Skip to content
2000
image of An Overview of Novel Compounds from Marine Invertebrates: Sources, Structures, and Bioactivities

Abstract

Marine invertebrates exhibit a vast taxonomic diversity, encompassing multiple phyla ranging from Porifera (sponges) to Echinodermata. These organisms inhabit complex marine environments and have evolved a diverse array of unique bioactive substances with various pharmacological effects, including antibacterial, antiviral, antitumor, and anti-inflammatory properties. As a result, they have long served as a crucial source of active natural products. The application prospects of these natural products are expanding rapidly across various fields, including medicine, cosmetics, and biotechnology, offering new possibilities for human health and sustainable development. This review compiles information on 159 novel natural products derived from marine invertebrates, which were first discovered in 2024. These compounds, originating from a diverse range of marine invertebrates, encompass various chemical classes, including terpenoids, alkaloids, peptides, and other unique categories. This review places a strong emphasis on elucidating their origins, intricate chemical structures, and promising biological activities. By presenting the latest discoveries and advancements in the field, this comprehensive review aims to offer valuable references and novel insights for the research and development of innovative antibacterial, antitumor, and anti-inflammatory drugs.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673421899251110063407
2026-01-19
2026-01-31
Loading full text...

Full text loading...

References

  1. Ostrovsky A.N. Reproductive strategies and patterns in marine invertebrates: Diversity and evolution. Paleontol. J. 2021 55 7 803 810 10.1134/S003103012107008X
    [Google Scholar]
  2. Calado R. Mamede R. Cruz S. Leal M.C. Updated trends on the biodiscovery of new marine natural products from invertebrates. Mar. Drugs 2022 20 6 389 10.3390/md20060389 35736192
    [Google Scholar]
  3. Somero G.N. Solutions: How adaptive changes in cellular fluids enable marine life to cope with abiotic stressors. Mar. Life Sci. Technol. 2022 4 3 389 413 10.1007/s42995‑022‑00140‑3 37073170
    [Google Scholar]
  4. Alabssawy A.N. Hashem A.H. Bioremediation of hazardous heavy metals by marine microorganisms: A recent review. Arch. Microbiol. 2024 206 3 103 10.1007/s00203‑023‑03793‑5 38358529
    [Google Scholar]
  5. Surendhiran D. Li C. Cui H. Lin L. Marine algae as efficacious bioresources housing antimicrobial compounds for preserving foods - A review. Int. J. Food Microbiol. 2021 358 109416 10.1016/j.ijfoodmicro.2021.109416 34601353
    [Google Scholar]
  6. Carroll A.R. Copp B.R. Davis R.A. Keyzers R.A. Prinsep M.R. Marine natural products. Nat. Prod. Rep. 2023 40 2 275 325 10.1039/D2NP00083K 36786022
    [Google Scholar]
  7. Hassane Hamadou A. Zhang J. Chen C. Xu J. Xu B. Vitamin C and β-carotene co-loaded in marine and egg nanoliposomes. J. Food Eng. 2023 340 111315 10.1016/j.jfoodeng.2022.111315
    [Google Scholar]
  8. Garcia-Perez P. Cassani L. Garcia-Oliveira P. Xiao J. Simal-Gandara J. Prieto M.A. Lucini L. Algal nutraceuticals: A perspective on metabolic diversity, current food applications, and prospects in the field of metabolomics. Food Chem. 2023 409 135295 10.1016/j.foodchem.2022.135295 36603477
    [Google Scholar]
  9. Lu W.Y. Li H.J. Li Q.Y. Wu Y.C. Application of marine natural products in drug research. Bioorg. Med. Chem. 2021 35 116058 10.1016/j.bmc.2021.116058 33588288
