024 36 6 1320 1334.e9 10.1016/j.cmet.2024.04.019 38838643
    [Google Scholar]
  60. Speiser D.E. Chijioke O. Schaeuble K. Münz C. CD4+ T cells in cancer. Nat. Cancer 2023 4 3 317 329 10.1038/s43018‑023‑00521‑2 36894637
    [Google Scholar]
  61. Tay C. Tanaka A. Sakaguchi S. Tumor-infiltrating regulatory T cells as targets of cancer immunotherapy. Cancer Cell 2023 41 3 450 465 10.1016/j.ccell.2023.02.014 36917950
    [Google Scholar]
  62. Kanter M. Turan G. Usta C. Usta A. Esen H.H. Tavlı L. Celik C. Demirkol Y. Kanter B. Survivin and cycline D1 expressions are associated with malignant potential in mucinous ovarian neoplasms. J. Mol. Histol. 2016 47 2 145 152 10.1007/s10735‑016‑9661‑8 26815661
    [Google Scholar]
  63. Ho C.H. Chang T.T. Lin H.C. Wang S.F. Agalactosyl IgG induces liver fibrogenesis via Fc gamma receptor 3a on human hepatic stellate cells. J. Pathol. 2024 263 4-5 508 519 10.1002/path.6303 38886892
    [Google Scholar]
  64. Salkeni M.A. Naing A. Interleukin-10 in cancer immunotherapy: From bench to bedside. Trends Cancer 2023 9 9 716 725 10.1016/j.trecan.2023.05.003 37321942
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673392695251124162548
Loading
/content/journals/cmc/10.2174/0109298673392695251124162548
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keywords: galactose ; ovarian cancer ; circadian rhythm ; metabolic reprogramming ; T helper cell ; genes
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test