Skip to content
2000
image of CXCL5/CXCR2 Axis Related to Neutrophilic Inflammation in Ulcerative Colitis: A Comprehensive Analysis Integrating eQTL, pQTL, and Transcriptome Data

Abstract

Background

An excessive inflammatory response plays a central role in the pathogenesis of ulcerative colitis (UC), but the specific cytokines involved remain unclear. This study aimed to identify inflammatory factors associated with UC and explore the possible mechanisms of the identified targets.

Methods

Protein quantitative trait loci (pQTLs) and expression quantitative trait loci (eQTLs) for inflammatory cytokines were obtained from a genome-wide pQTL study and the eQTL consortium, respectively. Summary data for UC from the exploration and validation cohorts were derived from a genome-wide association study and the Finngen cohort. MR and colocalization analyses were conducted to identify causal associations between inflammatory cytokines and UC. Bioinformatics analyses were employed to explore the involved biological processes of candidate targets. Immunohistochemistry was used to validate the expression of these candidate targets in colon tissues.

Results

Among all inflammatory cytokines, a significant causal association was identified between C-X-C motif chemokine ligand 5 (CXCL5) and UC. Using eQTL data, a significant genetic association was established between the mRNA expression of CXCL5 and its receptor, C-X-C motif chemokine receptor 2 (CXCR2), with UC. Colocalization analysis further supported these identified links. Differential expression analysis confirmed the dysregulation of the CXCL5/CXCR2 axis in UC patients. Enrichment and immune infiltration analysis indicated that the CXCL5/CXCR2 axis was involved in neutrophil chemotaxis and immune activation in UC. Moreover, CXCL5 expression was found to correlate with neutrophil extracellular trap (NET) formation in UC. Immunohistochemistry further confirmed the dysregulation of the CXCL5/CXCR2 axis in colon tissues of UC patients.

Discussion

The CXCL5/CXCR2 axis has been implicated to play a significant role within a broader inflammatory network that includes Interleukin (IL)-17, NF-κB, and Tumor Necrosis Factor (TNF) signaling pathways. Additionally, this axis interacts with macrophages and T cells, further contributing to the complexity of inflammatory responses in UC.

Conclusion

There is a significant association between CXCL5/CXCR2 and UC under the MR assumption, which is potentially linked with colonic chemotaxis and activation of neutrophils. These findings highlight the potential of CXCL5/CXCR2 as a therapeutic target for UC. However, future functional studies are needed to validate these findings and explore the exact mechanisms by which CXCL5/CXCR2 influences immune cell crosstalk in UC.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673381624251020065846
2026-01-16
2026-01-31
Loading full text...

Full text loading...

/deliver/fulltext/cmc/10.2174/0109298673381624251020065846/BMS-CMC-2024-HT145-6174-33.html?itemId=/content/journals/cmc/10.2174/0109298673381624251020065846&mimeType=html&fmt=ahah

