Skip to content
2000
image of Exploring the efficiency of Deep Eutectic Solvents (DESs) as Sustainable Systems for Recent Advances in Drug Discovery and Synthesis: A Comprehensive Review

Abstract

Traditional organic solvents often pose environmental and toxicity concerns in the synthesis of active pharmaceutical ingredients (APIs), the cornerstone of pharmaceutical drugs. (DESs), characterized by their versatility and efficiency as both solvents and catalysts, offer a promising alternative for sustainable drug synthesis. The dual capacity of DESs as green solvents and catalysts holds significant potential for enhancing the sustainability and efficiency of drug-synthesis processes. This study comprehensively explores the synthesis of various drug scaffolds, including those relevant to central nervous system (CNS) disorders, inflammation, cancer, and other therapeutic areas. By examining reaction mechanisms and parameters, the research provides valuable insights into the high yields achievable using DESs. The review also highlights the effectiveness of different types of DESs in drug synthesis, including natural DESs (NADESs), reactive DESs (RDESs), water-based DESs (WDESs), and ionic liquid-based DESs (IL-DESs). Among these, NADESs are the most commonly used, with choline chloride (ChCl)–based DESs standing out as the most popular, utilized in over (30) different combinations mentioned in the review. The most frequently used ChCl-based DES was ChCl/urea, followed by ChCl/taurine. The collected data provide important information, including optimal DES combinations, ratios, concentrations, and reaction conditions for producing drug scaffolds with the highest yields. The numerous synthetic results presented in this article demonstrate that widespread adoption of DESs in both research and industrial settings could have a significant positive environmental impact, owing to their low toxicity, renewability, affordability, and energy-efficient catalytic properties. This review offers a thorough exploration of the use of DESs in drug synthesis. By analyzing key chemical equations, reaction procedures, reaction mechanisms, yields, and critical parameters from reported studies, this report aims to present a valuable resource to guide researchers in optimizing synthetic strategies and advancing the application of DESs in pharmaceutical chemistry.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673389576251125054333
2026-01-13
2026-02-22
Loading full text...

Full text loading...

References

  1. Silva R.D.D. Cunha B.V.E. Silva R.C.D. de Carvalho Cartágenes S. The performance of the clinical pharmacist in pharmaceutical care and intervention in cases of polymedicated elderly people: An integrative review. Research. Soc. Dev. 2023 12 1 e11812139332 10.33448/rsd‑v12i1.39332
    [Google Scholar]
  2. Am Ende M.T. Chemical engineering in the pharmaceutical industry: drug product design, development, and modeling; Ende, M.T.A. Ende D.J.A. Hoboken, USA 2019 10.1002/9781119600800
    [Google Scholar]
  3. Baker R.E. Mahmud A.S. Miller I.F. Rajeev M. Rasambainarivo F. Rice B.L. Takahashi S. Tatem A.J. Wagner C.E. Wang L.F. Wesolowski A. Metcalf C.J.E. Infectious disease in an era of global change. Nat. Rev. Microbiol. 2022 20 4 193 205 10.1038/s41579‑021‑00639‑z 34646006
    [Google Scholar]
  4. Landsman V. Verniers I. Stremersch S. The successful launch and diffusion of new therapies. In: Innovation and Marketing in the Pharmaceutical Industry: Emerging Practices, Research, and Policies; Ding, M.; Eliashberg, J.; Stremersch, S., Eds.; Springer: New York, NY, 2013 20 189 22 10.1007/978‑1‑4614‑7801‑0_7
    [Google Scholar]
  5. Blakemore D.C. Castro L. Churcher I. Rees D.C. Thomas A.W. Wilson D.M. Wood A. Organic synthesis provides opportunities to transform drug discovery. Nat. Chem. 2018 10 4 383 394 10.1038/s41557‑018‑0021‑z 29568051
    [Google Scholar]
  6. Li J.J. The art of drug synthesis; Johnson, D.S. Li J.J. Hoboken Wiley-Interscience 2007
    [Google Scholar]
  7. Savjani K.T. Gajjar A.K. Savjani J.K. Drug solubility: Importance and enhancement techniques. ISRN Pharm. 2012 2012 1 195727 22830056
    [Google Scholar]
  8. Elufioye T.O. Adejare A. Pharmaceutical profiling. Remington. Adejare A. Academic Press 2021 155 167 10.1016/B978‑0‑12‑820007‑0.00008‑8
    [Google Scholar]
  9. Yaseen G. Ahmad M. Zafar M. Akram A. Sultana S. Kilic O. Sonmez G.D. Current status of solvents used in the pharmaceutical industry. Green Sustainable Process. for Chemical and Environmental Engineering and Science. Elsevier 2021 195 219 10.1016/B978‑0‑12‑821885‑3.00004‑9
    [Google Scholar]
  10. Grodowska K. Parczewski A. Organic solvents in the pharmaceutical industry. Acta Pol. Pharm. 2010 67 1 3 12 20210074
    [Google Scholar]
  11. Becker J. Manske C. Randl S. Green chemistry and sustainability metrics in the pharmaceutical manufacturing sector. Curr. Opin. Green Sustain. Chem. 2022 33 100562 10.1016/j.cogsc.2021.100562
    [Google Scholar]
  12. Constable D.J.C. Jimenez-Gonzalez C. Henderson R.K. Perspective on solvent use in the pharmaceutical industry. Org. Process Res. Dev. 2007 11 1 133 137 10.1021/op060170h
    [Google Scholar]
  13. Joshi D.R. Adhikari N. An overview on common organic solvents and their toxicity. J. Pharm. Res. Int. 2019 28 3 1 18 10.9734/jpri/2019/v28i330203
    [Google Scholar]
  14. Kim H.S. An Y.J. Kwak J.I. Kim H.J. Jung H.S. Park N.G. Sustainable green process for environmentally viable perovskite solar cells. ACS Energy Lett. 2022 7 3 1154 1177 10.1021/acsenergylett.1c02836
    [Google Scholar]
  15. Zainal-Abidin M.H. Hayyan M. Hayyan A. Jayakumar N.S. New horizons in the extraction of bioactive compounds using deep eutectic solvents: A review. Anal. Chim. Acta 2017 979 1 23 10.1016/j.aca.2017.05.012 28599704
    [Google Scholar]
  16. Zainal-Abidin M.H. Hayyan M. Ngoh G.C. Wong W.F. Looi C.Y. Emerging frontiers of deep eutectic solvents in drug discovery and drug delivery systems. J. Control. Release 2019 316 168 195 10.1016/j.jconrel.2019.09.019 31669211
    [Google Scholar]
  17. El Achkar T. Fourmentin S. Greige-Gerges H. Deep eutectic solvents: An overview on their interactions with water and biochemical compounds. J. Mol. Liq. 2019 288 111028 10.1016/j.molliq.2019.111028
    [Google Scholar]
  18. Feng X. Ma Z. Yu C. Xin R. MRNDR: Multihead attention-based recommendation network for drug repurposing. J. Chem. Inf. Model. 2024 64 7 2654 2669 10.1021/acs.jcim.3c01726 38373300
    [Google Scholar]
  19. Kostić M.D. Divac V.M. Green solvents in organoselenium chemistry. Environ. Chem. Lett. 2019 17 2 897 915 10.1007/s10311‑018‑00848‑8
    [Google Scholar]
  20. Moura L. Moufawad T. Ferreira M. Bricout H. Tilloy S. Monflier E. Costa Gomes M.F. Landy D. Fourmentin S. Deep eutectic solvents as green absorbents of volatile organic pollutants. Environ. Chem. Lett. 2017 15 4 747 753 10.1007/s10311‑017‑0654‑y
    [Google Scholar]
  21. Halder A.K. Cordeiro M.N.D.S. Probing the environmental toxicity of deep eutectic solvents and their components: An in silico modeling approach. 2019 7 12 10649 10660 10.1021/acssuschemeng.9b01306
  22. Xu P. Zheng G.W. Zong M.H. Li N. Lou W.Y. Recent progress on deep eutectic solvents in biocatalysis. Bioresour. Bioprocess. 2017 4 1 34 10.1186/s40643‑017‑0165‑5 28794956
    [Google Scholar]
  23. Płotka-Wasylka J. de la Guardia M. Andruch V. Vilková M. Deep eutectic solvents vs ionic liquids: Similarities and differences. Microchem. J. 2020 159 105539 10.1016/j.microc.2020.105539
    [Google Scholar]
  24. Smith E.L. Abbott A.P. Ryder K.S. Deep eutectic solvents (DESs) and their applications. Chem. Rev. 2014 114 21 11060 11082 10.1021/cr300162p 25300631
    [Google Scholar]
  25. Qader I.B. Prasad K. Recent developments on ionic liquids and deep eutectic solvents for drug delivery applications. Pharm. Res. 2022 39 10 2367 2377 10.1007/s11095‑022‑03315‑w 35739370
    [Google Scholar]