    [Google Scholar]
  10. Song C. Yang J. Zhang M. Ding G. Jia C. Qin J. Guo L. Marine natural products: The important resource of biological insecticide. Chem. Biodivers. 2021 18 5 2001020 10.1002/cbdv.202001020 33855815
    [Google Scholar]
  11. Guo F.W. Zhang Q. Gu Y.C. Shao C.L. Sulfur-containing marine natural products as leads for drug discovery and development. Curr. Opin. Chem. Biol. 2023 75 102330 10.1016/j.cbpa.2023.102330 37257309
    [Google Scholar]
  12. Elissawy A.M. Soleiman Dehkordi E. Mehdinezhad N. Ashour M.L. Mohammadi Pour P. Cytotoxic alkaloids derived from marine sponges: A comprehensive review. Biomolecules 2021 11 2 258 10.3390/biom11020258 33578987
    [Google Scholar]
  13. Ohtani I. Kusumi T. Kakisawa H. Kashman Y. Hirsh S. Structure and chemical properties of ptilomycalin A. J. Am. Chem. Soc. 1992 114 22 8472 8479 10.1021/ja00048a018
    [Google Scholar]
  14. Tsukamoto S. Takahashi M. Matsunaga S. Fusetani N. van Soest R.W.M. Hachijodines A-G: Seven new cytotoxic 3-alkylpyridine alkaloids from two marine sponges of the genera Xestospongia and amphimedon. J. Nat. Prod. 2000 63 5 682 684 10.1021/np9905766 10843588
    [Google Scholar]
  15. Sakai R. Higa T. Jefford C.W. Bernardinelli G. Manzamine A, a novel antitumor alkaloid from a sponge. J. Am. Chem. Soc. 1986 108 20 6404 6405 10.1021/ja00280a055
    [Google Scholar]
  16. Popov R.S. Ivanchina N.V. Dmitrenok P.S. Application of MS-based metabolomic approaches in analysis of starfish and sea cucumber bioactive compounds. Mar. Drugs 2022 20 5 320 10.3390/md20050320 35621972
    [Google Scholar]
  17. Zhang Y. Hao R. Chen J. Li S. Huang K. Cao H. Farag M.A. Battino M. Daglia M. Capanoglu E. Zhang F. Sun Q. Xiao J. Sun Z. Guan X. Health benefits of saponins and its mechanisms: Perspectives from absorption, metabolism, and interaction with gut. Crit. Rev. Food Sci. Nutr. 2024 64 25 9311 9332 10.1080/10408398.2023.2212063 37216483
    [Google Scholar]
  18. Bi J. Li Y. Cheng S. Dong X. Kamal T. Zhou D. Li D. Jiang P. Zhu B.W. Tan M. Changes in body wall of sea cucumber (Stichopus japonicus) during a two-step heating process assessed by rheology, LF-NMR, and texture profile analysis. Food Biophys. 2016 11 3 257 265 10.1007/s11483‑016‑9437‑4
    [Google Scholar]
  19. Zhong R. Wan X. Wang D. Zhao C. Liu D. Gao L. Wang M. Wu C. Nabavid S.M. Daglia M. Capanoglu E. Xiao J. Cao H. Polysaccharides from marine enteromorpha: Structure and function. Trends Food Sci. Technol. 2020 99 11 20 10.1016/j.tifs.2020.02.030
    [Google Scholar]
  20. Hussain H. Mamadalieva N.Z. Ali I. Elizbit Green I.R. Wang D. Zou L. Simal-Gandara J. Cao H. Xiao J. Fungal glycosides: Structure and biological function. Trends Food Sci. Technol. 2021 110 611 651 10.1016/j.tifs.2021.02.029
    [Google Scholar]
  21. Almaliti J. Gerwick W.H. Methods in marine natural product drug discovery: What’s new? Expert Opin. Drug Discov. 2023 18 7 687 691 10.1080/17460441.2023.2214360 37194298
    [Google Scholar]
  22. Liu Y. Zhang D. Liu G.M. Chen Q. Lu Z. Ameliorative effect of dieckol-enriched extraction from Laminaria japonica on hepatic steatosis induced by a high-fat diet via β-oxidation pathway in ICR mice. J. Funct. Foods 2019 58 44 55 10.1016/j.jff.2019.04.051
    [Google Scholar]
  23. Otero P. Carpena M. Garcia-Oliveira P. Echave J. Soria-Lopez A. Garcia-Perez P. Fraga-Corral M. Cao H. Nie S. Xiao J. Simal-Gandara J. Prieto M.A. Seaweed polysaccharides: Emerging extraction technologies, chemical modifications and bioactive properties. Crit. Rev. Food Sci. Nutr. 2023 63 13 1901 1929 10.1080/10408398.2021.1969534 34463176