References

  1. Glick L.R. Cifu A.S. Feld L. Ulcerative colitis in adults. JAMA 2020 324 12 1205 1206 10.1001/jama.2020.11583 32857108
    [Google Scholar]
  2. Chang J.T. Pathophysiology of inflammatory bowel diseases. N. Engl. J. Med. 2020 383 27 2652 2664 10.1056/NEJMra2002697 33382932
    [Google Scholar]
  3. Lu X. Xv Y. Hu W. Sun B. Hu H. Targeting CD4+ T cells through gut microbiota: Therapeutic potential of traditional Chinese medicine in inflammatory bowel disease. Front. Cell. Infect. Microbiol. 2025 15 1557331 10.3389/fcimb.2025.1557331 40099014
    [Google Scholar]
  4. Neurath M.F. Strategies for targeting cytokines in inflammatory bowel disease. Nat. Rev. Immunol. 2024 24 8 559 576 10.1038/s41577‑024‑01008‑6 38486124
    [Google Scholar]
  5. Singh S. Murad M.H. Fumery M. Dulai P.S. Sandborn W.J. First- and second-line pharmacotherapies for patients with moderate to severely active ulcerative colitis: An updated network meta-analysis. Clin. Gastroenterol. Hepatol. 2020 18 10 2179 2191.e6 10.1016/j.cgh.2020.01.008 31945470
    [Google Scholar]
  6. Le Berre C. Honap S. Peyrin-Biroulet L. Ulcerative colitis. Lancet 2023 402 10401 571 584 10.1016/S0140‑6736(23)00966‑2 37573077
    [Google Scholar]
  7. Nakase H. Sato N. Mizuno N. Ikawa Y. The influence of cytokines on the complex pathology of ulcerative colitis. Autoimmun. Rev. 2022 21 3 103017 10.1016/j.autrev.2021.103017 34902606
    [Google Scholar]
  8. Bergemalm D. Andersson E. Hultdin J. Eriksson C. Rush S.T. Kalla R. Adams A.T. Keita Å.V. D’Amato M. Gomollon F. Jahnsen J. Ricanek P. Satsangi J. Repsilber D. Karling P. Halfvarson J. Arnott I.D. Bayes M. Bonfiglio F. Boyapati R.K. Carstens A. Casén C. Ciemniejewska E. Dahl F.A. Detlie T.E. Drummond H.E. Ekeland G.S. Ekman D. Frengen A.B. Gullberg M. Gut I.G. Gut M. Heath S.C. Hjelm F. Hjortswang H. Ho G-T. Jonkers D. Söderholm J. Kennedy N.A. Lees C.W. Lindahl T. Lindqvist M. Merkel A. Modig E. Moen A.E.F. Nilsen H. Nimmo E.R. Noble C.L. Nordberg N. O’Leary K.R. Ocklind A. Olbjørn C. Pettersson E. Pierik M. Dominique systemic inflammation in preclinical ulcerative colitis. Gastroenterology 2021 161 5 1526 1539.e9 10.1053/j.gastro.2021.07.026 34298022
    [Google Scholar]
  9. Zhu Y. Yang S. Zhao N. Liu C. Zhang F. Guo Y. Liu H. CXCL8 chemokine in ulcerative colitis. Biomed. Pharmacother. 2021 138 111427 10.1016/j.biopha.2021.111427 33706134
    [Google Scholar]
  10. Chapuy L. Bsat M. Rubio M. Sarkizova S. Therrien A. Bouin M. Orlicka K. Weber A. Soucy G. Villani A.C. Sarfati M. IL-12 and mucosal CD14+ monocyte-like cells induce IL-8 in colonic memory CD4+ T cells of patients with ulcerative colitis but not Crohn’s disease. J. Crohn’s Colitis 2020 14 1 79 95 10.1093/ecco‑jcc/jjz115 31206576
    [Google Scholar]
  11. Zhao J.H. Stacey D. Eriksson N. Macdonald-Dunlop E. Hedman Å.K. Kalnapenkis A. Enroth S. Cozzetto D. Digby-Bell J. Marten J. Folkersen L. Herder C. Jonsson L. Bergen S.E. Gieger C. Needham E.J. Surendran P. Metspalu A. Milani L. Mägi R. Nelis M. Hudjašov G. Paul D.S. Polasek O. Thorand B. Grallert H. Roden M. Võsa U. Esko T. Hayward C. Johansson Å. Gyllensten U. Powell N. Hansson O. Mattsson-Carlgren N. Joshi P.K. Danesh J. Padyukov L. Klareskog L. Landén M. Wilson J.F. Siegbahn A. Wallentin L. Mälarstig A. Butterworth A.S. Peters J.E. Genetics of circulating inflammatory proteins identifies drivers of immune-mediated disease risk and therapeutic targets. Nat. Immunol. 2023 24 9 1540 1551 10.1038/s41590‑023‑01588‑w 37563310
