Skip to content
2000
image of Investigating the Mechanism of NAD+ Metabolism in Atrial Fibrillation: A Risk Gene Analysis

Abstract

Introduction

This study explored potential atrial fibrillation (AF) risk genes nicotinamide adenine dinucleotide (NAD+) metabolism using tissue samples and the Gene Expression Omnibus (GEO) database.

Methods

A cross-sectional study was conducted on atrial tissues from patients undergoing left atrial appendage resection. Whole transcriptome sequencing was performed on 3 AF and 3 control samples. The GSE115574 and GSE79768 datasets were analyzed, yielding 51 NMRGs. DE-mRNAs were screened and overlapped to obtain DE-NMRGs. LASSO and RFE algorithms identified critical genes, and enrichment and drug-prediction analyses were conducted. Gene expressions were validated in 5 additional patients using qRT-PCR.

Results

Three key genes (SLC6A6, ATP1B4, and BEX2) were identified, associated with energy metabolism pathways and potentially influencing AF progression through immune response modulation.

Discussion

Previous studies reported the role of NAD+ metabolism in AF, but its mechanism is unclear. This study identified SLC6A6, ATP1B4, and BEX2 as gene signatures linking NAD+ metabolism to AF. These genes are involved in metabolic or electrophysiological processes that can predispose to arrhythmogenesis. However, their specific mechanisms of action remain unclear, and further research is needed.

Conclusion

The study identified three key genes (SLC6A6, ATP1B4, and BEX2) involved in NAD+ metabolism, with diagnostic potential for AF patients and associations with energy metabolism and immune infiltration.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673385885251125154331
2026-01-13
2026-02-15
Loading full text...

Full text loading...

/deliver/fulltext/cmc/10.2174/0109298673385885251125154331/BMS-CMC-2025-50.html?itemId=/content/journals/cmc/10.2174/0109298673385885251125154331&mimeType=html&fmt=ahah