  26. Quintana A.A. Sztapka A.M. Santos Ebinuma V.C. Agatemor C. Enabling sustainable chemistry with ionic liquids and deep eutectic solvents: A fad or the future? Angew. Chem. Int. Ed. 2022 61 37 e202205609 10.1002/anie.202205609 35789078
    [Google Scholar]
  27. Abbott A.P. Capper G. Gray S. Design of improved deep eutectic solvents using hole theory. ChemPhysChem 2006 7 4 803 806 10.1002/cphc.200500489 16596609
    [Google Scholar]
  28. Zhang Q. De Oliveira Vigier K. Royer S. Jérôme F. Deep eutectic solvents: Syntheses, properties and applications. Chem. Soc. Rev. 2012 41 21 7108 7146 10.1039/c2cs35178a 22806597
    [Google Scholar]
  29. Li B. Xiao T. Guo S. Wu Y. Lai R. Liu Z. Luo W. Xu Y. Oxymatrine-fatty acid deep eutectic solvents as novel penetration enhancers for transdermal drug delivery: Formation mechanism and enhancing effect. Int. J. Pharm. 2023 637 122880 10.1016/j.ijpharm.2023.122880 36958612
    [Google Scholar]
  30. Trombino S. Siciliano C. Procopio D. Curcio F. Laganà A.S. Di Gioia M.L. Cassano R. Deep eutectic solvents for improving the solubilization and delivery of dapsone. Pharmaceutics 2022 14 2 333 10.3390/pharmaceutics14020333 35214065
    [Google Scholar]
  31. Al-Akayleh F. Mohammed Ali H.H. Ghareeb M.M. Al-Remawi M. Therapeutic deep eutectic system of capric acid and menthol: Characterization and pharmaceutical application. J. Drug Deliv. Sci. Technol. 2019 53 101159 10.1016/j.jddst.2019.101159
    [Google Scholar]
  32. Emami S. Shayanfar A. Deep eutectic solvents for pharmaceutical formulation and drug delivery applications. Pharm. Dev. Technol. 2020 25 7 779 796 10.1080/10837450.2020.1735414 32096665
    [Google Scholar]
  33. Cannavacciuolo C. Pagliari S. Frigerio J. Giustra C.M. Labra M. Campone L. Natural deep eutectic solvents (NADESs) combined with sustainable extraction techniques: A review of the green chemistry approach in food analysis. Foods 2022 12 1 56 10.3390/foods12010056 36613272
    [Google Scholar]
  34. Santana-Mayor Á. Rodríguez-Ramos R. Herrera-Herrera A.V. Socas-Rodríguez B. Rodríguez-Delgado M.Á. Deep eutectic solvents. The new generation of green solvents in analytical chemistry. Trends Analyt. Chem. 2021 134 116108 10.1016/j.trac.2020.116108
    [Google Scholar]
  35. Shishov A. Bulatov A. Locatelli M. Carradori S. Andruch V. Application of deep eutectic solvents in analytical chemistry. A review. Microchem. J. 2017 135 33 38 10.1016/j.microc.2017.07.015
    [Google Scholar]
  36. Hirpara D. Patel B. Chavda V. Desai A. Kumar S. Micellization and clouding behaviour of an ionic surfactant in a deep eutectic solvent: A case of the reline-water mixture. J. Mol. Liq. 2022 364 119991 10.1016/j.molliq.2022.119991
    [Google Scholar]
  37. Aguirre Pastor M.Á. Canals A. Magnetic deep eutectic solvents in microextraction techniques. TrAC. Trends Analyt. Chem. 2021 146 116500 10.1016/j.trac.2021.116500
    [Google Scholar]
  38. Hartley J.M. Allen J. Meierl J. Schmidt A. Krossing I. Abbott A.P. Calcium chloride-based systems for metal electrodeposition. Electrochim. Acta 2022 402 139560 10.1016/j.electacta.2021.139560
    [Google Scholar]
  39. Azmi S. Koudahi M.F. Frackowiak E. Reline deep eutectic solvent as a green electrolyte for electrochemical energy storage applications. Energy Environ. Sci. 2022 15 3 1156 1171 10.1039/D1EE02920G
    [Google Scholar]
  40. Azzouz A. Hayyan M. Potential applications of deep eutectic solvents in nanotechnology: Part II. Chem. Eng. J. 2023 468 143563 10.1016/j.cej.2023.143563
    [Google Scholar]
  41. Mao S. Yu L. Ji S. Liu X. Lu F. Evaluation of deep eutectic solvents as co‐solvent for steroids 1‐en‐dehydrogenation biotransformation by Arthrobacter simplex. J. Chem. Technol. Biotechnol. 2016 91 4 1099 1104 10.1002/jctb.4691
    [Google Scholar]
  42. Pena-Pereira F. Namieśnik J. Ionic liquids and deep eutectic mixtures: Sustainable solvents for extraction processes. ChemSusChem 2014 7 7 1784 1800 10.1002/cssc.201301192 24811900
    [Google Scholar]
  43. del Monte F. Carriazo D. Serrano M.C. Gutiérrez M.C. Ferrer M.L. Deep eutectic solvents in polymerizations: A greener alternative to conventional syntheses. ChemSusChem 2014 7 4 999 1009 10.1002/cssc.201300864 24376090
    [Google Scholar]
  44. Wagle D.V. Zhao H. Baker G.A. Deep eutectic solvents: Sustainable media for nanoscale and functional materials. Acc. Chem. Res. 2014 47 8 2299 2308 10.1021/ar5000488 24892971
    [Google Scholar]
  45. Liu P. Hao J.W. Mo L.P. Zhang Z.H. Recent advances in the application of deep eutectic solvents as sustainable media as well as catalysts in organic reactions. RSC Advances 2015 5 60 48675 48704 10.1039/C5RA05746A
    [Google Scholar]
  46. Cvjetko Bubalo M. Jurinjak Tušek A. Vinkovi Ŀ. M.; RadoševiĿ, K.; Gaurina SrĿek, V.; RadojĿiĿ RedovnikoviĿ, I. Cholinium-based deep eutectic solvents and ionic liquids for lipase-catalyzed synthesis of butyl acetate. J. Mol. Catal., B Enzym. 2015 122 188 198 10.1016/j.molcatb.2015.09.005
    [Google Scholar]
  47. Sebastián P. Gómez E. Climent V. Feliu J.M. Copper underpotential deposition at gold surfaces in contact with a deep eutectic solvent: New insights. Electrochem. Commun. 2017 78 51 55 10.1016/j.elecom.2017.03.020
    [Google Scholar]
  48. Abo-Hamad A. Hayyan M. AlSaadi M.A. Hashim M.A. Potential applications of deep eutectic solvents in nanotechnology. Chem. Eng. J. 2015 273 551 567 10.1016/j.cej.2015.03.091
    [Google Scholar]
  49. Feng C. Wang Y. Xu J. Zheng Y. Zhou W. Wang Y. Luo C. Precisely tailoring molecular structure of doxorubicin prodrugs to enable stable nanoassembly, rapid activation, and potent antitumor effect. Pharmaceutics 2024 16 12 1582 10.3390/pharmaceutics16121582 39771561
    [Google Scholar]
  50. Wang A. Zheng X. Zhao Z. Li C. Zheng X. Deep eutectic solvents to organic synthesis. Progress in Chemistry-Beijing 2014 26 05 784 795 10.7536/PC131124
    [Google Scholar]
  51. Hansen B.B. Spittle S. Chen B. Poe D. Zhang Y. Klein J.M. Horton A. Adhikari L. Zelovich T. Doherty B.W. Gurkan B. Maginn E.J. Ragauskas A. Dadmun M. Zawodzinski T.A. Baker G.A. Tuckerman M.E. Savinell R.F. Sangoro J.R. Deep eutectic solvents: A review of fundamentals and applications. Chem. Rev. 2021 121 3 1232 1285 10.1021/acs.chemrev.0c00385 33315380
    [Google Scholar]
  52. Paiva A. Craveiro R. Aroso I. Martins M. Reis R.L. Duarte A.R.C. Natural deep eutectic solvents–solvents for the 21st century. 2014 2 5 1063 1071 10.1021/sc500096j
  53. Craveiro R. Aroso I. Flammia V. Carvalho T. Viciosa M.T. Dionísio M. Barreiros S. Reis R.L. Duarte A.R.C. Paiva A. Properties and thermal behavior of natural deep eutectic solvents. J. Mol. Liq. 2016 215 534 540 10.1016/j.molliq.2016.01.038
    [Google Scholar]
  54. Dai Y. van Spronsen J. Witkamp G.J. Verpoorte R. Choi Y.H. Natural deep eutectic solvents as new potential media for green technology. Anal. Chim. Acta 2013 766 61 68 10.1016/j.aca.2012.12.019 23427801
    [Google Scholar]
  55. Mnasri A. Khiari R. Dhaouadi H. Halila S. Mauret E. Acidic and alkaline deep eutectic solvents pre-treatment to produce high aspect ratio microfibrillated cellulose. Bioresour. Technol. 2023 368 128312 10.1016/j.biortech.2022.128312 36372384
    [Google Scholar]
  56. Yue X. Suopajärvi T. Mankinen O. Mikola M. Mikkelson A. Ahola J. Hiltunen S. Komulainen S. Kantola A.M. Telkki V.V. Liimatainen H. Comparison of lignin fractions isolated from wheat straw using alkaline and acidic deep eutectic solvents. J. Agric. Food Chem. 2020 68 51 15074 15084 10.1021/acs.jafc.0c04981 33290067
    [Google Scholar]
  57. Guo Y. Xu L. Shen F. Hu J. Huang M. He J. Zhang Y. Deng S. Li Q. Tian D. Insights into lignocellulosic waste fractionation for lignin nanospheres fabrication using acidic/alkaline deep eutectic solvents. Chemosphere 2022 286 Pt 2 131798 10.1016/j.chemosphere.2021.131798 34365175
    [Google Scholar]
  58. Douard L. Bras J. Encinas T. Belgacem M.N. Natural acidic deep eutectic solvent to obtain cellulose nanocrystals using the design of experience approach. Carbohydr. Polym. 2021 252 117136 10.1016/j.carbpol.2020.117136 33183595
