Skip to content
2000
image of Prognostic and Immune Infiltration Analysis in ESCC Using a Ferroptosis-EMT Biomarker Signature

Abstract

Introduction

Limited studies have explored how ferroptosis and Epithelial-Mesenchymal Transition (EMT) jointly affect the prognosis of Esophageal Squamous Cell Carcinoma (ESCC). This study aimed to develop a clinical prognostic model based on the combined impact of ESCC.

Methods

Gene expression levels and clinical data of ESCC patients were obtained from the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) database. Using Cox regression analysis and Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis, we identified nine prognostic genes to build a predictive model. Immune cell infiltration was evaluated using CIBERSORT and single-sample Gene Set Enrichment Analysis methods. Finally, experiments were conducted to assess the oncogenic effects of and .

Results

We developed a Ferroptosis-EMT Integrated Score (FEIS) based on nine key genes. High-FEIS patients had worse survival, increased immune infiltration, and higher expression of immune checkpoints. A nomogram was built for prognosis prediction, and studies confirmed the tumor-promoting roles of ACSL3 and VIM.

Discussion

The FEIS model robustly predicts ESCC prognosis by integrating ferroptosis and EMT, offering novel biomarkers for personalized immunotherapy, though further validation is warranted.

Conclusion

Our study introduced a novel prognostic tool that integrates ferroptosis and EMT-related biomarkers and offers valuable insights for developing personalized treatment strategies for ESCC patients.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673402007251029113128
2026-01-16
2026-01-31
Loading full text...

Full text loading...