    [Google Scholar]
  12. Li Y. Sundquist K. Zhang N. Wang X. Sundquist J. Memon A.A. Mitochondrial related genome-wide Mendelian randomization identifies putatively causal genes for multiple cancer types. EBioMedicine 2023 88 104432 10.1016/j.ebiom.2022.104432 36634566
    [Google Scholar]
  13. Võsa U. Claringbould A. Westra H.J. Bonder M.J. Deelen P. Zeng B. Kirsten H. Saha A. Kreuzhuber R. Yazar S. Brugge H. Oelen R. de Vries D.H. van der Wijst M.G.P. Kasela S. Pervjakova N. Alves I. Favé M.J. Agbessi M. Christiansen M.W. Jansen R. Seppälä I. Tong L. Teumer A. Schramm K. Hemani G. Verlouw J. Yaghootkar H. Sönmez Flitman R. Brown A. Kukushkina V. Kalnapenkis A. Rüeger S. Porcu E. Kronberg J. Kettunen J. Lee B. Zhang F. Qi T. Hernandez J.A. Arindrarto W. Beutner F. Hoen P.A.C. van Meurs J. van Dongen J. van Iterson M. Swertz M.A. Jan Bonder M. Dmitrieva J. Elansary M. Fairfax B.P. Georges M. Heijmans B.T. Hewitt A.W. Kähönen M. Kim Y. Knight J.C. Kovacs P. Krohn K. Li S. Loeffler M. Marigorta U.M. Mei H. Momozawa Y. Müller-Nurasyid M. Nauck M. Nivard M.G. Penninx B.W.J.H. Pritchard J.K. Raitakari O.T. Rotzschke O. Slagboom E.P. Stehouwer C.D.A. Stumvoll M. Sullivan P. ’t Hoen P.A.C. Thiery J. Tönjes A. van Dongen J. van Iterson M. Veldink J.H. Völker U. Warmerdam R. Wijmenga C. Swertz M. Andiappan A. Montgomery G.W. Ripatti S. Perola M. Kutalik Z. Dermitzakis E. Bergmann S. Frayling T. van Meurs J. Prokisch H. Ahsan H. Pierce B.L. Lehtimäki T. Boomsma D.I. Psaty B.M. Gharib S.A. Awadalla P. Milani L. Ouwehand W.H. Downes K. Stegle O. Battle A. Visscher P.M. Yang J. Scholz M. Powell J. Gibson G. Esko T. Franke L. Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. Nat. Genet. 2021 53 9 1300 1310 10.1038/s41588‑021‑00913‑z 34475573
    [Google Scholar]
  14. de Lange K.M. Moutsianas L. Lee J.C. Lamb C.A. Luo Y. Kennedy N.A. Jostins L. Rice D.L. Gutierrez-Achury J. Ji S.G. Heap G. Nimmo E.R. Edwards C. Henderson P. Mowat C. Sanderson J. Satsangi J. Simmons A. Wilson D.C. Tremelling M. Hart A. Mathew C.G. Newman W.G. Parkes M. Lees C.W. Uhlig H. Hawkey C. Prescott N.J. Ahmad T. Mansfield J.C. Anderson C.A. Barrett J.C. Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nat. Genet. 2017 49 2 256 261 10.1038/ng.3760 28067908
    [Google Scholar]
  15. Kurki M.I. Karjalainen J. Palta P. Sipilä T.P. Kristiansson K. Donner K.M. Reeve M.P. Laivuori H. Aavikko M. Kaunisto M.A. Loukola A. Lahtela E. Mattsson H. Laiho P. Della Briotta Parolo P. Lehisto A.A. Kanai M. Mars N. Rämö J. Kiiskinen T. Heyne H.O. Veerapen K. Rüeger S. Lemmelä S. Zhou W. Ruotsalainen S. Pärn K. Hiekkalinna T. Koskelainen S. Paajanen T. Llorens V. Gracia-Tabuenca J. Siirtola H. Reis K. Elnahas A.G. Sun B. Foley C.N. Aalto-Setälä K. Alasoo K. Arvas M. Auro K. Biswas S. Bizaki-Vallaskangas A. Carpen O. Chen C.Y. Dada O.A. Ding Z. Ehm M.G. Eklund K. Färkkilä M. Finucane H. Ganna A. Ghazal A. Graham R.R. Green E.M. Hakanen A. Hautalahti M. Hedman Å.K. Hiltunen M. Hinttala R. Hovatta I. Hu X. Huertas-Vazquez A. Huilaja L. Hunkapiller J. Jacob H. Jensen J.N. Joensuu H. John S. Julkunen V. Jung M. Junttila J. Kaarniranta K. Kähönen M. Kajanne R. Kallio L. Kälviäinen R. Kaprio J. Kerimov N. Kettunen J. Kilpeläinen E. Kilpi T. Klinger K. Kosma V.M. Kuopio T. Kurra V. Laisk T. Laukkanen J. Lawless N. Liu A. Longerich S. Mägi R. Mäkelä J. Mäkitie A. Malarstig A. Mannermaa A. Maranville J. Matakidou