Skip to content
2000
image of Ferroptosis Targeting by β-Sitosterol in Cervical Cancer Radiotherapy

Abstract

This review addresses the challenge of radioresistance in cervical cancer by exploring the role of ferroptosis in enhancing the efficacy of radiotherapy (RT). It emphasizes the radiosensitizing effect of β-sitosterol through modulation of the GPX4/ACSL4 axis. β-Sitosterol targets mitochondrial membranes, inhibits GPX4 activity, and activates ACSL4, promoting polyunsaturated fatty acid synthesis and thereby facilitating ferroptosis. Preclinical models demonstrate that β-sitosterol significantly improves RT sensitivity and increases tumor iron accumulation. The review further proposes a predictive framework based on ox-LDL levels and the ACSL4/GPX4 ratio for potential clinical application, alongside discussions on innovative delivery systems, ferroptosis-apoptosis interactions, microbiota-mediated metabolic effects, and AI-driven optimization of RT-drug combinations. These insights contribute to advancing personalized radiotherapy strategies for cervical cancer.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673409273251103055503
2026-01-19
2026-01-31
Loading full text...

Full text loading...

References

  1. McCormack M. Eminowicz G. Gallardo D. Diez P. Farrelly L. Kent C. Hudson E. Panades M. Mathew T. Anand A. Persic M. Forrest J. Bhana R. Reed N. Drake A. Adusumalli M. Mukhopadhyay A. King M. Whitmarsh K. McGrane J. Colombo N. Mak C. Mandal R. Chowdhury R.R. Alamilla-Garcia G. Chávez-Blanco A. Stobart H. Feeney A. Vaja S. Hacker A.M. Hackshaw A. Ledermann J.A. Reed N. Drake A. Bashir F. Cook A. Mandal R. Barraclough L. Dubey S. Park W-H.E. Pilar M. Gallardo D. Alamilla-Garcia G. Colombo N. Adusumalli M. Kent C. Panades M. King M. Wade R. Forrest J. Mak C. Anand A. McGrane J. Persic M. Forrest J. Bhana R. Lankester K. Chowdhury R.R. McFarlane V. Powell M. Whitmarsh K. McCormack M. Eminowicz G. Hudson E. Mathew T. Induction chemotherapy followed by standard chemoradiotherapy versus standard chemoradiotherapy alone in patients with locally advanced cervical cancer (GCIG INTERLACE): An international, multicentre, randomised phase 3 trial. Lancet 2024 404 10462 1525 1535 10.1016/S0140‑6736(24)01438‑7 39419054
    [Google Scholar]
  2. Mao C. Wang M. Zhuang L. Gan B. Metabolic cell death in cancer: Ferroptosis, cuproptosis, disulfidptosis, and beyond. Protein Cell 2024 15 9 642 660 10.1093/procel/pwae003 38428031
    [Google Scholar]
  3. Yu L. Huang K. Liao Y. Wang L. Sethi G. Ma Z. Targeting novel regulated cell death: Ferroptosis, pyroptosis and necroptosis in anti-PD-1/PD-L1 cancer immunotherapy. Cell Prolif. 2024 57 8 e13644 10.1111/cpr.13644 38594879
    [Google Scholar]
  4. Zhang Z. Lu M. Chen C. Tong X. Li Y. Yang K. Lv H. Xu J. Qin L. Holo-lactoferrin: The link between ferroptosis and radiotherapy in triple-negative breast cancer. Theranostics 2021 11 7 3167 3182 10.7150/thno.52028 33537080
    [Google Scholar]