References

  1. Benjamin E.J. Muntner P. Alonso A. Bittencourt M.S. Callaway C.W. Carson A.P. Chamberlain A.M. Chang A.R. Cheng S. Das S.R. Delling F.N. Djousse L. Elkind M.S.V. Ferguson J.F. Fornage M. Jordan L.C. Khan S.S. Kissela B.M. Knutson K.L. Kwan T.W. Lackland D.T. Lewis T.T. Lichtman J.H. Longenecker C.T. Loop M.S. Lutsey P.L. Martin S.S. Matsushita K. Moran A.E. Mussolino M.E. O’Flaherty M. Pandey A. Perak A.M. Rosamond W.D. Roth G.A. Sampson U.K.A. Satou G.M. Schroeder E.B. Shah S.H. Spartano N.L. Stokes A. Tirschwell D.L. Tsao C.W. Turakhia M.P. VanWagner L.B. Wilkins J.T. Wong S.S. Virani S.S. Heart disease and stroke statistics—2019 update: A report from the American heart association. Circulation 2019 139 10 e56 e528 10.1161/CIR.0000000000000659 30700139
    [Google Scholar]
  2. Blomström-Lundqvist C. Gizurarson S. Schwieler J. Jensen S.M. Bergfeldt L. Kennebäck G. Rubulis A. Malmborg H. Raatikainen P. Lönnerholm S. Höglund N. Mörtsell D. Effect of catheter ablation vs. antiarrhythmic medication on quality of life in patients with atrial fibrillation. JAMA 2019 321 11 1059 1068 10.1001/jama.2019.0335 30874754
    [Google Scholar]
  3. Bosch N.A. Cimini J. Walkey A.J. Atrial Fibrillation in the ICU. Chest 2018 154 6 1424 1434 10.1016/j.chest.2018.03.040 29627355
    [Google Scholar]
  4. Li J. Zhang D. Ramos K.S. Baks L. Wiersma M. Lanters E.A.H. Bogers A.J.J.C. de Groot N.M.S. Brundel B.J.J.M. Blood-based 8-hydroxy-2′-deoxyguanosine level: A potential diagnostic biomarker for atrial fibrillation. Heart Rhythm 2021 18 2 271 277 10.1016/j.hrthm.2020.09.017 33031960
    [Google Scholar]
  5. Li N. Brundel B.J.J.M. Inflammasomes and proteostasis novel molecular mechanisms associated with atrial fibrillation. Circ. Res. 2020 127 1 73 90 10.1161/CIRCRESAHA.119.316364 32717176
    [Google Scholar]
  6. Jalife J. Mechanisms of persistent atrial fibrillation. Curr. Opin. Cardiol. 2014 29 1 20 27 10.1097/HCO.0000000000000027 24281345
    [Google Scholar]
  7. Marín-Aguilar F. Lechuga-Vieco A.V. Alcocer-Gómez E. Castejón-Vega B. Lucas J. Garrido C. Peralta-Garcia A. Pérez-Pulido A.J. Varela-López A. Quiles J.L. Ryffel B. Flores I. Bullón P. Ruiz-Cabello J. Cordero M.D. NLRP3 inflammasome suppression improves longevity and prevents cardiac aging in male mice. Aging Cell 2020 19 1 13050 10.1111/acel.13050 31625260
    [Google Scholar]
  8. Chen G. Chelu M.G. Dobrev D. Li N. Cardiomyocyte inflammasome signaling in cardiomyopathies and atrial fibrillation: Mechanisms and potential therapeutic implications. Front. Physiol. 2018 9 1115 10.3389/fphys.2018.01115 30150941
    [Google Scholar]
  9. Zhang D. Hu X. Li J. Liu J. Baks-te Bulte L. Wiersma M. Malik N.A. van Marion D.M.S. Tolouee M. Hoogstra-Berends F. Lanters E.A.H. van Roon A.M. de Vries A.A.F. Pijnappels D.A. de Groot N.M.S. Henning R.H. Brundel B.J.J.M. DNA damage-induced PARP1 activation confers cardiomyocyte dysfunction through NAD+ depletion in experimental atrial fibrillation. Nat. Commun. 2019 10 1 1307 10.1038/s41467‑019‑09014‑2 30898999
    [Google Scholar]
  10. Chini C.C.S. Zeidler J.D. Kashyap S. Warner G. Chini E.N. Evolving concepts in NAD+ metabolism. Cell Metab. 2021 33 6 1076 1087 10.1016/j.cmet.2021.04.003 33930322
    [Google Scholar]