A. Meretoja T. Mozaffari S.V. Niemi M.E.K. Niemi M. Niiranen T. O´Donnell C.J. Obeidat M. Okafo G. Ollila H.M. Palomäki A. Palotie T. Partanen J. Paul D.S. Pelkonen M. Pendergrass R.K. Petrovski S. Pitkäranta A. Platt A. Pulford D. Punkka E. Pussinen P. Raghavan N. Rahimov F. Rajpal D. Renaud N.A. Riley-Gillis B. Rodosthenous R. Saarentaus E. Salminen A. Salminen E. Salomaa V. Schleutker J. Serpi R. Shen H. Siegel R. Silander K. Siltanen S. Soini S. Soininen H. Sul J.H. Tachmazidou I. Tasanen K. Tienari P. Toppila-Salmi S. Tukiainen T. Tuomi T. Turunen J.A. Ulirsch J.C. Vaura F. Virolainen P. Waring J. Waterworth D. Yang R. Nelis M. Reigo A. Metspalu A. Milani L. Esko T. Fox C. Havulinna A.S. Perola M. Ripatti S. Jalanko A. Laitinen T. Mäkelä T.P. Plenge R. McCarthy M. Runz H. Daly M.J. Palotie A. FinnGen FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 2023 613 7944 508 518 10.1038/s41586‑022‑05473‑8 36653562
    [Google Scholar]
  16. Shi Q. Wang Q. Wang Z. Lu J. Wang R. Systemic inflammatory regulators and proliferative diabetic retinopathy: A bidirectional Mendelian randomization study. Front. Immunol. 2023 14 1088778 10.3389/fimmu.2023.1088778 36845092
    [Google Scholar]
  17. Wang S. Zhu H. Pan L. Zhang M. Wan X. Xu H. Hua R. Zhu M. Gao P. Systemic inflammatory regulators and risk of acute-on-chronic liver failure: A bidirectional mendelian-randomization study. Front. Cell Dev. Biol. 2023 11 1125233 10.3389/fcell.2023.1125233 36743413
    [Google Scholar]
  18. Xv Y. Feng Y. Lin J. CXCR1 and CXCR2 are potential neutrophil extracellular trap-related treatment targets in ulcerative colitis: Insights from Mendelian randomization, colocalization and transcriptomic analysis. Front. Immunol. 2024 15 1425363 10.3389/fimmu.2024.1425363 39328405
    [Google Scholar]
  19. Cao Y. Yang Y. Hu Q. Wei G. Identification of potential drug targets for rheumatoid arthritis from genetic insights: A Mendelian randomization study. J. Transl. Med. 2023 21 1 616 10.1186/s12967‑023‑04474‑z 37697373
    [Google Scholar]
  20. Xin J. Jiang X. Ben S. Yuan Q. Su L. Zhang Z. Christiani D.C. Du M. Wang M. Association between circulating vitamin E and ten common cancers: Evidence from large-scale Mendelian randomization analysis and a longitudinal cohort study. BMC Med. 2022 20 1 168 10.1186/s12916‑022‑02366‑5 35538486
    [Google Scholar]
  21. Bowden J. Smith G. Haycock P.C. Burgess S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet. Epidemiol. 2016 40 4 304 314 10.1002/gepi.21965 27061298
    [Google Scholar]
  22. Burgess S. Thompson S.G. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur. J. Epidemiol. 2017 32 5 377 389 10.1007/s10654‑017‑0255‑x 28527048
    [Google Scholar]
  23. Giambartolomei C. Vukcevic D. Schadt E.E. Franke L. Hingorani A.D. Wallace C. Plagnol V. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 2014 10 5 1004383 10.1371/journal.pgen.1004383 24830394
    [Google Scholar]
  24. Zhao C. Fan Z. Zhang R. Sun Y. Li W.Y. The role of the major histocompatibility complex region on chromosome 6 in skin atrophy: A Mendelian randomization study. J. Cosmet. Dermatol. 2025 24 3 70040 10.1111/jocd.70040 40099350
    [Google Scholar]
  25. Lin J. Zhou J. Xu Y. Potential drug targets for multiple sclerosis identified through Mendelian randomization analysis. Brain 2023 146 8 3364 3372 10.1093/brain/awad070 36864689
    [Google Scholar]