    [Google Scholar]
  24. Iqbal M.W. Riaz T. Mahmood S. Bilal M. Manzoor M.F. Qamar S.A. Qi X. Fucoidan-based nanomaterial and its multifunctional role for pharmaceutical and biomedical applications. Crit. Rev. Food Sci. Nutr. 2024 64 2 354 380 10.1080/10408398.2022.2106182 35930305
    [Google Scholar]
  25. Ding Q. Sheikh A.R. Zhu Y. Zheng Y. Sun N. Luo L. Raynaldo F.A. Ma H. Liu J. Preparation and characterization of ultrasound-assisted novel peptide–calcium chelates from Nannocholoropsis oceanica. Food Bioprocess Technol. 2025 18 3 2820 2839 10.1007/s11947‑024‑03634‑3
    [Google Scholar]
  26. Gerke J.A. Odron S.F. Kim J. Dutta N. Clarke J.G. Media J. Coppage D.A. Oorloff M. Alcala A. Garcia G. Kang M.E.F. Gerke C.L. Peterson J.C. Morris J.D. Higuchi-Sanabria R. Valeriote F.A. Crews P. Johnson T.A. Further probing the properties of a unique sponge-derived alkaloid through the isolation of a new (−)-(5 E)-(8 R)-(14 Z)-mycothiazole analogue. J. Nat. Prod. 2024 87 10 2523 2529 10.1021/acs.jnatprod.4c00691 39348562
    [Google Scholar]
  27. Hong L.L. Ding Y.F. Zhang W. Lin H.W. Chemical and biological diversity of new natural products from marine sponges: A review (2009–2018). Mar. Life Sci. Technol. 2022 4 3 356 372 10.1007/s42995‑022‑00132‑3 37073163
    [Google Scholar]
  28. Barzkar N. Sukhikh S. Babich O. A comprehensive review of marine sponge metabolites, with emphasis on Neopetrosia sp. Int. J. Biol. Macromol. 2024 280 Pt 2 135823 10.1016/j.ijbiomac.2024.135823 39313052
    [Google Scholar]
  29. Lee Y.J. Cho Y. Tran H.N.K. Secondary metabolites from the marine sponges of the genus petrosia: A literature review of 43 years of research. Mar. Drugs 2021 19 3 122 10.3390/md19030122 33668842
    [Google Scholar]
  30. Mehbub M.F. Yang Q. Cheng Y. Franco C.M.M. Zhang W. Marine sponge-derived natural products: Trends and opportunities for the decade of 2011-2020. Front. Mar. Sci. 2024 11 1462825 10.3389/fmars.2024.1462825
    [Google Scholar]
  31. Fan D.X. Luo X.C. Ding Y.F. Liu L.Y. Wang X. Pan J.Y. Ji Y.Y. Wang J. Li C. Hong L.L. Lin H.W. Isolation and absolute configuration of alkylpyridine alkaloids from the marine sponge Hippospongia lachne. Phytochemistry 2024 220 114017 10.1016/j.phytochem.2024.114017 38342290
    [Google Scholar]
  32. Leng X. He H. Lazaro J.E.H. Chen X. Ouyang H. Li T. Yan X. He S. Cyclic peroxides and analogs: Antibacterial, antimalarial, and cytotoxic marine products from Xisha sponge Diacarnus sp. Phytochemistry 2024 223 114097 10.1016/j.phytochem.2024.114097 38641142
    [Google Scholar]
  33. Yu X. Han X. Mi Y. Cui Y. Fu A. Liu K. Li X. Tang X. Li G. Anti-inflammatory and cytotoxicity nitrogenous merosesquiterpenoids from the sponge Pseudoceratina purpurea. Phytochemistry 2024 226 114220 10.1016/j.phytochem.2024.114220 38997099
    [Google Scholar]
  34. Wu Y. Xu Z.Z. Kong C. Zhang S.S. Lin X.L. Zhang S. Liu L.Y. Sun F. Lin H.W. Wang S.P. Discovery of cycloheptapeptides phakefusins A−E from the marine sponge Phakellia fusca based on molecular networking. Phytochemistry 2025 229 114248 10.1016/j.phytochem.2024.114248 39197714
    [Google Scholar]
  35. He L.P. Luo X.C. Zhang C.X. Lin H.W. Pyrrololactam alkaloids with IL-6 inhibitory activities from the sponge Phakellia fusca collected in the South China Sea. Phytochemistry 2024 228 114250 10.1016/j.phytochem.2024.114250 39168424
    [Google Scholar]
  36. Cho Y. Bawkar C. Hyun J.M. Song M.J. Jeong K. Lee Y.J. Norterpene cyclic peroxides from the marine sponge Diacarnus spinipoculum, inhibitors of transient receptor potential ankyrin 1. J. Nat. Prod. 2024 87 2 358 364 10.1021/acs.jnatprod.3c01104 38320400