  5. Chiolo I. Altmeyer M. Legube G. Mekhail K. Nuclear and genome dynamics underlying DNA double-strand break repair. Nat. Rev. Mol. Cell Biol. 2025 26 7 538 557 10.1038/s41580‑025‑00828‑1 40097581
    [Google Scholar]
  6. Pavani R. Tripathi V. Vrtis K.B. Zong D. Chari R. Callen E. Pankajam A.V. Zhen G. Matos-Rodrigues G. Yang J. Wu S. Reginato G. Wu W. Cejka P. Walter J.C. Nussenzweig A. Structure and repair of replication-coupled DNA breaks. Science 2024 385 6710 eado3867 10.1126/science.ado3867 38900911
    [Google Scholar]
  7. Yao Y. Xu R. Shao W. Tan J. Wang S. Chen S. Zhuang A. Liu X. Jia R. A novel nanozyme to enhance radiotherapy effects by lactic acid scavenging, ROS generation, and hypoxia mitigation. Adv. Sci. 2024 11 26 2403107 10.1002/advs.202403107 38704679
    [Google Scholar]
  8. Huang R. Zhou P.K. DNA damage repair: Historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Signal Transduct. Target. Ther. 2021 6 1 254 10.1038/s41392‑021‑00648‑7 34238917
    [Google Scholar]
  9. Xing J.L. Stea B. Molecular mechanisms of sensitivity and resistance to radiotherapy. Clin. Exp. Metastasis 2024 41 4 517 524 10.1007/s10585‑023‑10260‑4 38231337
    [Google Scholar]
  10. García-Gómez P. Golán I. S Dadras M. Mezheyeuski A. Bellomo C. Tzavlaki K. Morén A. Carreras-Puigvert J. Caja L. NOX4 regulates TGFβ-induced proliferation and self-renewal in glioblastoma stem cells. Mol. Oncol. 2022 16 9 1891 1912 10.1002/1878‑0261.13200 35203105
    [Google Scholar]
  11. Jiang T. Jia T. Yin Y. Li T. Song X. Feng W. Wang S. Ding L. Chen Y. Zhang Q. Cuproptosis-inducing functional nanocomposites for enhanced and synergistic cancer radiotherapy. ACS Nano 2025 19 5 5429 5446 10.1021/acsnano.4c13753 39895200
    [Google Scholar]
  12. Qian W. Zhang C. He L. Jin S. Suo R. Li Y. Li S. Zhu L. Deng K. Wu B. Wei Y. X-ray induced in-situ ferroptosis through the Fenton reaction of iron supplements for the cancer therapy. Bioorg. Chem. 2025 154 108021 10.1016/j.bioorg.2024.108021 39642753
    [Google Scholar]
  13. El-Benhawy S.A. Abdelrhman I.G. Sadek N.A. Fahmy E.I. AboGabal A.A. Elmasry H. Saleh S.A.M. Sakr O.A. Elwany M.N. Rabie M.A.F. Studying ferroptosis and iron metabolism pre- and post-radiotherapy treatment in breast cancer patients. J. Egypt Natl. Cancer Inst. 2023 35 1 4 10.1186/s43046‑023‑00162‑7 36847926
    [Google Scholar]
  14. Xu Z. Wang Y. Yang W. Han W. Ma B. Zhao Y. Bao T. Zhang Q. Lin X. Total extracts from Abelmoschus manihot (L.) alleviate radiation-induced cardiomyocyte ferroptosis via regulating redox imbalances mediated by the NOX4/xCT/GPX4 axis. J. Ethnopharmacol. 2024 334 118582 10.1016/j.jep.2024.118582 39009325
    [Google Scholar]
  15. Zhang J. Dai K. An R. Wang C. Zhou X. Tian Z. Liao Z. Single low-dose ionizing radiation transiently enhances rat RIN-m5F cell function via the ROS/p38 MAPK pathway without inducing cell damage. Antioxidants 2025 14 2 120 10.3390/antiox14020120 40002307
    [Google Scholar]