  26. Chen J. Xu F. Ruan X. Sun J. Zhang Y. Zhang H. Zhao J. Zheng J. Larsson S.C. Wang X. Li X. Yuan S. Therapeutic targets for inflammatory bowel disease: Proteome-wide Mendelian randomization and colocalization analyses. EBioMedicine 2023 89 104494 10.1016/j.ebiom.2023.104494 36857861
    [Google Scholar]
  27. Sun X. Chen B. Qi Y. Wei M. Chen W. Wu X. Wang Q. Li J. Lei X. Luo G. Multi-omics Mendelian randomization integrating GWAS, eQTL and pQTL data revealed GSTM4 as a potential drug target for migraine. J. Headache Pain 2024 25 1 117 10.1186/s10194‑024‑01828‑w 39039470
    [Google Scholar]
  28. Azcutia V. Kelm M. Luissint A.C. Boerner K. Flemming S. Quiros M. Newton G. Nusrat A. Luscinskas F.W. Parkos C.A. Neutrophil expressed CD47 regulates CD11b/CD18-dependent neutrophil transepithelial migration in the intestine in vivo. Mucosal Immunol. 2021 14 2 331 341 10.1038/s41385‑020‑0316‑4 32561828
    [Google Scholar]
  29. Zhang Y. Guo L. Dai Q. Shang B. Xiao T. Di X. Zhang K. Feng L. Shou J. Wang Y. A signature for pan-cancer prognosis based on neutrophil extracellular traps. J. Immunother. Cancer 2022 10 6 004210 10.1136/jitc‑2021‑004210 35688556
    [Google Scholar]
  30. Burgess S. Butterworth A. Thompson S.G. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet. Epidemiol. 2013 37 7 658 665 10.1002/gepi.21758 24114802
    [Google Scholar]
  31. Chen J. Ruan X. Sun Y. Lu S. Hu S. Yuan S. Li X. Multi-omic insight into the molecular networks of mitochondrial dysfunction in the pathogenesis of inflammatory bowel disease. EBioMedicine 2024 99 104934 10.1016/j.ebiom.2023.104934 38103512
    [Google Scholar]
  32. Komolafe K. Pacurari M. CXC chemokines in the pathogenesis of pulmonary disease and pharmacological relevance. Int. J. Inflamm. 2022 2022 1 16 10.1155/2022/4558159 36164329
    [Google Scholar]
  33. Zhang W. Wang H. Sun M. Deng X. Wu X. Ma Y. Li M. Shuoa S.M. You Q. Miao L. CXCL5/CXCR2 axis in tumor microenvironment as potential diagnostic biomarker and therapeutic target. Cancer Commun. 2020 40 2-3 69 80 10.1002/cac2.12010 32237072
    [Google Scholar]
  34. Lei Q. Zhen S. Zhang L. Zhao Q. Yang L. Zhang Y. A2AR-mediated CXCL5 upregulation on macrophages promotes NSCLC progression via NETosis. Cancer Immunol. Immunother. 2024 73 6 108 10.1007/s00262‑024‑03689‑3 38642131
    [Google Scholar]
  35. Fan X. Ng C.T. Guo D. Lim F. Tan J.C. Law A. Goh L.H. Poon Z.Y. Cheung A. Kong S.L. Tan M. Li S. Loh A. James A. Lim T. Chen J. Thumboo J. Hwang W. Low A. Dampened inflammation and improved survival after CXCL5 administration in murine lupus via myeloid and neutrophil pathways. Arthritis Rheumatol. 2023 75 4 553 566 10.1002/art.42383 36240108
    [Google Scholar]
  36. Li Q. Lian Y. Deng Y. Chen J. Wu T. Lai X. Zheng B. Qiu C. Peng Y. Li W. Xiang A.P. Zhang X. Ren J. mRNA-engineered mesenchymal stromal cells expressing CXCR2 enhances cell migration and improves recovery in IBD. Mol. Ther. Nucleic Acids 2021 26 222 236 10.1016/j.omtn.2021.07.009 34513306
    [Google Scholar]
  37. Juzenas S. Hübenthal M. Lindqvist C.M. Kruse R. Steiert T.A. Degenhardt F. Schulte D. Nikolaus S. Zeissig S. Bergemalm D. Almer S. Hjortswang H. Bresso F. Strüning N. Kupcinskas J. Keller A. Lieb W. Rosenstiel P. Schreiber S. D’Amato M. Halfvarson J. Hemmrich-Stanisak G. Franke A. Detailed transcriptional landscape of peripheral blood points to increased neutrophil activation in treatment-naïve inflammatory bowel disease. J. Crohn’s Colitis 2022 16 7 1097 1109 10.1093/ecco‑jcc/jjac003 35022690