    [Google Scholar]
  37. Hitora Y. El-Desoky A.H. Sadahiro Y. Sejiyama A. Kinoshita A. Ise Y. Angkouw E.D. Mangindaan R.E.P. Higaki T. Tsukamoto S. Neopetromin, a cyclic tripeptide with a C–N cross-link, from the marine sponge Neopetrosia sp., that causes vacuole fragmentation in tobacco BY-2 cells. J. Nat. Prod. 2024 87 4 1197 1202 10.1021/acs.jnatprod.4c00158 38503712
    [Google Scholar]
  38. Li J.X. Shang R.Y. Xie D.D. Luo X.C. Hu T.Y. Cheng B.H. Lin H.W. Jiao W.H. Arenarialins A–F, anti-inflammatory meroterpenoids with rearranged skeletons from the marine sponge Dysidea arenaria. J. Nat. Prod. 2024 87 2 396 403 10.1021/acs.jnatprod.3c01239 38330072
    [Google Scholar]
  39. Oyadomari Y. Goto Y. Suganuma K. Kawazu S. Becking L.E. Fusetani N. Nakao Y. Aurantoside L, a new tetramic acid glycoside with anti-leishmanial activity isolated from the marine sponge Siliquariaspongia japonica. Mar. Drugs 2024 22 4 171 10.3390/md22040171 38667788
    [Google Scholar]
  40. Tabakmakher K.M. Makarieva T.N. Sabutski Y.E. Kokoulin M.S. Menshov A.S. Popov R.S. Guzii A.G. Shubina L.K. Chingizova E.A. Chingizov A.R. Yurchenko E.A. Fedorov S.N. Grebnev B.B. von Amsberg G. Dyshlovoy S.A. Ivanchina N.V. Dmitrenok P.S. Stonikacidin A, an antimicrobial 4-bromopyrrole alkaloid containing L-idonic acid core from the northwestern pacific marine sponge Lissodendoryx papillosa. Mar. Drugs 2024 22 9 396 10.3390/md22090396 39330277
    [Google Scholar]
  41. Liu X. Wang Q. Zhang Y. Zhang H. Discovery of anti-inflammatory alkaloids from sponge Stylissa massa suggests new biosynthetic pathways for pyrrole–imidazole alkaloids. Mar. Drugs 2024 22 10 477 10.3390/md22100477 39452885
    [Google Scholar]
  42. Orfanoudaki M. Dalilian M. Du L. Chau C.H. Figg W.D. O’Keefe B.R. Grkovic T. New discorhabdin D analogues from Latrunculia spp. sponges. J. Nat. Prod. 2024 87 11 2640 2648 10.1021/acs.jnatprod.4c01036 39453729
    [Google Scholar]
  43. Peng D. Luo X. Zhu R. Tong W. Yang Y. Li G. Wang Q. Tagpyrrollins A and B and tagpyrrollidone A: Three pyrrole steroid analogues with AKR1B1-targeting inhibitory activity from the sponges Stylissa massa and Pseudospongosorites suberitoides. Org. Lett. 2024 26 27 5794 5798 10.1021/acs.orglett.4c01976 38935544
    [Google Scholar]
  44. Wang D. Jiang W. Churiwal M. Jia K. Senadeera S.P.D. Bokesch H.R. Woldemichael G.M. Kim Y. Hawley R.G. Wei J.S. Khan J. O’Keefe B.R. Beutler J.A. Gustafson K.R. Neopetrotaurines A–C, isoquinoline alkaloids with an unprecedented taurine bridge from the sponge Neopetrosia sp. J. Nat. Prod. 2024 87 2 332 339 10.1021/acs.jnatprod.3c01041 38294825
    [Google Scholar]
  45. Shin A.Y. Lee J. Structure determination of 1,3-dioxolane-containing lipids from the marine sponge Leucetta sp. using chiral 1H NMR analysis of model systems. J. Nat. Prod. 2024 87 7 1872 1880 10.1021/acs.jnatprod.4c00692 39018480
    [Google Scholar]
  46. Zhong W. Olugbami J.O. Rathakrishnan P. Mohanty I. Moore S.G. Garg N. Oyelere A.K. Turner T.L. McShan A.C. Agarwal V. Discovery and folding dynamics of a fused bicyclic cysteine knot undecapeptide from the marine sponge Halichondria bowerbanki. J. Org. Chem. 2024 89 17 12748 12752 10.1021/acs.joc.4c01104 39189383
    [Google Scholar]
  47. Chen B. Mao J. Xu K. Liu L. Lin W. Guo Y.W. Wu R. Wang C. Xu B. Mining coral-derived terpene synthases and mechanistic studies of the coral biflorane synthase. Sci. Adv. 2025 11 9 eadv0805 10.1126/sciadv.adv0805 40009671