  16. Shan C. Wang Y. Wang Y. The crosstalk between autophagy and Nrf2 signaling in cancer: From biology to clinical applications. Int. J. Biol. Sci. 2024 20 15 6181 6206 10.7150/ijbs.103187 39664581
    [Google Scholar]
  17. Wang X. Li M. Xu X. Zhao W. Jin Y. Li L. Qin Z. Sheng R. Ni H. BNIP3-mediated mitophagy attenuates hypoxic–ischemic brain damage in neonatal rats by inhibiting ferroptosis through P62–KEAP1–NRF2 pathway activation to maintain iron and redox homeostasis. Acta Pharmacol. Sin. 2025 46 1 33 51 10.1038/s41401‑024‑01365‑x 39179868
    [Google Scholar]
  18. Li L Xing T Chen Y In vitro CRISPR screening uncovers CRTC3 as a regulator of IFN-γ-induced ferroptosis of hepatocellular carcinoma. Cell Death Discov. 2023 9 1 331 10.1038/s41420‑023‑01630‑8 37666810
    [Google Scholar]
  19. Zhou Z. Zhang B. Deng Y. Deng S. Li J. Wei W. Wang Y. Wang J. Feng Z. Che M. Yang X. Meng J. Li Y. Hu Y. Sun Y. Wen L. Huang F. Sheng Y. Wan C. Yang K. FBW7/GSK3β mediated degradation of IGF2BP2 inhibits IGF2BP2-SLC7A5 positive feedback loop and radioresistance in lung cancer. J. Exp. Clin. Cancer Res. 2024 43 1 34 10.1186/s13046‑024‑02959‑3 38281999
    [Google Scholar]
  20. Sen T. Takahashi N. Chakraborty S. Takebe N. Nassar A.H. Karim N.A. Puri S. Naqash A.R. Emerging advances in defining the molecular and therapeutic landscape of small-cell lung cancer. Nat. Rev. Clin. Oncol. 2024 21 8 610 627 10.1038/s41571‑024‑00914‑x 38965396
    [Google Scholar]
  21. Pontel L.B. Bueno-Costa A. Morellato A.E. Carvalho Santos J. Roué G. Esteller M. Acute lymphoblastic leukemia necessitates GSH-dependent ferroptosis defenses to overcome FSP1-epigenetic silencing. Redox Biol. 2022 55 102408 10.1016/j.redox.2022.102408 35944469
    [Google Scholar]
  22. Wang H. Wang Z. Zhang Z. Liu J. Hong L. β-sitosterol as a promising anticancer agent for chemoprevention and chemotherapy: Mechanisms of action and future prospects. Adv. Nutr. 2023 14 5 1085 1110 10.1016/j.advnut.2023.05.013 37247842
    [Google Scholar]
  23. Ta N. Qu C. Wu H. Zhang D. Sun T. Li Y. Wang J. Wang X. Tang T. Chen Q. Liu L. Mitochondrial outer membrane protein FUNDC2 promotes ferroptosis and contributes to doxorubicin-induced cardiomyopathy. Proc. Natl. Acad. Sci. USA 2022 119 36 e2117396119 10.1073/pnas.2117396119 36037337
    [Google Scholar]
  24. Cao Z. Liu X. Zhang W. Zhang K. Pan L. Zhu M. Qin H. Zou C. Wang W. Zhang C. He Y. Lin W. Zhang Y. Han D. Li M. Gu J. Biomimetic macrophage membrane-camouflaged nanoparticles induce ferroptosis by promoting mitochondrial damage in glioblastoma. ACS Nano 2023 17 23 23746 23760 10.1021/acsnano.3c07555 37991252
    [Google Scholar]
  25. Scheiblich H. Eikens F. Wischhof L. Opitz S. Jüngling K. Cserép C. Schmidt S.V. Lambertz J. Bellande T. Pósfai B. Geck C. Spitzer J. Odainic A. Castro-Gomez S. Schwartz S. Boussaad I. Krüger R. Glaab E. Di Monte D.A. Bano D. Dénes Á. Latz E. Melki R. Pape H.C. Heneka M.T. Microglia rescue neurons from aggregate-induced neuronal dysfunction and death through tunneling nanotubes. Neuron 2024 112 18 3106 3125.e8 10.1016/j.neuron.2024.06.029 39059388