    [Google Scholar]
  38. Jin F. Li Y. Gao X. Yang X. Li T. Liu S. Wei Z. Li S. Mao N. Liu H. Cai W. Xu H. Zhang H. Exercise training inhibits macrophage-derived IL-17A-CXCL5-CXCR2 inflammatory axis to attenuate pulmonary fibrosis in mice exposed to silica. Sci. Total Environ. 2023 902 166443 10.1016/j.scitotenv.2023.166443 37611700
    [Google Scholar]
  39. Xiao G. Kumar R. Komuro Y. Burguet J. Kakarla V. Azizkhanian I. Sheth S.A. Williams C.K. Zhang X.R. Macknicki M. Brumm A. Kawaguchi R. Mai P. Kaneko N. Vinters H.V. Carmichael S.T. Havton L.A. DeCarli C. Hinman J.D. IL-17/CXCL5 signaling within the oligovascular niche mediates human and mouse white matter injury. Cell Rep. 2022 41 12 111848 10.1016/j.celrep.2022.111848 36543124
    [Google Scholar]
  40. Zhang C. Jin H. Kang Y. Wu Y. Zheng R. Zhang Z. Xu H. Cai W. Gao X. Liu H. Mao N. Yang J. IL - 17A -neutralizing antibody ameliorates inflammation and fibrosis in rosacea by antagonizing the CXCL5 / CXCR2 axis. FASEB J. 2024 38 19 70096 10.1096/fj.202400006R 39370827
    [Google Scholar]
  41. Walsh R.M. Ambrose J. Jack J.L. Eades A.E. Bye B.A. Tannus Ruckert M.T. Messaggio F. Olou A.A. Chalise P. Pei D. VanSaun M.N. Depletion of tumor-derived CXCL5 improves T cell infiltration and anti-PD-1 therapy response in an obese model of pancreatic cancer. J. Immunother. Cancer 2025 13 3 010057 10.1136/jitc‑2024‑010057 40121029
    [Google Scholar]
  42. Najem M.Y. Rys R.N. Laurance S. Bertin F.R. Gourdou-Latyszenok V. Gourhant L. Le Gall L. Le Corre R. Couturaud F. Blostein M.D. Lemarié C.A. Extracellular RNA induces neutrophil recruitment via toll-like receptor 3 during venous thrombosis after vascular injury. J. Am. Heart Assoc. 2024 13 15 034492 10.1161/JAHA.124.034492 39028040
    [Google Scholar]
  43. Guo Q. Jin Y. Chen X. Ye X. Shen X. Lin M. Zeng C. Zhou T. Zhang J. NF-κB in biology and targeted therapy: New insights and translational implications. Signal Transduct. Target. Ther. 2024 9 1 53 10.1038/s41392‑024‑01757‑9 38433280
    [Google Scholar]
  44. Cui S. Chen X. Li J. Wang W. Meng D. Zhu S. Shen S. Endothelial CXCR2 deficiency attenuates renal inflammation and glycocalyx shedding through NF-κB signaling in diabetic kidney disease. Cell Commun. Signal. 2024 22 1 191 10.1186/s12964‑024‑01565‑2 38528533
    [Google Scholar]
  45. Bert S. Nadkarni S. Perretti M. Neutrophil-T cell crosstalk and the control of the host inflammatory response. Immunol. Rev. 2023 314 1 36 49 10.1111/imr.13162 36326214
    [Google Scholar]
  46. Schwäbe F.V. Happonen L. Ekestubbe S. Neumann A. Host defense peptides LL-37 and lactoferrin trigger ET release from blood-derived circulating monocytes. Biomedicines 2022 10 2 469 10.3390/biomedicines10020469 35203676
    [Google Scholar]
  47. Kim T.S. Silva L.M. Theofilou V.I. Greenwell-Wild T. Li L. Williams D.W. Ikeuchi T. Brenchley L. Bugge T.H. Diaz P.I. Kaplan M.J. Carmona-Rivera C. Moutsopoulos N.M. Neutrophil extracellular traps and extracellular histones potentiate IL-17 inflammation in periodontitis. J. Exp. Med. 2023 220 9 20221751 10.1084/jem.20221751 37261457
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673381624251020065846
Loading
/content/journals/cmc/10.2174/0109298673381624251020065846
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keywords: cytokine ; neutrophil ; Chemotaxis ; inflammation ; ulcerative colitis ; Chemokine
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test