References

  1. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  2. Bray F. Laversanne M. Sung H. Ferlay J. Siegel R.L. Soerjomataram I. Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024 74 3 229 263 10.3322/caac.21834 38572751
    [Google Scholar]
  3. Reichenbach Z.W. Murray M.G. Saxena R. Farkas D. Karassik E.G. Klochkova A. Patel K. Tice C. Hall T.M. Gang J. Parkman H.P. Ward S.J. Tétreault M.P. Whelan K.A. Clinical and translational advances in esophageal squamous cell carcinoma. Adv. Cancer Res. 2019 144 95 135 10.1016/bs.acr.2019.05.004 31349905
    [Google Scholar]
  4. Morgan E. Soerjomataram I. Rumgay H. Coleman H.G. Thrift A.P. Vignat J. Laversanne M. Ferlay J. Arnold M. The global landscape of esophageal squamous cell carcinoma and esophageal adenocarcinoma incidence and mortality in 2020 and projections to 2040: New estimates from GLOBOCAN 2020. Gastroenterology 2022 163 3 649 658.e2 10.1053/j.gastro.2022.05.054 35671803
    [Google Scholar]
  5. Waters J.K. Reznik S.I. Update on management of squamous cell esophageal cancer. Curr. Oncol. Rep. 2022 24 3 375 385 10.1007/s11912‑021‑01153‑4 35142974
    [Google Scholar]
  6. Codipilly D.C. Wang K.K. Squamous cell carcinoma of the esophagus. Gastroenterol. Clin. North. Am. 2022 51 3 457 484 10.1016/j.gtc.2022.06.005 36153105
    [Google Scholar]
  7. Enzinger P.C. Mayer R.J. Esophageal Cancer. N. Engl. J. Med. 2003 349 23 2241 2252 10.1056/NEJMra035010 14657432
    [Google Scholar]
  8. Jiang W. Zhang B. Xu J. Xue L. Wang L. Current status and perspectives of esophageal cancer: A comprehensive review. Cancer Commun. 2025 45 3 281 331 10.1002/cac2.12645 39723635
    [Google Scholar]
  9. Lander S. Lander E. Gibson M.K. Esophageal cancer: Overview, risk factors, and reasons for the rise. Curr. Gastroenterol. Rep. 2023 25 11 275 279 10.1007/s11894‑023‑00899‑0 37812328
    [Google Scholar]
  10. Guo Y. Xu X. Wang T. Liu Y. Gu D. Fang Y. Wang Q. Shi H. wu D. Zhang Z. Zhou G. Ye J. Efficacy, safety, and survival of neoadjuvant immunotherapy plus chemotherapy in locally advanced esophageal squamous cell carcinoma: A real-world retrospective study. Int. Immunopharmacol. 2024 138 112558 10.1016/j.intimp.2024.112558 38941666
    [Google Scholar]
  11. Petrillo A. Smyth E.C. Immunotherapy for squamous esophageal cancer: A review. J. Pers. Med. 2022 12 6 862 10.3390/jpm12060862 35743646
    [Google Scholar]
  12. Uhlenhopp D.J. Then E.O. Sunkara T. Gaduputi V. Epidemiology of esophageal cancer: Update in global trends, etiology and risk factors. Clin. J. Gastroenterol. 2020 13 6 1010 1021 10.1007/s12328‑020‑01237‑x 32965635
    [Google Scholar]
  13. Jiang X. Stockwell B.R. Conrad M. Ferroptosis: Mechanisms, biology and role in disease. Nat. Rev. Mol. Cell. Biol. 2021 22 4 266 282 10.1038/s41580‑020‑00324‑8 33495651
    [Google Scholar]
  14. Zhou S. Liu J. Wan A. Zhang Y. Qi X. Epigenetic regulation of diverse cell death modalities in cancer: A focus on pyroptosis, ferroptosis, cuproptosis, and disulfidptosis. J. Hematol. Oncol. 2024 17 1 22 10.1186/s13045‑024‑01545‑6 38654314
    [Google Scholar]
  15. Liang D. Minikes A.M. Jiang X. Ferroptosis at the intersection of lipid metabolism and cellular signaling. Mol. Cell 2022 82 12 2215 2227 10.1016/j.molcel.2022.03.022 35390277
    [Google Scholar]
  16. Zhao L. Zhou X. Xie F. Zhang L. Yan H. Huang J. Zhang C. Zhou F. Chen J. Zhang L. Ferroptosis in cancer and cancer immunotherapy. Cancer Commun. 2022 42 2 88 116 10.1002/cac2.12250 35133083
    [Google Scholar]
  17. Hao M. Jiang Y. Zhang Y. Yang X. Han J. Ferroptosis regulation by methylation in cancer. Biochim. Biophys. Acta. Rev. Cancer 2023 1878 6 188972 10.1016/j.bbcan.2023.188972 37634887
    [Google Scholar]