    [Google Scholar]
  26. Vafaei A. Vafaeian A. Iranmehr A. Nassireslami E. Hasannezhad B. Hosseini Y. Effects of β-sitosterol on anxiety in migraine-induced rats: The role of oxidative/nitrosative stress and mitochondrial function. CNS Neurosci. Ther. 2024 30 9 e14892 10.1111/cns.14892 39301958
    [Google Scholar]
  27. Bi Y. Liu S. Qin X. Abudureyimu M. Wang L. Zou R. Ajoolabady A. Zhang W. Peng H. Ren J. Zhang Y. FUNDC1 interacts with GPx4 to govern hepatic ferroptosis and fibrotic injury through a mitophagy-dependent manner. J. Adv. Res. 2024 55 45 60 10.1016/j.jare.2023.02.012 36828120
    [Google Scholar]
  28. Zhang Z. Zhou H. Gu W. Wei Y. Mou S. Wang Y. Zhang J. Zhong Q. CGI1746 targets σ1R to modulate ferroptosis through mitochondria-associated membranes. Nat. Chem. Biol. 2024 20 6 699 709 10.1038/s41589‑023‑01512‑1 38212578
    [Google Scholar]
  29. Falcone E. Ritacca A.G. Hager S. Schueffl H. Vileno B. El Khoury Y. Hellwig P. Kowol C.R. Heffeter P. Sicilia E. Faller P. Copper-catalyzed glutathione oxidation is accelerated by the anticancer thiosemicarbazone Dp44mT and further boosted at lower pH. J. Am. Chem. Soc. 2022 144 32 14758 14768 10.1021/jacs.2c05355 35929814
    [Google Scholar]
  30. Yong Y. Yan L. Wei J. Feng C. Yu L. Wu J. Guo M. Fan D. Yu C. Qin D. Zhou X. Wu A. A novel ferroptosis inhibitor, Thonningianin A, improves Alzheimer’s disease by activating GPX4. Theranostics 2024 14 16 6161 6184 10.7150/thno.98172 39431016
    [Google Scholar]
  31. Li Z. Tian Y. Zong H. Wang X. Li D. Keranmu A. Xin S. Ye B. Bai R. Chen W. Yang G. Ye L. Wang S. Deubiquitinating enzyme OTUD4 stabilizes RBM47 to induce ATF3 transcription: A novel mechanism underlying the restrained malignant properties of ccRCC cells. Apoptosis 2024 29 7-8 1051 1069 10.1007/s10495‑024‑01953‑6 38553613
    [Google Scholar]
  32. Li H Sun Y Yao Y USP8-governed GPX4 homeostasis orchestrates ferroptosis and cancer immunotherapy. Proc. Natl. Acad. Sci. U.S.A. 2024 121 16 e2315541121 10.1073/pnas.2315541121 38598341
    [Google Scholar]
  33. Wang Y. Hu M. Cao J. Wang F. Han J.R. Wu T.W. Li L. Yu J. Fan Y. Xie G. Lian H. Cao Y. Naowarojna N. Wang X. Zou Y. ACSL4 and polyunsaturated lipids support metastatic extravasation and colonization. Cell 2025 188 2 412 429.e27 10.1016/j.cell.2024.10.047 39591965
    [Google Scholar]
  34. Li Y. Yang C. Xie L. Shi F. Tang M. Luo X. Liu N. Hu X. Zhu Y. Bode A.M. Gao Q. Zhou J. Fan J. Li X. Cao Y. CYLD induces high oxidative stress and DNA damage through class I HDACs to promote radiosensitivity in nasopharyngeal carcinoma. Cell Death Dis. 2024 15 1 95 10.1038/s41419‑024‑06419‑w 38287022
    [Google Scholar]
  35. Ye J. Zhu Z. Song Z. Xu H. Xu T. Liu H. Application of microbubble air flotation to harvest Microcystis sp. from agriculture wastewater: The regulation and mechanisms. Biotechnol. Bioeng. 2024 121 12 3742 3753 10.1002/bit.28836 39252409