  11. Lee C.F. Chavez J.D. Garcia-Menendez L. Choi Y. Roe N.D. Chiao Y.A. Edgar J.S. Goo Y.A. Goodlett D.R. Bruce J.E. Tian R. Normalization of NAD + redox balance as a therapy for heart failure. Circulation 2016 134 12 883 894 10.1161/CIRCULATIONAHA.116.022495 27489254
    [Google Scholar]
  12. Hassa P.O. Hottiger M.O. The diverse biological roles of mammalian PARPS, a small but powerful family of poly-ADP-ribose polymerases. Front. Biosci. 2008 13 13 3046 3082 10.2741/2909 17981777
    [Google Scholar]
  13. Pillai J.B. Isbatan A. Imai S. Gupta M.P. Poly(ADP-ribose) polymerase-1-dependent cardiac myocyte cell death during heart failure is mediated by NAD+ depletion and reduced Sir2alpha deacetylase activity. J. Biol. Chem. 2005 280 52 43121 43130 10.1074/jbc.M506162200 16207712
    [Google Scholar]
  14. Pacher P. Szabó C. Role of poly(ADP-ribose) polymerase 1 (PARP-1) in cardiovascular diseases: The therapeutic potential of PARP inhibitors. Cardiovasc. Drug Rev. 2007 25 3 235 260 10.1111/j.1527‑3466.2007.00018.x 17919258
    [Google Scholar]
  15. Feng D. Xu D. Murakoshi N. Tajiri K. Qin R. Yonebayashi S. Okabe Y. Li S. Yuan Z. Aonuma K. Ieda M. Nicotinamide phosphoribosyltransferase (Nampt)/Nicotinamide adenine dinucleotide (NAD) axis suppresses atrial fibrillation by modulating the calcium handling pathway. Int. J. Mol. Sci. 2020 21 13 4655 10.3390/ijms21134655 32629939
    [Google Scholar]
  16. Kilfoil P.J. Tipparaju S.M. Barski O.A. Bhatnagar A. Regulation of ion channels by pyridine nucleotides. Circ. Res. 2013 112 4 721 741 10.1161/CIRCRESAHA.111.247940 23410881
    [Google Scholar]
  17. Lu X. Xu Y. Li X. Wang J. Wang L. Hu X. Fan H. Pang F. Li X. Pan X. He W. Li J. Dai Z. Selective STAT3 inhibitor STX-0119 alleviates osteoarthritis progression by modulating the STAT3/PPARγ signaling pathway. Biochem. Pharmacol. 2024 227 116420 10.1016/j.bcp.2024.116420 38996934
    [Google Scholar]
  18. Liu S. Wang Z. Zhu R. Wang F. Cheng Y. Liu Y. Three differential expression analysis methods for RNA sequencing: Limma, EdgeR, DESeq2. J. Vis. Exp. 2021 175 10.3791/62528 34605806
    [Google Scholar]
  19. Zhang M. Zhu K. Pu H. Wang Z. Zhao H. Zhang J. Wang Y. An immune-related signature predicts survival in patients with lung adenocarcinoma. Front. Oncol. 2019 9 1314 10.3389/fonc.2019.01314 31921619
    [Google Scholar]
  20. Robin X. Turck N. Hainard A. Tiberti N. Lisacek F. Sanchez J.C. Müller M. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 2011 12 1 77 10.1186/1471‑2105‑12‑77 21414208
    [Google Scholar]
  21. Yu G. Wang L.G. Han Y. He Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 2012 16 5 284 287 10.1089/omi.2011.0118 22455463
    [Google Scholar]
  22. Lowe W.L. Jr Boyd F.T. Clarke D.W. Raizada M.K. Hart C. Leroith D. Development of brain insulin receptors: Structural and functional studies of insulin receptors from whole brain and primary cell cultures. Endocrinology 1986 119 1 25 35 10.1210/endo‑119‑1‑25 3522210
    [Google Scholar]
  23. Su R. Jin C. Bu H. Xiang J. Zhou L. Jin C. Development and validation of an immune-related prognostic signature in cervical cancer. Front. Oncol. 2022 12 861392 10.3389/fonc.2022.861392 35651784
    [Google Scholar]