    [Google Scholar]
  59. Chen W. Jiang J. Lan X. Zhao X. Mou H. Mu T. A strategy for the dissolution and separation of rare earth oxides by novel Brønsted acidic deep eutectic solvents. Green Chem. 2019 21 17 4748 4756 10.1039/C9GC00944B
    [Google Scholar]
  60. Cui Y. Li C. Yin J. Li S. Jia Y. Bao M. Design, synthesis and properties of acidic deep eutectic solvents based on choline chloride. J. Mol. Liq. 2017 236 338 343 10.1016/j.molliq.2017.04.052
    [Google Scholar]
  61. Marchel M. Coroadinha A.S. Marrucho I.M. Novel acidic deep eutectic solvent-based aqueous biphasic systems for efficient extraction of pepsin. 2020 8 3 12400 12408 10.1021/acssuschemeng.0c02673
  62. Qin H. Hu X. Wang J. Cheng H. Chen L. Qi Z. Overview of acidic deep eutectic solvents on synthesis, properties and applications. 2020 5 1 8 21 10.1016/j.gee.2019.03.002
    [Google Scholar]
  63. Shah P.A. Chavda V. Hirpara D. Sharma V.S. Shrivastav P.S. Kumar S. Exploring the potential of deep eutectic solvents in pharmaceuticals: Challenges and opportunities. J. Mol. Liq. 2023 390 123171 10.1016/j.molliq.2023.123171
    [Google Scholar]
  64. Khezeli T. Daneshfar A. Synthesis and application of magnetic deep eutectic solvents: Novel solvents for ultrasound assisted liquid-liquid microextraction of thiophene. Ultrason. Sonochem. 2017 38 590 597 10.1016/j.ultsonch.2016.08.023 27562909
    [Google Scholar]
  65. Wang H. Jing Y. Wang X. Yao Y. Jia Y. Ionic liquid analogous formed from magnesium chloride hexahydrate and its physico-chemical properties. J. Mol. Liq. 2011 163 2 77 82 10.1016/j.molliq.2011.08.004
    [Google Scholar]
  66. Yue D. Jing Y. Sun J. Wang X. Jia Y. Structure and ion transport behavior analysis of ionic liquid analogues based on magnesium chloride. J. Mol. Liq. 2011 158 2 124 130 10.1016/j.molliq.2010.11.005
    [Google Scholar]
  67. Jiang J. Yan C. Zhao X. Luo H. Xue Z. Mu T. A PEGylated deep eutectic solvent for controllable solvothermal synthesis of porous NiCo 2 S 4 for efficient oxygen evolution reaction. Green Chem. 2017 19 13 3023 3031 10.1039/C7GC01012E
    [Google Scholar]
  68. Jiang J. Bai X. Zhao X. Chen W. Yu T. Li Y. Mu T. Poly-quasi-eutectic solvents (PQESs): Versatile solvents for dissolving metal oxides. Green Chem. 2019 21 20 5571 5578 10.1039/C9GC02604E
    [Google Scholar]
  69. Ren’ai L. Zhang K. Chen G. Su B. Tian J. He M. Lu F. Green polymerizable deep eutectic solvent (PDES) type conductive paper for origami 3D circuits. Chem. Commun. 2018 54 18 2304 2307 10.1039/C7CC09209A 29445790
    [Google Scholar]
  70. Yang K. Ge Z. Zhang M. Wang C. Peng K. Yang H. You Y. Deep eutectic solvent based adhesive with dynamic adhesion, water-resistant and NIR-responsive retrieval properties. Chem. Eng. J. 2022 439 135646 10.1016/j.cej.2022.135646
    [Google Scholar]
  71. Mota-Morales J.D. Gutiérrez M.C. Ferrer M.L. Sanchez I.C. Elizalde-Peña E.A. Pojman J.A. Monte F.D. Luna-Bárcenas G. Deep eutectic solvents as both active fillers and monomers for frontal polymerization. J. Polym. Sci. A Polym. Chem. 2013 51 8 1767 1773 10.1002/pola.26555
    [Google Scholar]
  72. Ozturk B. Parkinson C. Gonzalez-Miquel M. Extraction of polyphenolic antioxidants from orange peel waste using deep eutectic solvents. Separ. Purif. Tech. 2018 206 1 13 10.1016/j.seppur.2018.05.052
    [Google Scholar]
  73. Ali M.C. Chen J. Zhang H. Li Z. Zhao L. Qiu H. Effective extraction of flavonoids from Lycium barbarum L. fruits by deep eutectic solvents-based ultrasound-assisted extraction. Talanta 2019 203 16 22 10.1016/j.talanta.2019.05.012 31202321
    [Google Scholar]
  74. El Kantar S. Rajha H.N. Boussetta N. Vorobiev E. Maroun R.G. Louka N. Green extraction of polyphenols from grapefruit peels using high voltage electrical discharges, deep eutectic solvents and aqueous glycerol. Food Chem. 2019 295 165 171 10.1016/j.foodchem.2019.05.111 31174746
    [Google Scholar]
  75. Duarte A.R.C. Ferreira A.S.D. Barreiros S. Cabrita E. Reis R.L. Paiva A. A comparison between pure active pharmaceutical ingredients and therapeutic deep eutectic solvents: Solubility and permeability studies. Eur. J. Pharm. Biopharm. 2017 114 296 304 10.1016/j.ejpb.2017.02.003 28189620
    [Google Scholar]
  76. Swebocki T. Barras A. Abderrahmani A. Haddadi K. Boukherroub R. Deep eutectic solvents comprising organic acids and their application in (Bio)Medicine. Int. J. Mol. Sci. 2023 24 10 8492 10.3390/ijms24108492 37239842
    [Google Scholar]
  77. Hayyan M. Versatile applications of deep eutectic solvents in drug discovery and drug delivery systems: Perspectives and opportunities. Asian J. Pharm. Sci. 2023 18 2 100780 10.1016/j.ajps.2023.100780 36845841
    [Google Scholar]
  78. Aroso I.M. Craveiro R. Rocha Â. Dionísio M. Barreiros S. Reis R.L. Paiva A. Duarte A.R.C. Design of controlled release systems for THEDES—Therapeutic deep eutectic solvents, using supercritical fluid technology. Int. J. Pharm. 2015 492 1-2 73 79 10.1016/j.ijpharm.2015.06.038 26142248
    [Google Scholar]
  79. Lomba Eraso L. Garralaga M.P. Werner A. Giner Parache B. Baptista P.M. Sánchez-Romero N. Ibuprofen solubility and cytotoxic study of deep eutectic solvents formed by xylitol, choline chloride and water. J. Drug Deliv. Sci. Technol. 2023 82 104327 10.1016/j.jddst.2023.104327
    [Google Scholar]
  80. Abdelquader M.M. Li S. Andrews G.P. Jones D.S. Therapeutic deep eutectic solvents: A comprehensive review of their thermodynamics, microstructure and drug delivery applications. Eur. J. Pharm. Biopharm. 2023 186 85 104 10.1016/j.ejpb.2023.03.002 36907368
    [Google Scholar]
  81. El Achkar T. Moufawad T. Ruellan S. Landy D. Greige-Gerges H. Fourmentin S. Cyclodextrins: from solute to solvent. Chem. Commun. 2020 56 23 3385 3388 10.1039/D0CC00460J 32100798
    [Google Scholar]
  82. Janicka P. Kaykhaii M. Płotka-Wasylka J. Gębicki J. Supramolecular deep eutectic solvents and their applications. Green Chem. 2022 24 13 5035 5045 10.1039/D2GC00906D
    [Google Scholar]
  83. Zhang J. Yao L. Li S. Li S. Wu Y. Li Z. Qiu H. Green materials with promising applications: Cyclodextrin-based deep eutectic supramolecular polymers. Green Chem. 2023 25 11 4180 4195 10.1039/D3GC00489A
    [Google Scholar]
  84. Guan S. Li Z. Xu B. Wu J. Wang N. Zhang J. Han J. Guan T. Wang J. Li K. Cyclodextrin-based deep eutectic solvents for efficient extractive and oxidative desulfurization under room temperature. Chem. Eng. J. 2022 441 136022 10.1016/j.cej.2022.136022
    [Google Scholar]
  85. Panda S. Fourmentin S. Cyclodextrin-based supramolecular low melting mixtures: Efficient absorbents for volatile organic compounds abatement. Environ. Sci. Pollut. Res. Int. 2022 29 1 264 270 10.1007/s11356‑021‑16279‑y 34490573
    [Google Scholar]
  86. Guo H. Li L. Xu X. Zeng M. Chai S. Wu L. Li H. Semi‐solid superprotonic supramolecular polymer electrolytes based on deep eutectic solvents and polyoxometalates. Angew. Chem. Int. Ed. 2022 61 44 e202210695 10.1002/anie.202210695 36106475
    [Google Scholar]
  87. Dai Y. Witkamp G.J. Verpoorte R. Choi Y.H. Tailoring properties of natural deep eutectic solvents with water to facilitate their applications. Food Chem. 2015 187 14 19 10.1016/j.foodchem.2015.03.123 25976992
    [Google Scholar]
  88. Alcalde R. Gutiérrez A. Atilhan M. Aparicio S. An experimental and theoretical investigation of the physicochemical properties on choline chloride – Lactic acid based natural deep eutectic solvent (NADES). J. Mol. Liq. 2019 290 110916 10.1016/j.molliq.2019.110916
    [Google Scholar]
  89. Zhekenov T. Toksanbayev N. Kazakbayeva Z. Shah D. Mjalli F.S. Formation of type III deep eutectic solvents and effect of water on their intermolecular interactions. Fluid Phase Equilib. 2017 441 43 48 10.1016/j.fluid.2017.01.022
    [Google Scholar]
  90. López-Salas N. Vicent-Luna J.M. Imberti S. Posada E. Roldán M.J. Anta J.A. Balestra S.R.G. Madero Castro R.M. Calero S. Jiménez-Riobóo R.J. Gutiérrez M.C. Ferrer M.L. del Monte F. Looking at the “water-in-deep-eutectic-solvent” system: A dilution range for high performance eutectics. 2019 7 21 17565 17573 10.1021/acssuschemeng.9b05096