    [Google Scholar]
  36. Jinson S. Zhang Z. Lancaster G.I. Murphy A.J. Morgan P.K. Iron, lipid peroxidation, and ferroptosis play pathogenic roles in atherosclerosis. Cardiovasc. Res. 2025 121 1 44 61 10.1093/cvr/cvae270 39739567
    [Google Scholar]
  37. Wang X. Shen T. Lian J. Deng K. Qu C. Li E. Li G. Ren Y. Wang Z. Jiang Z. Sun X. Li X. Resveratrol reduces ROS-induced ferroptosis by activating SIRT3 and compensating the GSH/GPX4 pathway. Mol. Med. 2023 29 1 137 10.1186/s10020‑023‑00730‑6 37858064
    [Google Scholar]
  38. Saadh M.J. Ahmed H.H. Kareem R.A. Chandra M. Verma L. Prasad G.V.S. Mishra A. Taher W.M. Alwan M. Jawad M.J. Hamad A.K. The drug discovery candidate for targeting PARP1 with Onosma. Dichroantha compounds in triple-negative breast cancer: A virtual screening and molecular dynamic simulation. Comput. Biol. Chem. 2025 118 108471 10.1016/j.compbiolchem.2025.108471 40252254
    [Google Scholar]
  39. Khan Z. Nath N. Rauf A. Emran T.B. Mitra S. Islam F. Chandran D. Barua J. Khandaker M.U. Idris A.M. Wilairatana P. Thiruvengadam M. Multifunctional roles and pharmacological potential of β-sitosterol: Emerging evidence toward clinical applications. Chem. Biol. Interact. 2022 365 110117 10.1016/j.cbi.2022.110117 35995256
    [Google Scholar]
  40. He G. Qiu M. Yang Z. Zhao K. Liu R. Mei H. Zhao X. Song T. Liu X. Zhang M. Wang H. β-Sitosterol inhibits tumor growth and amplifies rituximab sensitivity through acid sphingomyelinase/ceramide signaling in diffuse large B-cell lymphoma. J. Agric. Food Chem. 2024 72 29 16177 16190 10.1021/acs.jafc.4c00014 38991150
    [Google Scholar]
  41. Zhang Z. Liu X. Chen D. Yu J. Radiotherapy combined with immunotherapy: The dawn of cancer treatment. Signal Transduct. Target. Ther. 2022 7 1 258 10.1038/s41392‑022‑01102‑y 35906199
    [Google Scholar]
  42. Huang R.X. Zhou P.K. DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transduct. Target. Ther. 2020 5 1 60 10.1038/s41392‑020‑0150‑x 32355263
    [Google Scholar]
  43. Yang W. Tian Y. Yang M. Mauck J. Loor J.J. Jia B. Wang S. Fan W. Li Z. Zhang B. Xu C. β-sitosterol alleviates high fatty acid-induced lipid accumulation in calf hepatocytes by regulating cholesterol metabolism. J. Steroid Biochem. Mol. Biol. 2024 243 106543 10.1016/j.jsbmb.2024.106543 38740074
    [Google Scholar]
  44. Loughran G. Andreev D.E. Terenin I.M. Namy O. Mikl M. Yordanova M.M. McManus C.J. Firth A.E. Atkins J.F. Fraser C.S. Ignatova Z. Iwasaki S. Kufel J. Larsson O. Leidel S.A. Mankin A.S. Mariotti M. Tanenbaum M.E. Topisirovic I. Vázquez-Laslop N. Viero G. Caliskan N. Chen Y. Clark P.L. Dinman J.D. Farabaugh P.J. Gilbert W.V. Ivanov P. Kieft J.S. Mühlemann O. Sachs M.S. Shatsky I.N. Sonenberg N. Steckelberg A.L. Willis A.E. Woodside M.T. Valasek L.S. Dmitriev S.E. Baranov P.V. Guidelines for minimal reporting requirements, design and interpretation of experiments involving the use of eukaryotic dual gene expression reporters (MINDR). Nat. Struct. Mol. Biol. 2025 32 3 418 430 10.1038/s41594‑025‑01492‑x 40033152