  24. Wang Y. Liang S. Hong Q. Mu J. Wu Y. Li K. Li Y. Wu Y. Lou X. Xu D. Cui W. Construction of a neutrophil extracellular trap formation-related gene model for predicting the survival of lung adenocarcinoma patients and their response to immunotherapy. Transl. Lung Cancer Res. 2024 13 12 3407 3425 10.21037/tlcr‑24‑463 39830760
    [Google Scholar]
  25. Burdett P. Lip G.Y.H. Atrial fibrillation in the UK: Predicting costs of an emerging epidemic recognizing and forecasting the cost drivers of atrial fibrillation-related costs. Eur. Heart J. Qual. Care Clin. Outcomes 2022 8 2 187 194 10.1093/ehjqcco/qcaa093 33346822
    [Google Scholar]
  26. Brundel B.J.J.M. Ai X. Hills M.T. Kuipers M.F. Lip G.Y.H. de Groot N.M.S. Atrial fibrillation. Nat. Rev. Dis. Primers 2022 8 1 21 10.1038/s41572‑022‑00347‑9 35393446
    [Google Scholar]
  27. Ko D. Chung M.K. Evans P.T. Benjamin E.J. Helm R.H. Atrial fibrillation: A review. JAMA 2025 333 4 329 342 10.1001/jama.2024.22451 39680399
    [Google Scholar]
  28. Heijman J. Guichard J.B. Dobrev D. Nattel S. Translational challenges in atrial fibrillation. Circ. Res. 2018 122 5 752 773 10.1161/CIRCRESAHA.117.311081 29496798
    [Google Scholar]
  29. Parks A.L. Frankel D.S. Kim D.H. Ko D. Kramer D.B. Lydston M. Fang M.C. Shah S.J. Management of atrial fibrillation in older adults. BMJ 2024 386 076246 10.1136/bmj‑2023‑076246 39288952
    [Google Scholar]
  30. Zhang J. Johnsen S.P. Guo Y. Lip G.Y.H. Epidemiology of atrial fibrillation: Geographic/ecological risk factors, age, sex, genetics. Card. Electrophysiol. Clin. 2021 13 1 1 23 10.1016/j.ccep.2020.10.010 33516388
    [Google Scholar]
  31. Kany S. Jurgens S.J. Rämö J.T. Christophersen I.E. Rienstra M. Chung M.K. Olesen M.S. Ackerman M.J. McNally E.M. Semsarian C. Schnabel R.B. Wilde A.A.M. Benjamin E.J. Rehm H.L. Kirchhof P. Bezzina C.R. Roden D.M. Shoemaker M.B. Ellinor P.T. Genetic testing in early-onset atrial fibrillation. Eur. Heart J. 2024 45 34 3111 3123 10.1093/eurheartj/ehae298 39028637
    [Google Scholar]
  32. Mo W. Donahue J.K. Gene therapy for atrial fibrillation. J. Mol. Cell. Cardiol. 2024 196 84 93 10.1016/j.yjmcc.2024.09.004 39270930
    [Google Scholar]
  33. Vad O.B. Olesen M.S. Unlocking the genetic code: Novel insights into familial atrial fibrillation and gene-variant interactions. Can. J. Cardiol. 2024 40 7 1281 1282 10.1016/j.cjca.2023.11.036 38042338
    [Google Scholar]
  34. Wijdeveld LFJM. Ajufo E. Challa SP. Cardiomyopathy-associated gene variants in atrial fibrillation. JAMA Cardiol 2025 10 6 564 573 10.1001/jamacardio.2025.0460
    [Google Scholar]
  35. Kibria F. Das S.K. Arefin M.S. The role of nicotinamide adenine dinucleotide salvage enzymes in cardioprotection. Kardiochir. Torakochirurgia Pol. 2024 21 2 86 95 10.5114/kitp.2024.141145 39055245
    [Google Scholar]
  36. Burtscher J. Denti V. Gostner J.M. Weiss A.K.H. Strasser B. Hüfner K. Burtscher M. Paglia G. Kopp M. Dünnwald T. The interplay of NAD and hypoxic stress and its relevance for ageing. Ageing Res. Rev. 2025 104 102646 10.1016/j.arr.2024.102646 39710071
    [Google Scholar]
  37. Migaud M.E. Ziegler M. Baur J.A. Regulation of and challenges in targeting NAD+ metabolism. Nat. Rev. Mol. Cell Biol. 2024 25 10 822 840 10.1038/s41580‑024‑00752‑w 39026037
    [Google Scholar]