    [Google Scholar]
  48. Han M. Wang Z. Li Y. Song Y. Wang Z. The application and sustainable development of coral in traditional medicine and its chemical composition, pharmacology, toxicology, and clinical research. Front. Pharmacol. 2024 14 1230608 10.3389/fphar.2023.1230608 38235111
    [Google Scholar]
  49. Lin H.Y. Tsai T.N. Hsu K.C. Hsu Y.M. Chiang L.C. El-Shazly M. Chang K.M. Lin Y.H. Tu S.Y. Lin T.E. Du Y.C. Liu Y.C. Lu M.C. From sea to science: Coral aquaculture for sustainable anticancer drug development. Mar. Drugs 2024 22 7 323 10.3390/md22070323 39057432
    [Google Scholar]
  50. Xia Z.Y. Sun M.M. Jin Y. Su M.Z. Li S.W. Wang H. Guo Y.W. Four uncommon cycloamphilectane-type diterpenoids with antibacterial activity from the South China Sea soft coral Sinularia brassica. Phytochemistry 2024 219 113960 10.1016/j.phytochem.2023.113960 38159620
    [Google Scholar]
  51. Zhu S.H. Chang Y.M. Li S.W. Su M.Z. Yao L.G. Liang L.F. Wang H. Guo Y.W. Exploring the chemical diversity of sesquiterpenes from the rarely studied south China sea soft coral Sinularia tumulosa assisted by molecular networking strategy. Phytochemistry 2024 222 114110 10.1016/j.phytochem.2024.114110 38663824
    [Google Scholar]
  52. Zong Y. Yang J.J. Li K. Pei Y.F. Hou H.Y. Zhang Y. Wang C.L. Li P.L. Litoamentenes A–K, eleven undescribed cembranoids with cytotoxicity from the South China Sea soft coral Litophyton amentaceum. Phytochemistry 2024 223 114113 10.1016/j.phytochem.2024.114113 38697241
    [Google Scholar]
  53. Mi Y. Han X. Yu X. Li L. Tang X. Li G. Sarcocinerenolides A, an open-loop decarbonizing cembranolide, and sarcocinerenolides B–I, eight polyoxygenated cembranolides with anti-thrombotic activity from the South China Sea soft coral Sarcophyton cinereum. Phytochemistry 2024 223 114109 10.1016/j.phytochem.2024.114109 38697239
    [Google Scholar]
  54. Ke L.M. Yu D.D. Su M.Z. Cui L. Guo Y.W. In vitro insights into the role of 7,8-epoxy-11-sinulariolide acetate isolated from soft coral Sinularia siaesensis in the potential attenuation of inflammation and osteoclastogenesis. Mar. Drugs 2024 22 2 95 10.3390/md22020095 38393066
    [Google Scholar]
  55. Cheng M.Y. Hsu I.C. Huang S.Y. Chuang Y.T. Ke T.Y. Chang H.W. Chu T.H. Chen C.Y. Cheng Y.B. Marine prostanoids with cytotoxic activity from octocoral Clavularia spp. Mar. Drugs 2024 22 5 219 10.3390/md22050219 38786610
    [Google Scholar]
  56. Olsen S.S.H. Afoullouss S. Young R.M. Johnson M. Allcock A.L. Teng M.N. Tran K.C. Baker B.J. Anthoteibinenes A–E from the irish deep-sea coral Anthothela grandiflora : An amination puzzle. Org. Lett. 2024 26 44 9419 9424 10.1021/acs.orglett.4c02549 39225686
    [Google Scholar]
  57. Senadeera S.P.D. Wang D. Wilson B.A.P. Smith E.A. Wamiru A. Martinez Fiesco J.A. Du L. Zhang P. O’Keefe B.R. Beutler J.A. Acroamine A, a 2-amino adenine alkaloid from the marine soft coral Acrozoanthus australiae and its semisynthetic derivatives that inhibit cAMP-dependent protein kinase a catalytic subunit alpha. J. Nat. Prod. 2024 87 8 2014 2020 10.1021/acs.jnatprod.4c00477 39142023
    [Google Scholar]
  58. Yao G. Parris M.R. Kuo W.C. Pörzgen P. Castillo B. Mason E.S. Chinchilla A. Huang J. Suzuki S. Ross R. Akana E. Vander Schuit S. Miller S.P. Penner R. Sun H.S. Feng Z.P. Hull K.G. Romo D. Fleig A. Horgen F.D. Transient receptor potential melastatin 7 (TRPM7) ion channel inhibitors: Preliminary SAR and conformational studies of xenicane diterpenoids from the hawaiian soft coral Sarcothelia edmondsoni. J. Nat. Prod. 2024 87 4 783 797 10.1021/acs.jnatprod.3c00942 38537009