  91. Alizadeh V. Malberg F. Pádua A.A.H. Kirchner B. Are there magic compositions in deep eutectic solvents? Effects of composition and water content in choline chloride/ethylene glycol from ab initio molecular dynamics. J. Phys. Chem. B 2020 124 34 7433 7443 10.1021/acs.jpcb.0c04844 32790407
    [Google Scholar]
  92. Rozas Azcona S. Benito C. Alcalde García R.T. Atilhan M. Aparicio Martínez S. Insights on the water effect on deep eutectic solvents properties and structuring: The archetypical case of choline chloride + ethylene glycol. J. Mol. Liq. 2021 344 117717 10.1016/j.molliq.2021.117717
    [Google Scholar]
  93. Rublova Y. Kityk A. Danilov F. Protsenko V. Mechanistic study on surface tension of binary and ternary mixtures containing choline chloride, ethylene glycol and water (components of aqueous solutions of a deep eutectic solvent, ethaline). Z. Phys. Chem. 2020 234 3 399 413 10.1515/zpch‑2019‑1492
    [Google Scholar]
  94. Lapeña D. Lomba L. Artal M. Lafuente C. Giner B. Thermophysical characterization of the deep eutectic solvent choline chloride:ethylene glycol and one of its mixtures with water. Fluid Phase Equilib. 2019 492 1 9 10.1016/j.fluid.2019.03.018
    [Google Scholar]
  95. Abranches D.O. Silva L.P. Martins M.A.R. Coutinho J.A.P. Differences on the impact of water on the deep eutectic solvents betaine/urea and choline/urea. J. Chem. Phys. 2021 155 3 034501 10.1063/5.0052303 34293900
    [Google Scholar]
  96. Sapir L. Harries D. Restructuring a deep eutectic solvent by water: The nanostructure of hydrated choline chloride/urea. J. Chem. Theory Comput. 2020 16 5 3335 3342 10.1021/acs.jctc.0c00120 32223260
    [Google Scholar]
  97. Gabriele F. Chiarini M. Germani R. Tiecco M. Spreti N. Effect of water addition on choline chloride/glycol deep eutectic solvents: Characterization of their structural and physicochemical properties. J. Mol. Liq. 2019 291 111301 10.1016/j.molliq.2019.111301
    [Google Scholar]
  98. Xu X. Liu R. Cui Y. Liang X. Lei C. Meng S. Ma Y. Lei Z. Yang Z. PANI/FeUiO-66 nanohybrids with enhanced visible-light promoted photocatalytic activity for the selectively aerobic oxidation of aromatic alcohols. Appl. Catal. B 2017 210 484 494 10.1016/j.apcatb.2017.04.021
    [Google Scholar]
  99. Kumar G. Bhargava G. Kumar Y. Kumar R. Eosin Y photocatalyzed access to Biginelli reaction using primary alcohols via domino multicomponent cascade: An approach towards sustainable synthesis of 3,4-dihydropyrimidin-2(1H)-ones. J. Chem. Sci. 2022 134 2 44 10.1007/s12039‑022‑02039‑z
    [Google Scholar]
  100. Singh M.B. Kumar V.S. Chaudhary M. Singh P. A mini review on synthesis, properties and applications of deep eutectic solvents. J. Indian Chem. Soc. 2021 98 11 100210 10.1016/j.jics.2021.100210
    [Google Scholar]
  101. Zhang M. Zhang X. Liu Y. Wu K. Zhu Y. Lu H. Liang B. Insights into the relationships between physicochemical properties, solvent performance, and applications of deep eutectic solvents. Environ. Sci. Pollut. Res. Int. 2021 28 27 35537 35563 10.1007/s11356‑021‑14485‑2 34031822
    [Google Scholar]
  102. Usmani Z. Sharma M. Tripathi M. Lukk T. Karpichev Y. Gathergood N. Singh B.N. Thakur V.K. Tabatabaei M. Gupta V.K. Biobased natural deep eutectic system as versatile solvents: Structure, interaction and advanced applications. Sci. Total Environ. 2023 881 163002 10.1016/j.scitotenv.2023.163002 37003333
    [Google Scholar]
  103. Oyoun F. Toncheva A. Henríquez L.C. Grougnet R. Laoutid F. Mignet N. Alhareth K. Corvis Y. Deep eutectic solvents: An eco‐friendly design for drug engineering. ChemSusChem 2023 16 20 e202300669 10.1002/cssc.202300669 37463123
    [Google Scholar]
  104. Javed S. Mangla B. Sultan M.H. Almoshari Y. Sivadasan D. Alqahtani S.S. Madkhali O.A. Ahsan W. Pharmaceutical applications of therapeutic deep eutectic systems (THEDES) in maximising drug delivery. Heliyon 2024 10 9 e29783 10.1016/j.heliyon.2024.e29783 38694051
    [Google Scholar]
  105. Pattabiraman V.R. Bode J.W. Rethinking amide bond synthesis. Nature 2011 480 7378 471 479 10.1038/nature10702 22193101
    [Google Scholar]
  106. Carey J.S. Laffan D. Thomson C. Williams M.T. Analysis of the reactions used for the preparation of drug candidate molecules. Org. Biomol. Chem. 2006 4 12 2337 2347 10.1039/b602413k 16763676
    [Google Scholar]
  107. Roughley S.D. Jordan A.M. The medicinal chemist’s toolbox: an analysis of reactions used in the pursuit of drug candidates. J. Med. Chem. 2011 54 10 3451 3479 10.1021/jm200187y 21504168
    [Google Scholar]
  108. Kumari S. Carmona A.V. Tiwari A.K. Trippier P.C. Amide bond bioisosteres: Strategies, synthesis, and successes. J. Med. Chem. 2020 63 21 12290 12358 10.1021/acs.jmedchem.0c00530 32686940
    [Google Scholar]
  109. Tambe V. Ditani A. Rajpoot K. Tekade R.K. Pharmacokinetics aspects of structural modifications in drug design and therapy. Biopharmaceutics and Pharmacokinetics Considerations. Tekade R.K. Elsevier 2021 83 108 10.1016/B978‑0‑12‑814425‑1.00014‑0
    [Google Scholar]
  110. Yao H. Liu J. Xu S. Zhu Z. Xu J. The structural modification of natural products for novel drug discovery. Expert Opin. Drug Discov. 2017 12 2 121 140 10.1080/17460441.2016.1272757 28006993
    [Google Scholar]
  111. Garzón-Posse F. Quevedo-Acosta Y. Gamba-Sánchez D. Paracetamol synthesis for active learning of amide functional groups in undergraduate chemistry laboratories. J. Chem. Educ. 2022 99 6 2385 2391 10.1021/acs.jchemed.2c00080
    [Google Scholar]
  112. de Marco B.A. Natori J.S.H. Fanelli S. Tótoli E.G. Salgado H.R.N. Characteristics, properties and analytical methods of amoxicillin: A review with green approach. Crit. Rev. Anal. Chem. 2017 47 3 267 277 10.1080/10408347.2017.1281097 28080135
    [Google Scholar]
  113. Karnina R. Arif S.K. Hatta M. Bukhari A. Molecular mechanisms of lidocaine. Ann. Med. Surg. 2021 69 102733 10.1016/j.amsu.2021.102733 34457261
    [Google Scholar]
  114. Galiullina L.F. Musabirova G.S. Latfullin I.A. Aganov A.V. Klochkov V.V. Spatial structure of atorvastatin and its complex with model membrane in solution studied by NMR and theoretical calculations. J. Mol. Struct. 2018 1167 69 77 10.1016/j.molstruc.2018.04.012
    [Google Scholar]
  115. Salam B. Yousif E. Al-Mashhadani M.H. Article review: Atenolol importance as a medication and in industry. JUAPS 2020 14 2 47 50 10.37652/juaps.2022.172386
    [Google Scholar]
  116. Dahiya V. Rohilla A. Jain S. Rohilla S. Atenolol in episodic migraine prophylaxis: A review. Asian J. Pharm. Clin. Res. 2022 15 6 9 16 10.22159/ajpcr.2022.v15i6.44496
    [Google Scholar]
  117. Batra S. Bhushan R. Bioassay, determination and separation of enantiomers of atenolol by direct and indirect approaches using liquid chromatography: A review. Biomed. Chromatogr. 2018 32 1 e4090 10.1002/bmc.4090 28905405
    [Google Scholar]
  118. Procopio D. Siciliano C. Di Gioia M.L. Reactive deep eutectic solvents for EDC-mediated amide synthesis. Org. Biomol. Chem. 2024 22 7 1400 1408 10.1039/D3OB01673K 38126479
    [Google Scholar]
  119. Florindo C. Oliveira F.S. Rebelo L.P.N. Fernandes A.M. Marrucho I.M. Insights into the synthesis and properties of deep eutectic solvents based on cholinium chloride and carboxylic acids. 2014 2 10 2416 2425 10.1021/sc500439w
  120. Han H. Zhang M. Zhu Y. Wu K. Liu Y. Wang B. Lu H. Liang B. A green process for separation and recovery of 5-hydroxymethylfurfural from carboxylic acid–choline chloride deep eutectic solvents. New J. Chem. 2023 47 22 10593 10603 10.1039/D3NJ01038D
    [Google Scholar]
  121. Sharma S. Kaur G. Handa S. Insights into fast amide couplings in aqueous nanomicelles. Org. Process Res. Dev. 2021 25 8 1960 1965 10.1021/acs.oprd.1c00203
    [Google Scholar]