    [Google Scholar]
  45. Huang B. Wang H. Liu S. Hao M. Luo D. Zhou Y. Huang Y. Nian Y. Zhang L. Chu B. Yin C. Palmitoylation-dependent regulation of GPX4 suppresses ferroptosis. Nat. Commun. 2025 16 1 867 10.1038/s41467‑025‑56344‑5 39833225
    [Google Scholar]
  46. Chen J. Ying K. Sun J. Wang Y. Ji M. Sun Y. NEDD4L affects KLF5 stability through ubiquitination to control ferroptosis and radiotherapy resistance in oesophageal squamous cell carcinoma. J. Cell. Mol. Med. 2024 28 18 e70062 10.1111/jcmm.70062 39317954
    [Google Scholar]
  47. Chen Y. Zhao T. Chen H. Chen J. Han W. RNA binding protein ALYREF regulates ferroptosis to facilitate LUAD growth and metastasis via promoting SLC7A11 mRNA stability. Sci. Rep. 2025 15 1 1351 10.1038/s41598‑024‑83276‑9 39779775
    [Google Scholar]
  48. Liu S. Su Y. Lin M.Z. Ronald J.A. Brightening up biology: Advances in luciferase systems for in vivo imaging. ACS Chem. Biol. 2021 16 12 2707 2718 10.1021/acschembio.1c00549 34780699
    [Google Scholar]
  49. Sahu U. Mullarkey M.P. Murphy S.A. Anderson J.C. Putluri V. Kamal A.H.M. Park J.H. Lee T.J. Ling A.L. Kaipparettu B.A. Sharma A. Putluri N. Wenzel P.L. Willey C.D. Chiocca E.A. Markert J.M. Kaur B. IDH status dictates oHSV mediated metabolic reprogramming affecting anti-tumor immunity. Nat. Commun. 2025 16 1 3874 10.1038/s41467‑025‑58911‑2 40274791
    [Google Scholar]
  50. Zhang Q. Liu J. Duan H. Li R. Peng W. Wu C. Activation of Nrf2/HO-1 signaling: An important molecular mechanism of herbal medicine in the treatment of atherosclerosis via the protection of vascular endothelial cells from oxidative stress. J. Adv. Res. 2021 34 43 63 10.1016/j.jare.2021.06.023 35024180
    [Google Scholar]
  51. Lei G. Mao C. Yan Y. Zhuang L. Gan B. Ferroptosis, radiotherapy, and combination therapeutic strategies. Protein Cell 2021 12 11 836 857 10.1007/s13238‑021‑00841‑y 33891303
    [Google Scholar]
  52. Munno M. Mallia A. Greco A. Modafferi G. Banfi C. Eligini S. Radical oxygen species, oxidized low-density lipoproteins, and lectin-like oxidized low-density lipoprotein receptor 1: A vicious circle in atherosclerotic process. Antioxidants 2024 13 5 583 10.3390/antiox13050583 38790688
    [Google Scholar]
  53. Kim S.R. Heo J.I. Park J.W. Kang C.M. Kim K.S. Radiation-induced lipoprotein-associated phospholipase A2 increases lysophosphatidylcholine and induces endothelial cell damage. Toxicology 2021 458 152841 10.1016/j.tox.2021.152841 34216699
    [Google Scholar]
  54. Deng C.F. Zhu N. Zhao T.J. Li H.F. Gu J. Liao D.F. Qin L. Involvement of LDL and ox-LDL in cancer development and its therapeutical potential. Front. Oncol. 2022 12 803473 10.3389/fonc.2022.803473 35251975
    [Google Scholar]
  55. Wang Q. Guo X. Li L. Gao Z. Su X. Ji M. Liu J. N6-methyladenosine METTL3 promotes cervical cancer tumorigenesis and Warburg effect through YTHDF1/HK2 modification. Cell Death Dis. 2020 11 10 911 10.1038/s41419‑020‑03071‑y 33099572