    [Google Scholar]
  59. Yu X. Han X. Mi Y. Cui Y. Fu A. Liu K. Tang X. Li G. Terpenoids from the soft coral Stereonephthya bellissima. J. Nat. Prod. 2024 87 4 1150 1158 10.1021/acs.jnatprod.4c00112 38548686
    [Google Scholar]
  60. Carroll A.R. Copp B.R. Grkovic T. Keyzers R.A. Prinsep M.R. Marine natural products. Nat. Prod. Rep. 2024 41 2 162 207 10.1039/D3NP00061C 38285012
    [Google Scholar]
  61. Cai C. Yang D. Cao Y. Peng Z. Wang Y. Xi J. Yan C. Li X. Anticancer potential of active alkaloids and synthetic analogs derived from marine invertebrates. Eur. J. Med. Chem. 2024 279 116850 10.1016/j.ejmech.2024.116850 39270448
    [Google Scholar]
  62. Quaisie J. Ma H. Guo Y. Tuly J.A. Igbokwe C.J. Ekumah J.N. Akpabli-Tsigbe N.D.K. Yanhua D. Liu D. Highly stable, antihypertensive, and antioxidative peptide production from Apostichopus japonicus by integrated enzymatic membrane reactor and nanofilter-purification mechanism. Food Funct. 2022 13 4 2306 2322 10.1039/D1FO02779D 35142318
    [Google Scholar]
  63. Saputri L.O. Harahap H.S. Rivarti A.W. Zubaidi F.F. Prospecting marine natural products as the disease-modifying treatment of Alzheimer’s diseases. Biol. Med. Nat. Prod. Chem. 2024 13 2 433 441 10.14421/biomedich.2024.132.433‑441
    [Google Scholar]
  64. Wu R. Patocka J. Nepovimova E. Oleksak P. Valis M. Wu W. Kuca K. Marine invertebrate peptides: Antimicrobial peptides. Front. Microbiol. 2021 12 785085 10.3389/fmicb.2021.785085 34975806
    [Google Scholar]
  65. Izzati F. Warsito M.F. Bayu A. Prasetyoputri A. Atikana A. Sukmarini L. Rahmawati S.I. Putra M.Y. Chemical diversity and biological activity of secondary metabolites isolated from indonesian marine invertebrates. Molecules 2021 26 7 1898 10.3390/molecules26071898 33801617
    [Google Scholar]
  66. Deidda I. Russo R. Bonaventura R. Costa C. Zito F. Lampiasi N. Neurotoxicity in marine invertebrates: An update. Biology 2021 10 2 161 10.3390/biology10020161 33670451
    [Google Scholar]
  67. Imbs A.B. Ermolenko E.V. Grigorchuk V.P. Sikorskaya T.V. Velansky P.V. Current progress in lipidomics of marine invertebrates. Mar. Drugs 2021 19 12 660 10.3390/md19120660 34940659
    [Google Scholar]
  68. Jennings L.K. Kaur N. Ramos M.C. Reyes F. Reddy M.M. Thomas O.P. Highly concentrated linear guanidine amides from the marine sipunculid Phascolosoma granulatum. J. Nat. Prod. 2024 87 4 906 913 10.1021/acs.jnatprod.3c01186 38430199
    [Google Scholar]
  69. Batista P.J. Nuzzo G. Gallo C. Carbone D. dell’Isola M. Affuso M. Barra G. Albiani F. Crocetta F. Virgili R. Mazzella V. Castiglia D. d’Ippolito G. Manzo E. Fontana A. Chemical and pharmacological prospection of the ascidian Cystodytes dellechiajei. Mar. Drugs 2024 22 2 75 10.3390/md22020075 38393046
    [Google Scholar]
  70. Sakai R. Matsumura K. Uchimasu H. Miyako K. Taniguchi T. Kovvuri V.R.R. Acharige A.D. Hull K.G. Romo D. Thaveepornkul L. Chimnaronk S. Miyamoto H. Takada A. Watari H. Fujita M.J. Sakaue J. Dopamine-derived guanidine alkaloids from a didemnidae tunicate: Isolation, synthesis, and biological activities. J. Org. Chem. 2024 89 9 5977 5987 10.1021/acs.joc.3c02765 38557022
    [Google Scholar]
  71. Pokorski P. He R. Kurek M.A. Advancing protein hydrolysis and phytosterol encapsulation: Emerging trends and innovations in protein-based microencapsulation techniques – A comprehensive review. Food Res. Int. 2024 196 115012 10.1016/j.foodres.2024.115012 39614470
    [Google Scholar]