  122. Navarrete-Vázquez G. Moreno-Diaz H. Estrada-Soto S. Torres-Piedra M. León-Rivera I. Tlahuext H. Muñoz-Muñiz O. Torres-Gómez H. Microwave‐assisted one‐pot synthesis of 2‐(Substituted phenyl)‐1 H ‐benzimidazole derivatives. Synth. Commun. 2007 37 17 2815 2825 10.1080/00397910701473325
    [Google Scholar]
  123. Liu W. Chen Y. Liu F. Yin X. Cai J. Xia Y. Yu J. Jing G. Li W. Liu W. Effect of resolution enhancement using metal ion assisted strategy based on electrospray ionization-ion mobility spectrometry: A case study of carbendazim and thiabendazole in fruits. Talanta 2024 267 125151 10.1016/j.talanta.2023.125151 37672988
    [Google Scholar]
  124. Salehian M. Asl A.H. Khajenoori M. Experimental solubility of omeprazole in pure and ethanol-modified subcritical water. Sci. Rep. 2024 14 1 29073 10.1038/s41598‑024‑75829‑9 39580477
    [Google Scholar]
  125. Kaoud R.M. Alwan M.H. Amran M. Fawzi H.A. Design and optimization of pantoprazole sodium mucoadhesive hydrogel microcapsules for the healing of peptic ulcers. Pharmacia 2024 71 1 14 10.3897/pharmacia.71.e118323
    [Google Scholar]
  126. Kovalova T. Król S. Gamiz-Hernandez A.P. Sjöstrand D. Kaila V.R.I. Brzezinski P. Högbom M. Inhibition mechanism of potential antituberculosis compound lansoprazole sulfide. Proc. Natl. Acad. Sci. USA 2024 121 47 e2412780121 10.1073/pnas.2412780121 39531492
    [Google Scholar]
  127. Vogel K. Moeller J. Bozhanova N.G. Voehler M. Penk A. Meiler J. Schoeder C.T. Computational engineering of siderocalin to modulate its binding affinity to the antihypertension drug candesartan. J. Struct. Biol. 2025 217 1 108180 10.1016/j.jsb.2025.108180 39978741
    [Google Scholar]
  128. Hanoon H.D. Kowsari E. Abdouss M. Zandi H. Ghasemi M.H. Efficient preparation of acidic ionic liquid-functionalized reduced graphene oxide and its catalytic performance in synthesis of benzimidazole derivatives. Res. Chem. Intermed. 2017 43 3 1751 1766 10.1007/s11164‑016‑2727‑0
    [Google Scholar]
  129. Segun P.A. Comparative study of 1, 3-dibromo-5, 5-dimethylhydantoin assisted and conventional synthesis of benzimidazole derivatives and the solvent effects on spectroscopic properties. Afr. J. Pure Appl. Chem. 2015 9 10 197 203 10.5897/AJPAC2015.0655
    [Google Scholar]
  130. Shaibuna M. Hiba K. Shebitha A.M. Kariyottu Kuniyil M.J. Sherly mole, P.B.; Sreekumar, K. Sustainable and selective synthesis of benzimidazole scaffolds using deep eutectic solvents. Curr. Res. Green Sustain. Chem. 2022 5 100285 10.1016/j.crgsc.2022.100285
    [Google Scholar]
  131. Shaibuna M. Theresa L.V. Sreekumar K. A new green and efficient brønsted: Lewis acidic DES for pyrrole synthesis. Catal. Lett. 2018 148 8 2359 2372 10.1007/s10562‑018‑2414‑4
    [Google Scholar]
  132. Shaibuna M. Hiba K. Theresa L.V. Sreekumar K. A new type IV DES: A competent green catalyst and solvent for the synthesis of α,β-unsaturated diketones and dicyano compounds by Knoevenagel condensation reaction. New J. Chem. 2020 44 34 14723 14732 10.1039/D0NJ02852E
    [Google Scholar]
  133. Tzani M.A. Gabriel C. Lykakis I.N. Selective synthesis of benzimidazoles from o-phenylenediamine and aldehydes promoted by supported gold nanoparticles. Nanomaterials 2020 10 12 2405 10.3390/nano10122405 33271922
    [Google Scholar]
  134. Manolov I. Raleva S. Genova P. Savov A. Froloshka L. Dundarova D. Argirova R. Antihuman immunodeficiency virus type 1 (HIV-1) activity of rare earth metal complexes of 4-hydroxycoumarins in cell culture. Bioinorg. Chem. Appl. 2006 2006 1 071938 10.1155/BCA/2006/71938 17497016
    [Google Scholar]
  135. Manolov I. Maichle-Moessmer C. Nicolova I. Danchev N. Synthesis and anticoagulant activities of substituted 2,4-diketochromans, biscoumarins, and chromanocoumarins. Arch. Pharm. 2006 339 6 319 326 10.1002/ardp.200500149 16649158
    [Google Scholar]
  136. Kong Y. Fu Y.J. Zu Y.G. Chang F.R. Chen Y.H. Liu X.L. Stelten J. Schiebel H.M. Cajanuslactone, a new coumarin with anti-bacterial activity from pigeon pea Cajanus cajan (L.) Millsp. leaves. Food Chem. 2010 121 4 1150 1155 10.1016/j.foodchem.2010.01.062
    [Google Scholar]
  137. Bhattacharyya S.S. Paul S. Mandal S.K. Banerjee A. Boujedaini N. Khuda-Bukhsh A.R. A synthetic coumarin (4-Methyl-7 hydroxy coumarin) has anti-cancer potentials against DMBA-induced skin cancer in mice. Eur. J. Pharmacol. 2009 614 1-3 128 136 10.1016/j.ejphar.2009.04.015 19393233
    [Google Scholar]
  138. Kostova I. Manolov I. Nicolova I. Konstantinov S. Karaivanova M. New lanthanide complexes of 4-methyl-7-hydroxycoumarin and their pharmacological activity. Eur. J. Med. Chem. 2001 36 4 339 347 10.1016/S0223‑5234(01)01221‑1 11461759
    [Google Scholar]
  139. Bubols G.B. Vianna, Dda.R.; Medina-Remon, A.; von Poser, G.; Lamuela-Raventos, R.M.; Eifler-Lima, V.L.; Garcia, S.C. The antioxidant activity of coumarins and flavonoids. Mini Rev. Med. Chem. 2013 13 3 318 334 22876957
    [Google Scholar]
  140. Vilar S. Quezada E. Santana L. Uriarte E. Yánez M. Fraiz N. Alcaide C. Cano E. Orallo F. Design, synthesis, and vasorelaxant and platelet antiaggregatory activities of coumarin–resveratrol hybrids. Bioorg. Med. Chem. Lett. 2006 16 2 257 261 10.1016/j.bmcl.2005.10.013 16275073
    [Google Scholar]
  141. Satoh S. Klocke F.J. Canty J.M. Tone-dependent coronary arterial-venous pressure differences at the cessation of venous outflow during long diastoles. Circulation 1993 88 3 1238 1244 10.1161/01.CIR.88.3.1238 8353885
    [Google Scholar]
  142. Ramsis T.M. Ebrahim M.A. Fayed E.A. Synthetic coumarin derivatives with anticoagulation and antiplatelet aggregation inhibitory effects. Med. Chem. Res. 2023 32 11 2269 2278 10.1007/s00044‑023‑03148‑1
    [Google Scholar]
  143. Sun C. Zhao W. Wang X. Sun Y. Chen X. A pharmacological review of dicoumarol: An old natural anticoagulant agent. Pharmacol. Res. 2020 160 105193 10.1016/j.phrs.2020.105193 32911072
    [Google Scholar]
  144. Mahmoodi N.O. Ghanbari Pirbasti F. Jalalifard Z. Recent advances in the synthesis of biscoumarin derivatives. J. Chin. Chem. Soc. 2018 65 4 383 394 10.1002/jccs.201700363
    [Google Scholar]
  145. Biglari M. Shirini F. Mahmoodi N.O. Zabihzadeh M. Safarpoor Nikoo Langarudi M. Alipour Khoshdel M. Taurine/choline chloride deep eutectic solvent as a novel eco-compatible catalyst to facilitate the multi-component synthesis of pyrano [2, 3-d] pyrimidinone (thione), hexahydroquinoline, and biscoumarin derivatives. Polycycl. Aromat. Compd. 2022 42 4 1452 1473 10.1080/10406638.2020.1781212
    [Google Scholar]
  146. Kumar G. Singh P. Bhargava G. Gill B.S. Rajput J.K. Kumar R. Deep eutectic solvents with ultrasonic energy as an environmentally benign and green approach for the synthesis of bisthioglycolic acid derivatives. J. Sulfur Chem. 2023 44 6 751 761 10.1080/17415993.2023.2242994
    [Google Scholar]
  147. Naikoo R.A. Singh P. Kumar R. Bhargava G. Solvent-free mechanochemical synthesis of bisthioglycolic acid derivatives: An efficient and versatile strategy for carbon–sulfur bond formation. J. Sulfur Chem. 2022 43 2 117 123 10.1080/17415993.2021.1983574
    [Google Scholar]
  148. Corbet J.P. Mignani G. Selected patented cross-coupling reaction technologies. Chem. Rev. 2006 106 7 2651 2710 10.1021/cr0505268 16836296
    [Google Scholar]
  149. Sethiya A. Teli P. Manhas A. Agarwal D. Soni J. Sahiba N. Jha P. Agarwal S. Carbon-SO3 H: An efficient catalyst for the synthesis of biscoumarin under ambient reaction conditions and their in silico studies. Synth. Commun. 2020 50 16 2440 2460 10.1080/00397911.2020.1780613
    [Google Scholar]
  150. McCoy D.E. Feo T. Harvey T.A. Prum R.O. Structural absorption by barbule microstructures of super black bird of paradise feathers. Nat. Commun. 2018 9 1 1 10.1038/s41467‑017‑02088‑w 29317637
    [Google Scholar]
  151. Singh T.P. Singh O.M. Recent progress in biological activities of indole and indole alkaloids. Mini Rev. Med. Chem. 2018 18 1 9 25 28782480
    [Google Scholar]
  152. de Sá Alves F. Barreiro E. Manssour Fraga C. From nature to drug discovery: the indole scaffold as a ‘privileged structure’. Mini Rev. Med. Chem. 2009 9 7 782 793 10.2174/138955709788452649 19519503