  18. Liu Z. Wang J. Li S. Li L. Li L. Li D. Guo H. Gao D. Liu S. Ruan C. Dang X. Prognostic prediction and immune infiltration analysis based on ferroptosis and EMT state in hepatocellular carcinoma. Front Immunol. 2022 13 1076045 10.3389/fimmu.2022.1076045 36591279
    [Google Scholar]
  19. Jiang K. Yin X. Zhang Q. Yin J. Tang Q. Xu M. Wu L. Shen Y. Zhou Z. Yu H. Yan S. STC2 activates PRMT5 to induce radioresistance through DNA damage repair and ferroptosis pathways in esophageal squamous cell carcinoma. Redox. Biol. 2023 60 102626 10.1016/j.redox.2023.102626 36764215
    [Google Scholar]
  20. Lv M. Gong Y. Liu X. Wang Y. Wu Q. Chen J. Min Q. Zhao D. Li X. Chen D. Yang D. Yeerken D. Liu R. Li J. Zhang W. Zhan Q. CDK7-YAP-LDHD axis promotes D-lactate elimination and ferroptosis defense to support cancer stem cell-like properties. Signal Transduct Target Ther. 2023 8 1 302 10.1038/s41392‑023‑01555‑9 37582812
    [Google Scholar]
  21. Shishido Y. Amisaki M. Matsumi Y. Yakura H. Nakayama Y. Miyauchi W. Miyatani K. Matsunaga T. Hanaki T. Kihara K. Yamamoto M. Tokuyasu N. Takano S. Sakamoto T. Honjo S. Hasegawa T. Fujiwara Y. Antitumor effect of 5-Aminolevulinic acid through ferroptosis in esophageal squamous cell carcinoma. Ann. Surg. Oncol. 2021 28 7 3996 4006 10.1245/s10434‑020‑09334‑4 33210267
    [Google Scholar]
  22. Dongre A. Weinberg R.A. New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nat. Rev. Mol. Cell Biol. 2019 20 2 69 84 10.1038/s41580‑018‑0080‑4 30459476
    [Google Scholar]
  23. Debnath P. Huirem R.S. Dutta P. Palchaudhuri S. Epithelial–mesenchymal transition and its transcription factors. Biosci. Rep. 2022 42 1 BSR20211754 10.1042/BSR20211754 34708244
    [Google Scholar]
  24. Kozon K. Małgorzata K. Jakub O. Patyra A. Spinal muscular atrophy – The effectiveness of treatment and new therapeutic possibilities for selected groups of patients in Poland. Prospects in Pharmaceutical Sciences 2023 21 2 68 72 10.56782/pps.134
    [Google Scholar]
  25. Mittal V. Epithelial mesenchymal transition in tumor metastasis. Annu. Rev. Pathol. 2018 13 1 395 412 10.1146/annurev‑pathol‑020117‑043854 29414248
    [Google Scholar]
  26. Mortezaee K. Majidpoor J. Kharazinejad E. Epithelial-mesenchymal transition in cancer stemness and heterogeneity: Updated. Med Oncol 2022 39 12 193 10.1007/s12032‑022‑01801‑0 36071302
    [Google Scholar]
  27. Faridi U. Anti-cancer activity of phenyl-1,3,5-heptatriyne in human liver cancer. Prospects in pharmaceutical sciences 2024 22 4 131 134 10.56782/pps.275
    [Google Scholar]
  28. Liu X. He M. Li L. Wang X. Han S. Zhao J. Dong Y. Ahmad M. Li L. Zhang X. Huo J. Liu Y. Pan C. Wang C. EMT and cancer cell stemness associated with chemotherapeutic resistance in esophageal cancer. Front Oncol. 2021 11 672222 10.3389/fonc.2021.672222 34150636
    [Google Scholar]
  29. Zhao L. Wang W. Xu L. Yi T. Zhao X. Wei Y. Vermeulen L. Goel A. Zhou S. Wang X. Integrative network biology analysis identifies miR-508-3p as the determinant for the mesenchymal identity and a strong prognostic biomarker of ovarian cancer. Oncogene 2019 38 13 2305 2319 10.1038/s41388‑018‑0577‑5 30478449
    [Google Scholar]
  30. Cong Z. Yuan F. Wang H. Cai X. Zhu J. Tang T. Zhang L. Han Y. Ma C. BTB domain and CNC homolog 1 promotes glioma invasion mainly through regulating extracellular matrix and increases ferroptosis sensitivity. Biochim. Biophys. Acta. Mol. Basis. Dis. 2022 1868 12 166554 10.1016/j.bbadis.2022.166554 36181980
    [Google Scholar]
  31. Liu L. Lian N. Shi L. Hao Z. Chen K. Ferroptosis: Mechanism and connections with cutaneous diseases. Front Cell Dev. Biol. 2023 10 1079548 10.3389/fcell.2022.1079548 36684424
    [Google Scholar]
  32. Guan D. Li C. Li Y. Li Y. Wang G. Gao F. Li C. The DpdtbA induced EMT inhibition in gastric cancer cell lines was through ferritinophagy-mediated activation of p53 and PHD2/hif-1α pathway. J. Inorg. Biochem. 2021 218 111413 10.1016/j.jinorgbio.2021.111413 33713969