  72. Liao Y. Zhou Z. Jiang X. Wang F. Wan J. Liu S. Deng X. Wei Y. Ouyang Z. Cordyceps cicadae extracts exert antiaging effects by activating the AMPK/SIRT1 pathway in d-galactose-induced aging rats. J. Med. Food 2025 28 2 144 155 10.1089/jmf.2024.k.0132 39585206
    [Google Scholar]
  73. Xiao X. Huang S. Yang Z. Zhu Y. Zhu L. Zhao Y. Bai J. Kim K.H. Momordica charantia bioactive components: Hypoglycemic and hypolipidemic benefits through gut health modulation. J. Med. Food 2024 27 7 589 600 10.1089/jmf.2024.k.0037 38770678
    [Google Scholar]
  74. Peng Y. Sun Q. Park Y. The bioactive effects of chicoric acid as a functional food ingredient. J. Med. Food 2019 22 7 645 652 10.1089/jmf.2018.0211 30897018
    [Google Scholar]
  75. Cao J. Wang J. Wang S. Xu X. Porphyra species: A mini-review of its pharmacological and nutritional properties. J. Med. Food 2016 19 2 111 119 10.1089/jmf.2015.3426 26653974
    [Google Scholar]
  76. Peng Y. Sun Q. Gao R. Park Y. AAK-2 and SKN-1 are involved in chicoric-acid-induced lifespan extension in Caenorhabditis elegans. J. Agric. Food Chem. 2019 67 33 9178 9186 10.1021/acs.jafc.9b00705 30835107
    [Google Scholar]
  77. Peng Y. Sun Q. Xu W. He Y. Jin W. Yuan L. Gao R. Vitexin ameliorates high fat diet-induced obesity in male C57BL/6J mice via the AMPKα-mediated pathway. Food Funct. 2019 10 4 1940 1947 10.1039/C9FO00148D 30874277
    [Google Scholar]
  78. Mazzoni L. Giampieri F. Alvarez Suarez J.M. Gasparrini M. Mezzetti B. Forbes Hernandez T.Y. Battino M.A. Isolation of strawberry anthocyanin-rich fractions and their mechanisms of action against murine breast cancer cell lines. Food Funct. 2019 10 11 7103 7120 10.1039/C9FO01721F 31621765
    [Google Scholar]
  79. Chen X. A review on coffee leaves: Phytochemicals, bioactivities and applications. Crit. Rev. Food Sci. Nutr. 2019 59 6 1008 1025 10.1080/10408398.2018.1546667 30580549
    [Google Scholar]
  80. Wang D. Gao Q. Zhao G. Kan Z. Wang X. Wang H. Huang J. Wang T. Qian F. Ho C.T. Wang Y. Protective effect and mechanism of theanine on lipopolysaccharide-induced inflammation and acute liver injury in mice. J. Agric. Food Chem. 2018 66 29 7674 7683 10.1021/acs.jafc.8b02293 29969892
    [Google Scholar]
  81. Zheng D. Zou Y. Cobbina S.J. Wang W. Li Q. Chen Y. Feng W. Zou Y. Zhao T. Zhang M. Yang L. Wu X. Purification, characterization and immunoregulatory activity of a polysaccharide isolated from Hibiscus sabdariffa L. J. Sci. Food Agric. 2017 97 5 1599 1606 10.1002/jsfa.7908 27418109
    [Google Scholar]
  82. Yan J.K. Pei J.J. Ma H.L. Wang Z.B. Liu Y.S. Advances in antitumor polysaccharides from phellinus sensu lato: Production, isolation, structure, antitumor activity, and mechanisms. Crit. Rev. Food Sci. Nutr. 2017 57 6 1256 1269 10.1080/10408398.2014.984802 26506312
    [Google Scholar]
  83. Kwaw E. Ma Y. Tchabo W. Apaliya M.T. Xiao L. Li X. Hu M. Effect of fermentation parameters and their optimization on the phytochemical properties of lactic-acid-fermented mulberry juice. J. Food Meas. Charact. 2017 11 3 1462 1473 10.1007/s11694‑017‑9525‑2
    [Google Scholar]
  84. Chen M. Xiao J. El-Seedi H.R. Woźniak K.S. Daglia M. Little P.J. Weng J. Xu S. Kaempferol and atherosclerosis: From mechanism to medicine. Crit. Rev. Food Sci. Nutr. 2024 64 8 2157 2175 10.1080/10408398.2022.2121261 36099317
    [Google Scholar]
  85. Liu J. Wan J. Wang D. Wen C. Wei Y. Ouyang Z. Comparative transcriptome analysis of key reductase genes involved in the 1-deoxynojirimycin biosynthetic pathway in mulberry leaves and cloning, prokaryotic expression, and functional analysis of MaSDR 1 and MaSDR 2. J. Agric. Food Chem. 2020 68 44 12345 12357 10.1021/acs.jafc.0c04832 33085468