    [Google Scholar]
  56. Mi X. Park H.R. Dhandapani S. Lee S. Kim Y.J. Biologically synthesis of gold nanoparticles using Cirsium japonicum var. maackii extract and the study of anti-cancer properties on AGS gastric cancer cells. Int. J. Biol. Sci. 2022 18 15 5809 5826 10.7150/ijbs.77734 36263176
    [Google Scholar]
  57. Sarfraz N. Khan I. Plasmonic gold nanoparticles (AuNPs): Properties, synthesis and their advanced energy, environmental and biomedical applications. Chem. Asian J. 2021 16 7 720 742 10.1002/asia.202001202 33440045
    [Google Scholar]
  58. Yuan J. Ofengeim D. A guide to cell death pathways. Nat. Rev. Mol. Cell Biol. 2024 25 5 379 395 10.1038/s41580‑023‑00689‑6 38110635
    [Google Scholar]
  59. Ma T. Du J. Zhang Y. Wang Y. Wang B. Zhang T. GPX4-independent ferroptosis—A new strategy in disease’s therapy. Cell Death Discov. 2022 8 1 434 10.1038/s41420‑022‑01212‑0 36309489
    [Google Scholar]
  60. Su L.J. Zhang J.H. Gomez H. Murugan R. Hong X. Xu D. Jiang F. Peng Z.Y. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid. Med. Cell. Longev. 2019 2019 1 13 10.1155/2019/5080843 31737171
    [Google Scholar]
  61. Ma L. Ma Y. Liu Y. β-Sitosterol protects against food allergic response in BALB/c mice by regulating the intestinal barrier function and reconstructing the gut microbiota structure. Food Funct. 2023 14 10 4456 4469 10.1039/D3FO00772C 37066493
    [Google Scholar]
  62. Chen T. Liu W.B. Zhu S.J. Aji A. Zhang C. Zhang C.C. Duan Y.J. Zuo J.X. Liu Z.C. Li H.J. Wang Y.Q. Mi W.L. Mao-Ying Q.L. Wang Y.Q. Chu Y.X. Differential modulation of pain and associated anxiety by GABAergic neuronal circuits in the lateral habenula. Proc. Natl. Acad. Sci. USA 2024 121 48 e2409443121 10.1073/pnas.2409443121 39565313
    [Google Scholar]
  63. Kappel B.A. De Angelis L. Puetz A. Ballanti M. Menghini R. Marx N. Federici M. Antibiotic-induced gut microbiota depletion exacerbates host hypercholesterolemia. Pharmacol. Res. 2023 187 106570 10.1016/j.phrs.2022.106570 36423788
    [Google Scholar]
  64. Faubel N. Blanco-Morales V. Sentandreu V. Barberá R. Garcia-Llatas G. Modulation of microbiota composition and markers of gut health after in vitro dynamic colonic fermentation of plant sterol-enriched wholemeal rye bread. Food Res. Int. 2025 201 115570 10.1016/j.foodres.2024.115570 39849717
    [Google Scholar]
  65. Tsunoyama Y. Suzuki K. Masugi-Tokita M. Nakajima H. Manabe Y. Wada T. Bando M. Verification of a dose rate-responsive dynamic equilibrium model on radiation-induced mutation frequencies in mice. Int. J. Radiat. Biol. 2019 95 10 1414 1420 10.1080/09553002.2019.1569772 30648901
    [Google Scholar]
  66. Shim S. Saltybaeva N. Berger N. Marcon M. Alkadhi H. Boss A. Lesion detectability and radiation dose in spiral breast CT with photon-counting detector technology. Invest. Radiol. 2020 55 8 515 523 10.1097/RLI.0000000000000662 32209815
    [Google Scholar]