    [Google Scholar]
  33. Yao J. Zhang Y. Li M. Sun Z. Liu T. Zhao M. Li Z. Single-cell RNA-Seq reveals the promoting role of ferroptosis tendency during lung adenocarcinoma EMT progression. Front Cell Dev. Biol. 2022 9 822315 10.3389/fcell.2021.822315 35127731
    [Google Scholar]
  34. Zhang W. Qian S. Tang B. Kang P. Zhang H. Shi C. Resveratrol inhibits ferroptosis and decelerates heart failure progression via Sirt1/p53 pathway activation. J. Cell Mol. Med. 2023 27 20 3075 3089 10.1111/jcmm.17874 37487007
    [Google Scholar]
  35. Bao Z. Hua L. Ye Y. Wang D. Li C. Xie Q. Wakimoto H. Gong Y. Ji J. MEF2C silencing downregulates NF2 and E-cadherin and enhances Erastin-induced ferroptosis in meningioma. Neuro-oncol 2021 23 12 2014 2027 10.1093/neuonc/noab114 33984142
    [Google Scholar]
  36. Klasson T.D. LaGory E.L. Zhao H. Huynh S.K. Papandreou I. Moon E.J. Giaccia A.J. ACSL3 regulates lipid droplet biogenesis and ferroptosis sensitivity in clear cell renal cell carcinoma. Cancer Metab. 2022 10 1 14 10.1186/s40170‑022‑00290‑z 36192773
    [Google Scholar]
  37. Qin Z. Ou S. Xu L. Sorensen K. Zhang Y. Hu D.P. Yang Z. Hu W.Y. Chen F. Prins G.S. Design and synthesis of isothiocyanate‐containing hybrid androgen receptor (AR) antagonist to downregulate AR and induce ferroptosis in GSH–Deficient prostate cancer cells. Chem. Biol. Drug. Des. 2021 97 5 1059 1078 10.1111/cbdd.13826 33470049
    [Google Scholar]
  38. Song X. Liu J. Kuang F. Chen X. Zeh H.J. Kang R. Kroemer G. Xie Y. Tang D. PDK4 dictates metabolic resistance to ferroptosis by suppressing pyruvate oxidation and fatty acid synthesis. Cell Rep. 2021 34 8 108767 10.1016/j.celrep.2021.108767 33626342
    [Google Scholar]
  39. Zhu J. Sun R. Sun K. Yan C. Jiang J. Kong F. Shi J. The deubiquitinase USP11 ameliorates intervertebral disc degeneration by regulating oxidative stress-induced ferroptosis via deubiquitinating and stabilizing Sirt3. Redox Biol. 2023 62 102707 10.1016/j.redox.2023.102707 37099926
    [Google Scholar]
  40. Qiao J. Chen Y. Mi Y. Jin H. Huang T. Liu L. Gong L. Wang L. Wang Q. Zou Z. NR5A2 synergizes with NCOA3 to induce breast cancer resistance to BET inhibitor by upregulating NRF2 to attenuate ferroptosis. Biochem. Biophys. Res. Commun. 2020 530 2 402 409 10.1016/j.bbrc.2020.05.069 32536370
    [Google Scholar]
  41. Hao L. Mi J. Song L. Guo Y. Li Y. Yin Y. Zhang C. SLC40A1 mediates ferroptosis and cognitive dysfunction in type 1 Diabetes. Neuroscience 2021 463 216 226 10.1016/j.neuroscience.2021.03.009 33727075
    [Google Scholar]
  42. Wang H. Peng S. Cai J. Bao S. Silencing of PTPN18 induced ferroptosis in endometrial cancer cells through p-P38-Mediated GPX4/xCT down-regulation. Cancer Manag. Res. 2021 13 1757 1765 10.2147/CMAR.S278728 33642877
    [Google Scholar]
  43. Wang Z. Wu L. Zhou Y. Chen Z. Zhang T. Wei H. Wang Z. Protein and metabolic profiles of tyrosine kinase inhibitors co-resistant liver cancer cells. Front Pharmacol. 2024 15 1394241 10.3389/fphar.2024.1394241 38835670
    [Google Scholar]
  44. Li M. Guo T. Lin J. Huang X. Ke Q. Wu Y. Fang C. Hu C. Curcumin inhibits the invasion and metastasis of triple negative breast cancer via Hedgehog/Gli1 signaling pathway. J. Ethnopharmacol. 2022 283 114689 10.1016/j.jep.2021.114689 34592340
    [Google Scholar]
  45. Zhang W. Liu W. Hu X. Robinin inhibits pancreatic cancer cell proliferation, EMT and inflammation via regulating TLR2-PI3k-AKT signaling pathway. Cancer Cell Int. 2023 23 1 328 10.1186/s12935‑023‑03167‑3 38110966
    [Google Scholar]
  46. Gupta N. Xu Z. El-Sehemy A. Steed H. Fu Y. Notch3 induces epithelial–mesenchymal transition and attenuates carboplatin-induced apoptosis in ovarian cancer cells. Gynecol. Oncol. 2013 130 1 200 206 10.1016/j.ygyno.2013.03.019 23542683