    [Google Scholar]
  153. Kaushik N. Kaushik N. Attri P. Kumar N. Kim C. Verma A. Choi E. Biomedical importance of indoles. Molecules 2013 18 6 6620 6662 10.3390/molecules18066620 23743888
    [Google Scholar]
  154. Lal S. Snape T.J. 2-Arylindoles: A privileged molecular scaffold with potent, broad-ranging pharmacological activity. Curr. Med. Chem. 2012 19 28 4828 4837 10.2174/092986712803341449 22830349
    [Google Scholar]
  155. Pojarová M. Kaufmann D. Gastpar R. Nishino T. Reszka P. Bednarski P.J. von Angerer E. [(2-Phenylindol-3-yl)methylene]propanedinitriles inhibit the growth of breast cancer cells by cell cycle arrest in G2/M phase and apoptosis. Bioorg. Med. Chem. 2007 15 23 7368 7379 10.1016/j.bmc.2007.07.046 17889547
    [Google Scholar]
  156. Segura-Quezada L.A. Alba-Betancourt C. Chacón-García L. Chávez-Rivera R. Navarro-Santos P. Ortiz-Alvarado R. Tapia-Juárez M. Negrete-Díaz J.V. Martínez-Morales J.F. Deveze-Álvarez M.A. Zapata-Morales J.R. Solorio Alvarado C.R. Synthesis and Anti‐inflammatory effect of simple 2,3‐diarylindoles. On route to new NSAID Scaffolds. ChemistrySelect 2024 9 4 e202303803 10.1002/slct.202303803
    [Google Scholar]
  157. Suzen S. Buyukbingol E. Anti-cancer activity studies of indolalthiohydantoin (PIT) on certain cancer cell lines. Farmaco 2000 55 4 246 248 10.1016/S0014‑827X(00)00028‑8 10966154
    [Google Scholar]
  158. Büyükbingöl E. Süzen S. Klopman G. Studies on the synthesis and structure-activity relationships of 5-(3′-indolal)-2-thiohydantoin derivatives as aldose reductase enzyme inhibitors. Farmaco 1994 49 6 443 447 8074787
    [Google Scholar]
  159. Suzen S. Buyukbingol E. Evaluation of anti-HIV activity of 5-(2-phenyl-3′-indolal)-2-thiohydantoin. Farmaco 1998 53 7 525 527 10.1016/S0014‑827X(98)00053‑6 9836465
    [Google Scholar]
  160. Mukhtar N.A. Suleiman M. Al-Maqtari H.M. Theva Das K. Bhat A.R. Jamalis J. New Insights into the Modifications and Bioactivities of Indole-3- Carboxaldehyde and its Derivatives as a Potential Scaffold for Drug Design: A mini-review. Mini Rev. Med. Chem. 2025 25 6 480 503 10.2174/0113895575351704241120060746 39781713
    [Google Scholar]
  161. Chaudhary A. Recent development in the synthesis of heterocycles by 2-naphthol-based multicomponent reactions. Mol. Divers. 2021 25 2 1211 1245 10.1007/s11030‑020‑10076‑4 32206945
    [Google Scholar]
  162. Das D. Saha M. Das A.R. Synthesis, properties and catalysis of quantum dots in C–C and C-heteroatom bond formations. Phys. Sci. Rev. 2023 8 11 4253 4324 10.1515/psr‑2021‑0093
    [Google Scholar]
  163. Keri R.S. Budagumpi S. Pai R.K. Balakrishna R.G. Chromones as a privileged scaffold in drug discovery: A review. Eur. J. Med. Chem. 2014 78 340 374 10.1016/j.ejmech.2014.03.047 24691058
    [Google Scholar]
  164. Radhakrishnan E.K. Benny A.T. Arikkatt S.D. Vazhappilly C.G. Kannadasan S. Thomas R. Leelabaiamma M.S.N. Shanmugam P. Chromone, a privileged scaffold in drug discovery: Developments in the synthesis and bioactivity. Mini Rev. Med. Chem. 2022 22 7 1030 1063 10.2174/1389557521666211124141859 34819000
    [Google Scholar]
  165. Kargar Behbahani F. Ghorbani M. Sadeghpour M. Mirzaei M. L-Proline as reusable and organo catalyst for the one-pot synthesis of substituted 2-amino-4H-chromenes. Lett. Org. Chem. 2013 10 3 191 194 10.2174/1570178611310030008
    [Google Scholar]
  166. Alvi S. Alam M. Ali R. A facile catalyst-free one-pot three component synthesis of pharmacologically important indole-centered 4H-chromenes in a deep eutectic solvent (DES). J. Mol. Liq. 2023 390 122951 10.1016/j.molliq.2023.122951
    [Google Scholar]
  167. Chen D.U. Kuo P.Y. Yang D.Y. Design and synthesis of novel diphenacoum-derived, conformation-restricted vitamin K 2,3-epoxide reductase inhibitors. Bioorg. Med. Chem. Lett. 2005 15 10 2665 2668 10.1016/j.bmcl.2005.03.005 15863338
    [Google Scholar]
  168. Jagdale A.R. Sudalai A. p-Toluenesulfonic acid mediated hydroarylation of cinnamic acids with anisoles and phenols under metal and solvent-free conditions. Tetrahedron Lett. 2007 48 28 4895 4898 10.1016/j.tetlet.2007.05.059
    [Google Scholar]
  169. Li J. Wang X. Bai R. Gu Y. Versatile application of strong Brønsted acid deep eutectic solvent as recyclable reaction media and catalysts in organic synthesis. J. Mol. Liq. 2023 385 121876 10.1016/j.molliq.2023.121876
    [Google Scholar]
  170. Maleki A. An efficient magnetic heterogeneous nanocatalyst for the synthesis of pyrazinoporphyrazine macrocycles. Polycycl. Aromat. Compd. 2018 38 5 402 409 10.1080/10406638.2016.1221836
    [Google Scholar]
  171. Zonouz A.M. Sahranavard N. Synthesis of 1,4‐dihydropyridine derivatives under aqueous media. J. Chem. 2010 7 S1 S372 S376 10.1155/2010/792730
    [Google Scholar]
  172. Maleki A. Hassanzadeh-Afruzi F. Varzi Z. Esmaeili M.S. Magnetic dextrin nanobiomaterial: An organic-inorganic hybrid catalyst for the synthesis of biologically active polyhydroquinoline derivatives by asymmetric Hantzsch reaction. Mater. Sci. Eng. C 2020 109 110502 10.1016/j.msec.2019.110502 32228990
    [Google Scholar]
  173. Maleki A. Hamidi N. Maleki S. Rahimi J. Surface modified SPIONs‐Cr(VI) ions‐immobilized organic‐inorganic hybrid as a magnetically recyclable nanocatalyst for rapid synthesis of polyhydroquinolines under solvent‐free conditions at room temperature. Appl. Organomet. Chem. 2018 32 4 e4245 10.1002/aoc.4245
    [Google Scholar]
  174. Azizi M. Maleki A. Hakimpoor F. Firouzi-Haji R. Ghassemi M. Rahimi J. Green approach for highly efficient synthesis of polyhydroquinolines using Fe3O4@ PEO-SO3H as a novel and recoverable magnetic nanocomposite catalyst. Lett. Org. Chem. 2018 15 9 753 759 10.2174/1570178615666180126155204
    [Google Scholar]
  175. Ahghari M.R. Soltaninejad V. Maleki A. Synthesis of nickel nanoparticles by a green and convenient method as a magnetic mirror with antibacterial activities. Sci. Rep. 2020 10 1 12627 10.1038/s41598‑020‑69679‑4 32724123
    [Google Scholar]
  176. Sepehri S. Sanchez H.P. Fassihi A. Hantzsch-Type dihydropyridines and Biginelli-type tetra-hydropyrimidines: A review of their chemotherapeutic activities. J. Pharm. Pharm. Sci. 2015 18 1 1 52 10.18433/J3Q01V 25877440
    [Google Scholar]
  177. Maleki A. Firouzi-Haji R. L-Proline functionalized magnetic nanoparticles: A novel magnetically reusable nanocatalyst for one-pot synthesis of 2,4,6-triarylpyridines. Sci. Rep. 2018 8 1 17303 10.1038/s41598‑018‑35676‑x 30470821
    [Google Scholar]
  178. Kumar G. Bhargava G. Kumar R. Trio role of deep eutectic solvents in the green synthesis of 1, 4-dihydropyridine synthesis via hantzsch reaction. Polycycl. Aromat. Compd. 2023 43 8 7238 7251 10.1080/10406638.2022.2133905
    [Google Scholar]
  179. Phucho I.T. Nongpiur A. Tumtin S. Nongrum R. Nongkhlaw R.L. Recent progress in the chemistry of dihydropyrimidinones. ChemInform 2010 41 31 201031260 10.1002/chin.201031260
    [Google Scholar]
  180. Saleem Khan M. Asif Nawaz M. Jalil S. Rashid F. Hameed A. Asari A. Mohamad H. Ur Rehman A. Iftikhar M. Iqbal J. al-Rashida M. Deep eutectic solvent mediated synthesis of 3,4-dihydropyrimidin-2(1H)-ones and evaluation of biological activities targeting neurodegenerative disorders. Bioorg. Chem. 2022 118 105457 10.1016/j.bioorg.2021.105457 34798458
    [Google Scholar]
  181. Atwal K.S. Rovnyak G.C. Kimball S.D. Floyd D.M. Moreland S. Swanson B.N. Gougoutas J.Z. Schwartz J. Smillie K.M. Malley M.F. Dihydropyrimidine calcium channel blockers. II. 3-Substituted-4-aryl-1,4-dihydro-6-methyl-5-pyrimidinecarboxylic acid esters as potent mimics of dihydropyridines. J. Med. Chem. 1990 33 9 2629 2635 10.1021/jm00171a044 2391701
    [Google Scholar]
  182. Rovnyak G.C. Kimball S.D. Beyer B. Cucinotta G. DiMarco J.D. Gougoutas J. Hedberg A. Malley M. McCarthy J.P. Zhang R. Calcium entry blockers and activators: Conformational and structural determinants of dihydropyrimidine calcium channel modulators. J. Med. Chem. 1995 38 1 119 129 10.1021/jm00001a017 7837222