  67. Chen X. Wang X. Zhang K. Fung K.M. Thai T.C. Moore K. Mannel R.S. Liu H. Zheng B. Qiu Y. Recent advances and clinical applications of deep learning in medical image analysis. Med. Image Anal. 2022 79 102444 10.1016/j.media.2022.102444 35472844
    [Google Scholar]
  68. Ramirez Zegarra R. Ghi T. Use of artificial intelligence and deep learning in fetal ultrasound imaging. Ultrasound Obstet. Gynecol. 2023 62 2 185 194 10.1002/uog.26130 36436205
    [Google Scholar]
  69. Ting C.C. Salem-Garcia N. Palminteri S. Engelmann J.B. Lebreton M. Neural and computational underpinnings of biased confidence in human reinforcement learning. Nat. Commun. 2023 14 1 6896 10.1038/s41467‑023‑42589‑5 37898640
    [Google Scholar]
  70. Kashyap M. Wang X. Panjwani N. Hasan M. Zhang Q. Huang C. Bush K. Chin A. Vitzthum L.K. Dong P. Zaky S. Loo B.W. Diehn M. Xing L. Li R. Gensheimer M.F. Automated deep learning–based detection and segmentation of lung tumors at CT imaging. Radiology 2025 314 1 e233029 10.1148/radiol.233029 39835976
    [Google Scholar]
  71. Yoo S.K. Kim K.H. Noh J.M. Oh J. Yang G. Kim J. Kim N. Kim H. Yoon H.I. Development of learning-based predictive models for radiation-induced atrial fibrillation in non-small cell lung cancer patients by integrating patient-specific clinical, dosimetry, and diagnostic information. Radiother. Oncol. 2024 201 110566 10.1016/j.radonc.2024.110566 39362606
    [Google Scholar]
  72. Beltzung F. Le V.L. Molnar I. Boutault E. Darcha C. Le Loarer F. Kossai M. Saut O. Biau J. Penault-Llorca F. Chautard E. Leveraging deep learning for immune cell quantification and prognostic evaluation in radiotherapy-treated oropharyngeal squamous cell carcinomas. Lab. Invest. 2025 105 4 104094 10.1016/j.labinv.2025.104094 39826685
    [Google Scholar]
  73. Rajendran P. Yang Y. Niedermayr T.R. Gensheimer M. Beadle B. Le Q.T. Xing L. Dai X. Large language model-augmented learning for auto-delineation of treatment targets in head-and-neck cancer radiotherapy. Radiother. Oncol. 2025 205 110740 10.1016/j.radonc.2025.110740 39855601
    [Google Scholar]
  74. Polak R. Zhang E.T. Kuo C.J. Cancer organoids 2.0: Modelling the complexity of the tumour immune microenvironment. Nat. Rev. Cancer 2024 24 8 523 539 10.1038/s41568‑024‑00706‑6 38977835
    [Google Scholar]
  75. Jin Y. Du Q. Song M. Kang R. Zhou J. Zhang H. Ding Y. Amyloid-β-targeting immunotherapies for Alzheimer’s disease. J. Control. Release 2024 375 346 365 10.1016/j.jconrel.2024.09.012 39271059
    [Google Scholar]
  76. Peng L. Sferruzza G. Yang L. Zhou L. Chen S. CAR-T and CAR-NK as cellular cancer immunotherapy for solid tumors. Cell. Mol. Immunol. 2024 21 10 1089 1108 10.1038/s41423‑024‑01207‑0 39134804
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673409273251103055503
Loading
/content/journals/cmc/10.2174/0109298673409273251103055503
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: ACSL4 ; radiotherapy ; Ferroptosis ; GPX4 ; cervical cancer ; β-sitosterol
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test