    [Google Scholar]
  47. Arrindell J. Desnues B. Vimentin: From a cytoskeletal protein to a critical modulator of immune response and a target for infection. Front Immunol. 2023 14 1224352 10.3389/fimmu.2023.1224352 37475865
    [Google Scholar]
  48. Ivaska J. Pallari H.M. Nevo J. Eriksson J.E. Novel functions of vimentin in cell adhesion, migration, and signaling. Exp. Cell Res. 2007 313 10 2050 2062 10.1016/j.yexcr.2007.03.040 17512929
    [Google Scholar]
  49. Ramos I. Stamatakis K. Oeste C.L. Pérez-Sala D. Vimentin as a multifaceted player and potential therapeutic target in viral infections. Int. J. Mol. Sci. 2020 21 13 4675 10.3390/ijms21134675 32630064
    [Google Scholar]
  50. Sutoh Yoneyama M. Hatakeyama S. Habuchi T. Inoue T. Nakamura T. Funyu T. Wiche G. Ohyama C. Tsuboi S. Vimentin intermediate filament and plectin provide a scaffold for invadopodia, facilitating cancer cell invasion and extravasation for metastasis. Eur. J. Cell Biol. 2014 93 4 157 169 10.1016/j.ejcb.2014.03.002 24810881
    [Google Scholar]
  51. Li C. Ma Y.Q. Prognostic significance of sex determining region Y-box 2, E-cadherin, and vimentin in esophageal squamous cell carcinoma. World J. Clin. Cases 2022 10 27 9657 9669 10.12998/wjcc.v10.i27.9657 36186174
    [Google Scholar]
  52. Quan J. Bode A.M. Luo X. ACSL family: The regulatory mechanisms and therapeutic implications in cancer. Eur. J. Pharmacol. 2021 909 174397 10.1016/j.ejphar.2021.174397 34332918
    [Google Scholar]
  53. Yang Y. Zhu T. Wang X. Xiong F. Hu Z. Qiao X. Yuan X. Wang D. ACSL3 and ACSL4, distinct roles in ferroptosis and cancers. Cancers 2022 14 23 5896 10.3390/cancers14235896 36497375
    [Google Scholar]
  54. Rossi Sebastiano M. Konstantinidou G. Targeting long chain Acyl-CoA synthetases for cancer therapy. Int. J. Mol. Sci. 2019 20 15 3624 10.3390/ijms20153624 31344914
    [Google Scholar]
  55. Magtanong L. Ko P.J. To M. Cao J.Y. Forcina G.C. Tarangelo A. Ward C.C. Cho K. Patti G.J. Nomura D.K. Olzmann J.A. Dixon S.J. Exogenous monounsaturated fatty acids promote a ferroptosis-resistant cell state. Cell Chem. Biol. 2019 26 3 420 432.e9 10.1016/j.chembiol.2018.11.016 30686757
    [Google Scholar]
  56. Saliakoura M. Reynoso-Moreno I. Pozzato C. Rossi Sebastiano M. Galié M. Gertsch J. Konstantinidou G. The ACSL3-LPIAT1 signaling drives prostaglandin synthesis in non-small cell lung cancer. Oncogene 2020 39 14 2948 2960 10.1038/s41388‑020‑1196‑5 32034305
    [Google Scholar]
  57. Yin L. Li W. Chen X. Wang R. Zhang T. Meng J. Li Z. Xu L. Yin R. Cheng B. Yang H. HOOK1 inhibits the progression of renal cell carcinoma via TGF- β and TNFSF13B/VEGF-A Axis. Adv. Sci. 2023 10 17 2206955 10.1002/advs.202206955 37085921
    [Google Scholar]
  58. Chen K. Yuan X. Wang S. Zheng F. Fu Z. Shen Z. Cheng X. Wang Y. Tang S. Ni H. Wang F. Lu G. Wu Y. Xia D. Lu W. MAP4K4 promotes ovarian cancer metastasis through diminishing ADAM10-dependent N-cadherin cleavage. Oncogene 2023 42 18 1438 1452 10.1038/s41388‑023‑02650‑5 36922678
    [Google Scholar]
  59. Delpire E. The mammalian family of sterile 20p-like protein kinases. Pflugers Arch. 2009 458 5 953 967 10.1007/s00424‑009‑0674‑y 19399514
    [Google Scholar]
  60. Sun R. Liu Z. Qiu B. Chen T. Li Z. Zhang X. Xu Y. Zhang Z. Annexin10 promotes extrahepatic cholangiocarcinoma metastasis by facilitating EMT via PLA2G4A/PGE2/STAT3 pathway. EBioMedicine 2019 47 142 155 10.1016/j.ebiom.2019.08.062 31492557
    [Google Scholar]
  61. Kaufmann R. Rahn S. Pollrich K. Hertel J. Dittmar Y. Hommann M. Henklein P. Biskup C. Westermann M. Hollenberg M.D. Settmacher U. Thrombin-mediated hepatocellular carcinoma cell migration: Cooperative action via proteinase‐activated receptors 1 and 4. J. Cell. Physiol. 2007 211 3 699 707 10.1002/jcp.21027 17323377