    [Google Scholar]
  183. Sabitha G. Reddy G. K. K. Reddy C. S. Yadav J. One-pot synthesis of dihydropyrimidinones using iodotrimethylsilane. 2003 6 0858 0860 10.1055/s‑2003‑38734
  184. Atwal K.S. Swanson B.N. Unger S.E. Floyd D.M. Moreland S. Hedberg A. O’Reilly B.C. Dihydropyrimidine calcium channel blockers. 3. 3-Carbamoyl-4-aryl-1,2,3,4-tetrahydro-6-methyl-5-pyrimidinecarboxylic acid esters as orally effective antihypertensive agents. J. Med. Chem. 1991 34 2 806 811 10.1021/jm00106a048 1995904
    [Google Scholar]
  185. Grover G.J. Dzwonczyk S. McMullen D.M. Normandin D.E. Parham C.S. Sleph P.G. Moreland S. Pharmacologic profile of the dihydropyrimidine calcium channel blockers SQ 32,547 and SQ 32,946. J. Cardiovasc. Pharmacol. 1995 26 2 289 294 10.1097/00005344‑199508000‑00015 7475054
    [Google Scholar]
  186. Stefani H.A. Oliveira C.B. Almeida R.B. Pereira C.M.P. Braga R.C. Cella R. Borges V.C. Savegnago L. Nogueira C.W. Dihydropyrimidin-(2H)-ones obtained by ultrasound irradiation: a new class of potential antioxidant agents. Eur. J. Med. Chem. 2006 41 4 513 518 10.1016/j.ejmech.2006.01.007 16516351
    [Google Scholar]
  187. Kakadiya R. Dong H. Kumar A. Narsinh D. Zhang X. Chou T.C. Lee T.C. Shah A. Su T.L. Potent DNA-directed alkylating agents: Synthesis and biological activity of phenyl N-mustard–quinoline conjugates having a urea or hydrazinecarboxamide linker. Bioorg. Med. Chem. 2010 18 6 2285 2299 10.1016/j.bmc.2010.01.061 20181487
    [Google Scholar]
  188. Wang K. Zhang J. de Sousa Júnior W.T. da Silva V.C.M. Rodrigues M.C. Morais J.A.V. Jiang C. Longo J.P.F. Azevedo R.B. Muehlmann L.A. A xanthene derivative, free or associated to nanoparticles, as a new potential agent for anticancer photodynamic therapy. J. Biomater. Sci. Polym. Ed. 2020 31 15 1977 1993 10.1080/09205063.2020.1788370 32589525
    [Google Scholar]
  189. Banerjee A.G. Kothapalli L.P. Sharma P.A. Thomas A.B. Nanda R.K. Shrivastava S.K. Khatanglekar V.V. A facile microwave assisted one pot synthesis of novel xanthene derivatives as potential anti-inflammatory and analgesic agents. Arab. J. Chem. 2016 9 S480 S489 10.1016/j.arabjc.2011.06.001
    [Google Scholar]
  190. Llama E.F. del Campo C. Capo M. Anadon M. Synthesis and antinociceptive activity of 9-phenyl-oxy or 9-acyl-oxy derivatives of xanthene, thioxanthene and acridine. Eur. J. Med. Chem. 1989 24 4 391 396 10.1016/0223‑5234(89)90083‑4
    [Google Scholar]
  191. Azebaze A.G.B. Meyer M. Valentin A. Nguemfo E.L. Fomum Z.T. Nkengfack A.E. Prenylated xanthone derivatives with antiplasmodial activity from Allanblackia monticola STANER L.C. Chem. Pharm. Bull. 2006 54 1 111 113 10.1248/cpb.54.111 16394561
    [Google Scholar]
  192. Marona H. Pękala E. Antkiewicz-Michaluk L. Walczak M. Szneler E. Anticonvulsant activity of some xanthone derivatives. Bioorg. Med. Chem. 2008 16 15 7234 7244 10.1016/j.bmc.2008.06.039 18640843
    [Google Scholar]
  193. Omolo J.J. Johnson M.M. van Vuuren S.F. de Koning C.B. The synthesis of xanthones, xanthenediones, and spirobenzofurans: Their antibacterial and antifungal activity. Bioorg. Med. Chem. Lett. 2011 21 23 7085 7088 10.1016/j.bmcl.2011.09.088 22014830
    [Google Scholar]
  194. Liang J.L. Cha H.C. Jahng Y. Recent advances in the studies on luotonins. Molecules 2011 16 6 4861 4883 10.3390/molecules16064861 21677601
    [Google Scholar]
  195. Vo T.G. Hidalgo S.D.S. Chiang C.Y. Controllable electrodeposition of binary metal films from deep eutectic solvent as an efficient and durable catalyst for the oxygen evolution reaction. Dalton Trans. 2019 48 39 14748 14757 10.1039/C9DT03028J 31549710
    [Google Scholar]
  196. Winder C.V. Wax J. Serrano B. Jones E.M. McPhee M.L. Anti‐inflammatory and antipyretic properties of N‐(α,α,α‐Trifluoro‐m‐tolyl) anthranilic acid (CI-440; flufenamic acid). Arthritis Rheum. 1963 6 1 36 47 10.1002/art.1780060105 14001133
    [Google Scholar]
  197. Cicco L. Vitale P. Perna F.M. Capriati V. García-Álvarez J. Cu-catalysed Chan–Evans–Lam reaction meets deep eutectic solvents: Efficient and selective C–N bond formation under aerobic conditions at room temperature. RSC Sustainability 2023 1 4 847 852 10.1039/D3SU00093A
    [Google Scholar]
  198. Daikoku T. Wang D. Tranguch S. Morrow J.D. Orsulic S. DuBois R.N. Dey S.K. Cyclooxygenase-1 is a potential target for prevention and treatment of ovarian epithelial cancer. Cancer Res. 2005 65 9 3735 3744 10.1158/0008‑5472.CAN‑04‑3814 15867369
    [Google Scholar]
  199. Vitale P. Panella A. Scilimati A. Perrone M.G. COX‐1 Inhibitors: Beyond structure toward therapy. Med. Res. Rev. 2016 36 4 641 671 10.1002/med.21389 27111555
    [Google Scholar]
  200. Ranjbar S. Khoshneviszadeh M. Tavakkoli M. Miri R. Edraki N. Firuzi O. 5-Oxo-hexahydroquinoline and 5-oxo-tetrahydrocyclopentapyridine derivatives as promising antiproliferative agents with potential apoptosis-inducing capacity. Mol. Divers. 2022 26 3 1481 1500 10.1007/s11030‑021‑10281‑9 34671894
    [Google Scholar]
  201. Tyagi S. Salahuddin; Mazumder, A.; Kumar, R.; Datt, V.; Shabana, K.; Yar, M.S.; Ahsan, M.J. Synthesis and sar of potential anti-cancer agents of quinoline analogues: A review. Med. Chem. 2023 19 8 785 812 10.2174/1573406419666230228140619 36852806
    [Google Scholar]
  202. Dodd S. Berk M. Olanzapine/fluoxetine combination for treatment-resistant depression: Efficacy and clinical utility. Expert Rev. Neurother. 2008 8 9 1299 1306 10.1586/14737175.8.9.1299 18759541
    [Google Scholar]
  203. Sanomachi T. Suzuki S. Kuramoto K. Takeda H. Sakaki H. Togashi K. Seino S. Yoshioka T. Okada M. Kitanaka C. Olanzapine, an atypical antipsychotic, inhibits survivin expression and sensitizes cancer cells to chemotherapeutic agents. Anticancer Res. 2017 37 11 6177 6188 29061799
    [Google Scholar]
  204. Sato J. Kashiwaba M. Komatsu H. Ishida K. Nihei S. Kudo K. Effect of olanzapine for breast cancer patients resistant to triplet antiemetic therapy with nausea due to anthracycline-containing adjuvant chemotherapy. Jpn. J. Clin. Oncol. 2016 46 5 415 420 10.1093/jjco/hyw011 26951840
    [Google Scholar]
  205. Drabczyk A.K. Kułaga D. Zaręba P. Tylińska W. Bachowski W. Archała A. Wnorowski A. Tzani A. Detsi A. Jaśkowska J. Eco-friendly synthesis of new olanzapine derivatives and evaluation of their anticancer potential. RSC Advances 2023 13 30 20467 20476 10.1039/D3RA03926A 37435368
    [Google Scholar]
  206. Curtin N.J. Szabo C. Therapeutic applications of PARP inhibitors: Anticancer therapy and beyond. Mol. Aspects Med. 2013 34 6 1217 1256 10.1016/j.mam.2013.01.006 23370117
    [Google Scholar]
  207. Tiwari A.K. Singh V.K. Bajpai A. Shukla G. Singh S. Mishra A.K. Synthesis and biological properties of 4-(3H)-quinazolone derivatives. Eur. J. Med. Chem. 2007 42 9 1234 1238 10.1016/j.ejmech.2007.01.002 17321640
    [Google Scholar]
  208. Mhaske S.B. Argade N.P. The chemistry of recently isolated naturally occurring quinazolinone alkaloids. Tetrahedron 2006 62 42 9787 9826 10.1016/j.tet.2006.07.098
    [Google Scholar]
  209. Raghavendra N.M. Thampi P. Gurubasavarajaswamy P.M. Sriram D. Synthesis and antimicrobial activities of some novel substituted 2-imidazolyl-N-(4-oxo-quinazolin-3(4H)-yl)-acetamides. Chem. Pharm. Bull. 2007 55 11 1615 1619 10.1248/cpb.55.1615 17978522
    [Google Scholar]
  210. Laddha S.S. Wadodkar S.G. Meghal S.K. Studies on some biologically active substituted 4(3H)-quinazolinones. Part 1. Synthesis, characterization and anti-inflammatory-antimicrobial activity of 6,8-disubstituted 2-phenyl-3-[substituted-benzothiazol-2-yl]-4(3H)-quinazolinones. ARKIVOC 2006 2006 11 1 20 10.3998/ark.5550190.0007.b01
    [Google Scholar]
  211. Pandeya S.N. Sriram D. Nath G. De Clercq E. Synthesis, antibacterial, antifungal and anti-HIV evaluation of Schiff and Mannich bases of isatin derivatives with 3-amino-2-methylmercapto quinazolin-4(3H)-one. Pharm. Acta Helv. 1999 74 1 11 17 10.1016/S0031‑6865(99)00010‑2 10748620