    [Google Scholar]
  86. Muhammad N. Uddin N. Liu Z. Yang M. Liu M. Research progress and biosynthetic mechanisms of nutritional compounds obtained from various organs during the developmental stages of a medicinal plant (Chinese jujube). Plant Foods Hum. Nutr. 2024 79 4 744 758 10.1007/s11130‑024‑01225‑3 39150636
    [Google Scholar]
  87. Munir H. Yaqoob S. Awan K.A. Imtiaz A. Naveed H. Ahmad N. Naeem M. Sultan W. Ma Y. Unveiling the chemistry of citrus peel: Insights into nutraceutical potential and therapeutic applications. Foods 2024 13 11 1681 10.3390/foods13111681 38890908
    [Google Scholar]
  88. Perumal V. Khatib A. Ahmed Q.U. Uzir B.F. Abas F. Murugesu S. Saiman M.Z. Primaharinastiti R. El-Seedi H. Correlation of the GC-MS-based metabolite profile of Momordica charantia fruit and its antioxidant activity. Int. Food Res. J. 2022 29 1 58 66 10.47836/ifrj.29.1.07
    [Google Scholar]
  89. Zhang J. Wen C. Zhang H. Duan Y. Ma H. Recent advances in the extraction of bioactive compounds with subcritical water: A review. Trends Food Sci. Technol. 2020 95 183 195 10.1016/j.tifs.2019.11.018
    [Google Scholar]
  90. Mei S. Yang C. Song X. Wang T. Wang Y. Geng Y. Wang J. Su S. Analysis of the effect of sterilization and storage on the quality of Pinus yunnanensis pollen based on untargeted metabonomics. J. Food Process. Preserv. 2021 45 12 45 10.1111/jfpp.16033
    [Google Scholar]
  91. Ding Q. Jiang H. Chen Y. Luo L. He R. Ma H. Wu-Chen R.A. Zhang T. Influence of nitrogen protection on the extraction yield and antioxidant activities of polyphenols by ultrasonic-assisted extraction from rapeseed meal. J. Food Process Eng. 2019 42 5 13104 10.1111/jfpe.13104
    [Google Scholar]
  92. Li B.Y. Xu X.Y. Gan R.Y. Sun Q.C. Meng J.M. Shang A. Mao Q.Q. Li H.B. Targeting gut microbiota for the prevention and management of diabetes mellitus by dietary natural products. Foods 2019 8 10 440 10.3390/foods8100440 31557941
    [Google Scholar]
  93. Romano G. Almeida M. Varela Coelho A. Cutignano A. Gonçalves L.G. Hansen E. Khnykin D. Mass T. Ramšak A. Rocha M.S. Silva T.H. Sugni M. Ballarin L. Genevière A.M. Biomaterials and bioactive natural products from marine invertebrates: From basic research to innovative applications. Mar. Drugs 2022 20 4 219 10.3390/md20040219 35447892
    [Google Scholar]
  94. Zhou Y. Xu Q. Zhou X. Song S. Zhu B. Stress resistance and lifespan extension of Caenorhabditis elegans enhanced by peptides from mussel (Mytilus edulis) protein hydrolyzate. Food Funct. 2018 9 6 3313 3320 10.1039/C8FO00021B 29796528
    [Google Scholar]
  95. Ren X. Xie X. Chen B. Liu L. Jiang C. Qian Q. Marine natural products: A potential source of anti-hepatocellular carcinoma drugs. J. Med. Chem. 2021 64 12 7879 7899 10.1021/acs.jmedchem.0c02026 34128674
    [Google Scholar]
  96. Mackieh R. Abou-Nader R. Wehbe R. Mattei C. Legros C. Fajloun Z. Sabatier J.M. Voltage-gated sodium channels: A prominent target of marine toxins. Mar. Drugs 2021 19 10 562 10.3390/md19100562 34677461
    [Google Scholar]
  97. Gao B. Peng C. Yang J. Yi Y. Zhang J. Shi Q. Cone snails: A big store of conotoxins for novel drug discovery. Toxins 2017 9 12 397 10.3390/toxins9120397 29215605
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673421899251110063407
Loading
/content/journals/cmc/10.2174/0109298673421899251110063407
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: marine natural products ; Marine invertebrates ; RNA ; sponges ; terpenoids ; alkaloids
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test