  38. Nasuhidehnavi A. Zarzycka W. Górecki I. Chiao Y.A. Lee C.F. Emerging interactions between mitochondria and NAD+ metabolism in cardiometabolic diseases. Trends Endocrinol. Metab. 2025 36 2 176 190 10.1016/j.tem.2024.07.010 39198117
    [Google Scholar]
  39. Uchida S. Kwon H.M. Yamauchi A. Preston A.S. Marumo F. Handler J.S. Molecular cloning of the cDNA for an MDCK cell Na(+)- and Cl(-)-dependent taurine transporter that is regulated by hypertonicity. Proc. Natl. Acad. Sci. USA 1992 89 17 8230 8234 10.1073/pnas.89.17.8230 1518851
    [Google Scholar]
  40. Bhutia Y.D. Mathew M. Sivaprakasam S. Ramachandran S. Ganapathy V. Unconventional functions of amino acid transporters: Role in macropinocytosis (SLC38A5/SLC38A3) and diet-induced obesity/metabolic syndrome (SLC6A19/SLC6A14/SLC6A6). Biomolecules 2022 12 2 235 10.3390/biom12020235 35204736
    [Google Scholar]
  41. Ito T. Oishi S. Takai M. Kimura Y. Uozumi Y. Fujio Y. Schaffer SW. Azuma J. Cardiac and skeletal muscle abnormality in taurine transporter-knockout mice. J. Biomed. Sci. 2010 17 Suppl 1 S20 10.1186/1423‑0127‑17‑S1‑S20 20804595
    [Google Scholar]
  42. Ansar M. Ranza E. Shetty M. Paracha S.A. Azam M. Kern I. Iwaszkiewicz J. Farooq O. Pournaras C.J. Malcles A. Kecik M. Rivolta C. Muzaffar W. Qurban A. Ali L. Aggoun Y. Santoni F.A. Makrythanasis P. Ahmed J. Qamar R. Sarwar M.T. Henry L.K. Antonarakis S.E. Taurine treatment of retinal degeneration and cardiomyopathy in a consanguineous family with SLC6A6 taurine transporter deficiency. Hum. Mol. Genet. 2020 29 4 618 623 10.1093/hmg/ddz303 31903486
    [Google Scholar]
  43. Preising M.N. Görg B. Friedburg C. Qvartskhava N. Budde B.S. Bonus M. Toliat M.R. Pfleger C. Altmüller J. Herebian D. Beyer M. Zöllner H.J. Wittsack H.J. Schaper J. Klee D. Zechner U. Nürnberg P. Schipper J. Schnitzler A. Gohlke H. Lorenz B. Häussinger D. Bolz H.J. Biallelic mutation of human SLC6A6 encoding the taurine transporter TAUT is linked to early retinal degeneration. FASEB J. 2019 33 10 11507 11527 10.1096/fj.201900914RR 31345061
    [Google Scholar]
  44. Garnier S. Harakalova M. Weiss S. Mokry M. Regitz-Zagrosek V. Hengstenberg C. Cappola T.P. Isnard R. Arbustini E. Cook S.A. van Setten J. Calis J.J.A. Hakonarson H. Morley M.P. Stark K. Prasad S.K. Li J. O’Regan D.P. Grasso M. Müller-Nurasyid M. Meitinger T. Empana J.P. Strauch K. Waldenberger M. Marguiles K.B. Seidman C.E. Kararigas G. Meder B. Haas J. Boutouyrie P. Lacolley P. Jouven X. Erdmann J. Blankenberg S. Wichter T. Ruppert V. Tavazzi L. Dubourg O. Roizes G. Dorent R. de Groote P. Fauchier L. Trochu J.N. Aupetit J.F. Bilinska Z.T. Germain M. Völker U. Hemerich D. Raji I. Bacq-Daian D. Proust C. Remior P. Gomez-Bueno M. Lehnert K. Maas R. Olaso R. Saripella G.V. Felix S.B. McGinn S. Duboscq-Bidot L. van Mil A. Besse C. Fontaine V. Blanché H. Ader F. Keating B. Curjol A. Boland A. Komajda M. Cambien F. Deleuze J.F. Dörr M. Asselbergs F.W. Villard E. Trégouët D.A. Charron P. Genome-wide association analysis in dilated cardiomyopathy reveals two new players in systolic heart failure on chromosomes 3p25.1 and 22q11.23. Eur. Heart J. 2021 42 20 2000 2011 10.1093/eurheartj/ehab030 33677556
    [Google Scholar]
  45. Pestov N.B. Adams G. Shakhparonov M.I. Modyanov N.N. Identification of a novel gene of the X,K-ATPase β- subunit family that is predominantly expressed in skeletal and heart muscles. FEBS Lett. 1999 456 2 243 248 10.1016/S0014‑5793(99)00954‑0 10456317