    [Google Scholar]
  212. Gürsoy A. Karali N. Synthesis and primary cytotoxicity evaluation of 3-[[(3-phenyl-4(3H)-quinazolinone-2-yl)mercaptoacetyl]hydrazono]-1H-2-indolinones. Eur. J. Med. Chem. 2003 38 6 633 643 10.1016/S0223‑5234(03)00085‑0 12832136
    [Google Scholar]
  213. Philipova I. Dobrikov G. Krumova K. Kaneti J. Convenient synthesis of some 2‐substituted 4(3H)‐quinazolinone derivatives. J. Heterocycl. Chem. 2006 43 4 1057 1063 10.1002/jhet.5570430436
    [Google Scholar]
  214. Gürsoy A. Ünal B. Karali N. Ötük G. Synthesis, characterization and primary antimicrobial activity evaluation of 3-phenyl-6-methyl-4 (3H)-quinazolinone-2-yl-mercaptoace-] tic acid arylidenehydrazides. Turk. J. Chem. 2005 29 3 233 246
    [Google Scholar]
  215. Mourad A.F.E. Aly A.A. Farag H.H. Beshr E.A. Microwave assisted synthesis of triazoloquinazolinones and benzimidazoquinazolinones. Beilstein J. Org. Chem. 2007 3 1 11 10.1186/1860‑5397‑3‑11 17338816
    [Google Scholar]
  216. Zhou Y. Murphy D.E. Sun Z. Gregor V.E. Novel parallel synthesis of N-(4-oxo-2-substituted-4H-quinazolin-3-yl)-substituted sulfonamides. Tetrahedron Lett. 2004 45 43 8049 8051 10.1016/j.tetlet.2004.08.183
    [Google Scholar]
  217. Nanda A.K. Ganguli S. Chakraborty R. Antibacterial activity of some 3-(arylideneamino)-2-phenylquinazoline-4(3H)-ones: Synthesis and preliminary QSAR studies. Molecules 2007 12 10 2413 2426 10.3390/12102413 17978766
    [Google Scholar]
  218. Dinakaran M. Selvam P. DeClercq E. Sridhar S.K. Synthesis, antiviral and cytotoxic activity of 6-bromo-2,3-disubstituted-4(3H)-quinazolinones. Biol. Pharm. Bull. 2003 26 9 1278 1282 10.1248/bpb.26.1278 12951471
    [Google Scholar]
  219. Wang D. Gao F. Quinazoline derivatives: Synthesis and bioactivities. Chem. Cent. J. 2013 7 1 95 10.1186/1752‑153X‑7‑95 23731671
    [Google Scholar]
  220. Hao Y. Wang K. Wang Z. Liu Y. Ma D. Wang Q. Luotonin A and its derivatives as novel antiviral and antiphytopathogenic fungus agents. J. Agric. Food Chem. 2020 68 33 8764 8773 10.1021/acs.jafc.0c04278 32806124
    [Google Scholar]
  221. Jiang S. Zeng Q. Gettayacamin M. Tungtaeng A. Wannaying S. Lim A. Hansukjariya P. Okunji C.O. Zhu S. Fang D. Antimalarial activities and therapeutic properties of febrifugine analogs. Antimicrob. Agents Chemother. 2005 49 3 1169 1176 10.1128/AAC.49.3.1169‑1176.2005 15728920
    [Google Scholar]
  222. Komar M. Rastija V. Bešlo D. Molnar M. Synthesis of quinazolin-4(3H)-ones in natural deep eutectic solvents: Comparison of various synthetic methods and calculation of ADME properties. J. Mol. Struct. 2024 1304 137725 10.1016/j.molstruc.2024.137725
    [Google Scholar]
  223. Ragab S.S. Abdelraof M. Elrashedy A.A. Sweed A.M.K. Design, synthesis, molecular dynamic simulation studies, and antibacterial evaluation of new spirocyclic aminopyrimidines. J. Mol. Struct. 2023 1278 134912 10.1016/j.molstruc.2023.134912
    [Google Scholar]
  224. Skorepova E. Čerňa I. Vlasáková R. Zvoníček V. Tkadlecová M. Dušek M. Spirocyclic character of ixazomib citrate revealed by comprehensive XRD, NMR and DFT study. J. Mol. Struct. 2017 1148 22 27 10.1016/j.molstruc.2017.07.025
    [Google Scholar]
  225. Zhao H. Huai J. Weng C. Han H. A new spiropyran compound for selective naked-eye detection of copper ions in aqueous media and on test paper strips. J. Mol. Struct. 2022 1263 133146 10.1016/j.molstruc.2022.133146
    [Google Scholar]
  226. Saraswat P. Jeyabalan G. Hassan M.Z. Rahman M.U. Nyola N.K. Review of synthesis and various biological activities of spiro heterocyclic compounds comprising oxindole and pyrrolidine moities. Synth. Commun. 2016 46 20 1643 1664 10.1080/00397911.2016.1211704
    [Google Scholar]
  227. Amaral J.D. Silva D. Rodrigues C.M.P. Solá S. Santos M.M.M. A novel small molecule p53 stabilizer for brain cell differentiation. Front Chem. 2019 7 15 10.3389/fchem.2019.00015 30766866
    [Google Scholar]
  228. Chen D.Z. Xiao W.J. Chen J.R. Synthesis of spiropyrazoline oxindoles by a formal [4 + 1] annulation reaction between 3-bromooxindoles and in situ -derived 1,2-diaza-1,3-dienes. Org. Chem. Front. 2017 4 7 1289 1293 10.1039/C7QO00163K
    [Google Scholar]
  229. Sadiq Z. Ghani A. Hashmi M.A. Dahshan A. Shahnaz; Al-Mijalli, S.H.; Iqbal, M.; Hussain, E.A. Green synthesis of novel spiropyrazoline-indolinones in neutral deep eutectic solvents and DFT studies. Heliyon 2024 10 1 e23814 10.1016/j.heliyon.2023.e23814 38226241
    [Google Scholar]
  230. Shaabani A. Hooshmand S.E. Choline chloride/urea as a deep eutectic solvent/organocatalyst promoted three-component synthesis of 3-aminoimidazo-fused heterocycles via Groebke–Blackburn–Bienayme process. Tetrahedron Lett. 2016 57 3 310 313 10.1016/j.tetlet.2015.12.014
    [Google Scholar]
  231. Ghaffari F. Zafarani-Moattar M.T. Shekaari H. Aqueous biphasic systems created with choline chloride-fructose natural deep eutectic solvents and polypropylene glycol 400 and usage of these systems for extraction of some commonly used drugs. Fluid Phase Equilib. 2022 555 113348 10.1016/j.fluid.2021.113348
    [Google Scholar]
  232. Shafie M.H. Samsudin D. Yusof R. Gan C.Y. Characterization of bio-based plastic made from a mixture of Momordica charantia bioactive polysaccharide and choline chloride/glycerol based deep eutectic solvent. Int. J. Biol. Macromol 2018 118 Pt A 1183 1192 10.1016/j.ijbiomac.2018.06.103 29944943
    [Google Scholar]
  233. Ghorab M.M. Hassan A.Y. Synthesis and antibacterial properties of new dithienyl containing pyran, pyrano[2,3-b] pyridine, pyrano[2,3-d]pyrimidine and pyridine derivatives. Phosphorus Sulfur Silicon Relat. Elem. 1998 141 1 251 261 10.1080/10426509808033737
    [Google Scholar]
  234. Grivsky E.M. Lee S. Sigel C.W. Duch D.S. Nichol C.A. Synthesis and antitumor activity of 2,4-diamino-6-(2,5-dimethoxybenzyl)-5-methylpyrido[2,3-d]pyrimidine. J. Med. Chem. 1980 23 3 327 329 10.1021/jm00177a025 6928967
    [Google Scholar]
  235. Broom A.D. Shim J.L. Anderson G.L. Pyrido[2,3-d]pyrimidines. IV. Synthetic studies leading to various oxopyrido[2,3-d]pyrimidines. J. Org. Chem. 1976 41 7 1095 1099 10.1021/jo00869a003 1255289
    [Google Scholar]
  236. Heber D. Heers C. Ravens U. Positive inotropic activity of 5-amino-6-cyano-1,3-dimethyl-1,2,3,4-tetrahydropyrido [2,3-d]pyrim idine-2,4-dione in cardiac muscle from guinea-pig and man. Part 6: Compounds with positive inotropic activity. Pharmazie 1993 48 7 537 541 7692456
    [Google Scholar]
  237. Davoll J. Clarke J. Elslager E.F. Folate antagonists. 4. Antimalarial and antimetabolite effects of 2,4-diamino-6-((benzyl)amino)pyrido(2,3-d)-pyrimidines. J. Med. Chem. 1972 15 8 837 839 10.1021/jm00278a009 5044297
    [Google Scholar]
  238. Kefayati H. Valizadeh M. Islamnezhad A. Green electrosynthesis of pyrano [2, 3-d] pyrimidinones at room temperature. Anal. Bioanal Electrochem 2014 6 1 80 90
    [Google Scholar]
  239. Albadi J. Mansournezhad A. Sadeghi T. Eco-friendly synthesis of pyrano[2,3-d]pyrimidinone derivatives catalyzed by a novel nanocatalyst of ZnO-supported copper oxide in water. Res. Chem. Intermed. 2015 41 11 8317 8326 10.1007/s11164‑014‑1894‑0
    [Google Scholar]
  240. Bhat A.R. Dongre R.S. Shalla A.H. Naikoo G.A. Ul Hassan I. Computational analysis for antimicrobial active pyrano[2,3-d]pyrimidine derivatives on the basis of theoretical and experimental ground. J. Assoc. Arab. Univ. Basic Appl. Sci. 2016 20 1 19 25 10.1016/j.jaubas.2015.12.004
    [Google Scholar]
  241. Bhat A.R. Shalla A.H. Dongre R.S. Microwave assisted one-pot catalyst free green synthesis of new methyl-] 7-amino-4-oxo-5-phenyl-2-thioxo-2,3,4,5-tetrahydro-1H-pyrano[2,3-d]pyrimidine-6-carboxylates as potent in vitro antibacterial and antifungal activity. J. Adv. Res. 2015 6 6 941 948 10.1016/j.jare.2014.10.007 26644932
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673389576251125054333
Loading
/content/journals/cmc/10.2174/0109298673389576251125054333
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test