    [Google Scholar]
  62. Mou Y. Wang J. Wu J. He D. Zhang C. Duan C. Li B. Ferroptosis, a new form of cell death: opportunities and challenges in cancer. J. Hematol. Oncol. 2019 12 1 34 10.1186/s13045‑019‑0720‑y 30925886
    [Google Scholar]
  63. Gabbs M. Leng S. Devassy J.G. Monirujjaman M. Aukema H.M. Advances in our understanding of oxylipins derived from dietary PUFAs. Adv. Nutr. 2015 6 5 513 540 10.3945/an.114.007732 26374175
    [Google Scholar]
  64. Yang X. Liu J. Wang C. Cheng K.K. Xu H. Li Q. Hua T. Jiang X. Sheng L. Mao J. Liu Z. miR-18a promotes glioblastoma development by down-regulating ALOXE3-mediated ferroptotic and anti-migration activities. Oncogenesis 2021 10 2 15 10.1038/s41389‑021‑00304‑3 33579899
    [Google Scholar]
  65. Endo M. The roles of ANGPTL families in cancer progression. J. UOEH. 2019 41 3 317 325 10.7888/juoeh.41.317 31548486
    [Google Scholar]
  66. Yang W.H. Huang Z. Wu J. Ding C.K.C. Murphy S.K. Chi J.T. A TAZ–ANGPTL4–NOX2 axis regulates ferroptotic cell death and chemoresistance in epithelial ovarian cancer. Mol. Cancer Res. 2020 18 1 79 90 10.1158/1541‑7786.MCR‑19‑0691 31641008
    [Google Scholar]
  67. Zhuang W. Sun H. Zhang S. Zhou Y. Weng W. Wu B. Ye T. Huang W. Lin Z. Shi L. Shi K. An immunogenomic signature for molecular classification in hepatocellular carcinoma. Mol. Ther. Nucleic Acids. 2021 25 105 115 10.1016/j.omtn.2021.06.024 34401208
    [Google Scholar]
  68. Yunna C. Mengru H. Lei W. Weidong C. Macrophage M1/M2 polarization. Eur. J. Pharmacol. 2020 877 173090 10.1016/j.ejphar.2020.173090 32234529
    [Google Scholar]
  69. Wang Y. Lyu Z. Qin Y. Wang X. Sun L. Zhang Y. Gong L. Wu S. Han S. Tang Y. Jia Y. Kwong D.L.W. Kam N. Guan X.Y. FOXO1 promotes tumor progression by increased M2 macrophage infiltration in esophageal squamous cell carcinoma. Theranostics 2020 10 25 11535 11548 10.7150/thno.45261 33052231
    [Google Scholar]
  70. Chen L. Zhu S. Liu T. Zhao X. Xiang T. Hu X. Wu C. Lin D. Aberrant epithelial cell interaction promotes esophageal squamous-cell carcinoma development and progression. Signal Transduct Target Ther 2023 8 1 453 10.1038/s41392‑023‑01710‑2 38097539
    [Google Scholar]
  71. Song J. Liu Y. Guan X. Zhang X. Yu W. Li Q. A novel ferroptosis-related biomarker signature to predict overall survival of esophageal squamous cell carcinoma. Front Mol. Biosci. 2021 8 675193 10.3389/fmolb.2021.675193 34291083
    [Google Scholar]
  72. Bhattacharyya S. Rana D. Bhattacharyya S. Determination of heat of formation of associated systems by calorimetry. J. Indian Chem. Soc. 1997 74 2 103 107
    [Google Scholar]
  73. Bhattacharyya S. Rana D. Bhattacharyya S. A thermodynamic study of molecular association by gas-liquid chromatography. J. Indian Chem. Soc. 1997 74 456 463
    [Google Scholar]
  74. Bhattacharyya S. Rana D. Bhattacharyya S. A thermodynamic study of molecular association by gas-liquid chromatography: Trilaurylaminealcohol systems. J. Indian Chem. Soc. 1997 74 7 548 551
    [Google Scholar]
  75. Liu Z. Lemmonds S. Huang J. Tyagi M. Hong L. Jain N. Entropic contribution to enhanced thermal stability in the thermostable P450 CYP119. Proc. Natl. Acad. Sci. USA 2018 115 43 E10049 E10058 10.1073/pnas.1807473115 30297413
    [Google Scholar]
  76. Ren Q. Li L. Liu L. Li J. Shi C. Sun Y. Yao X. Hou Z. Xiang S. The molecular mechanism of temperature-dependent phase separation of heat shock factor 1. Nat. Chem. Biol. 2025 21 6 831 842 10.1038/s41589‑024‑01806‑y 39794489
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673402007251029113128
Loading
/content/journals/cmc/10.2174/0109298673402007251029113128
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test