    [Google Scholar]
  46. Pestov N.B. Ahmad N. Korneenko T.V. Zhao H. Radkov R. Schaer D. Roy S. Bibert S. Geering K. Modyanov N.N. Evolution of Na,K-ATPase βm-subunit into a coregulator of transcription in placental mammals. Proc. Natl. Acad. Sci. USA 2007 104 27 11215 11220 10.1073/pnas.0704809104 17592128
    [Google Scholar]
  47. Zhang J. Huang X. Wang X. Gao Y. Liu L. Li Z. Chen X. Zeng J. Ye Z. Li G. Identification of potential crucial genes in atrial fibrillation: A bioinformatic analysis. BMC Med. Genomics 2020 13 1 104 10.1186/s12920‑020‑00754‑5 32682418
    [Google Scholar]
  48. Pestov N.B. Zhao H. Basrur V. Modyanov N.N. Isolation and characterization of BetaM protein encoded by ATP1B4 – A unique member of the Na,K-ATPase β-subunit gene family. Biochem. Biophys. Res. Commun. 2011 412 4 543 548 10.1016/j.bbrc.2011.07.112 21855530
    [Google Scholar]
  49. Yang Q.S. Xia F. Gu S.H. Yuan H.L. Chen J.Z. Yang Q.S. Ying K. Xie Y. Mao Y.M. Cloning and expression pattern of a spermatogenesis-related gene, BEX1, mapped to chromosome Xq22. Biochem. Genet. 2002 40 1-2 1 12 10.1023/A:1014565320998 11989783
    [Google Scholar]
  50. Han C. Liu H. Liu J. Yin K. Xie Y. Shen X. Wang Y. Yuan J. Qiang B. Liu Y.J. Peng X. Human Bex2 interacts with LMO2 and regulates the transcriptional activity of a novel DNA-binding complex. Nucleic Acids Res. 2005 33 20 6555 6565 10.1093/nar/gki964 16314316
    [Google Scholar]
  51. Foltz G. Ryu G.Y. Yoon J.G. Nelson T. Fahey J. Frakes A. Lee H. Field L. Zander K. Sibenaller Z. Ryken T.C. Vibhakar R. Hood L. Madan A. Genome-wide analysis of epigenetic silencing identifies BEX1 and BEX2 as candidate tumor suppressor genes in malignant glioma. Cancer Res. 2006 66 13 6665 6674 10.1158/0008‑5472.CAN‑05‑4453 16818640
    [Google Scholar]
  52. Naderi A. Teschendorff A.E. Beigel J. Cariati M. Ellis I.O. Brenton J.D. Caldas C. BEX2 is overexpressed in a subset of primary breast cancers and mediates nerve growth factor/nuclear factor-kappaB inhibition of apoptosis in breast cancer cell lines. Cancer Res. 2007 67 14 6725 6736 10.1158/0008‑5472.CAN‑06‑4394 17638883
    [Google Scholar]
  53. Naderi A. Liu J. Bennett I.C. BEX2 regulates mitochondrial apoptosis and G1 cell cycle in breast cancer. Int. J. Cancer 2010 126 7 1596 1610 10.1002/ijc.24866 19711341
    [Google Scholar]
  54. Zhou Y. Shi W. Zhao D. Xiao S. Wang K. Wang J. Identification of immune-associated genes in diagnosing aortic valve calcification with metabolic syndrome by integrated bioinformatics analysis and Machine Learning. Front. Immunol. 2022 13 937886 10.3389/fimmu.2022.937886 35865542
    [Google Scholar]
  55. Zheng P.F. Chen L.Z. Liu P. Liu Z.Y. Pan H.W. Integrative identification of immune-related key genes in atrial fibrillation using weighted gene coexpression network analysis and machine learning. Front. Cardiovasc. Med. 2022 9 922523 10.3389/fcvm.2022.922523 35966550
    [Google Scholar]
  56. Lin Q. Zuo W. Liu Y. Wu K. Liu Q. NAD+ and cardiovascular diseases. Clin. Chim. Acta 2021 515 104 110 10.1016/j.cca.2021.01.012 33485900
    [Google Scholar]
  57. Liu M. Sanyal S. Gao G. Gurung I.S. Zhu X. Gaconnet G. Kerchner L.J. Shang L.L. Huang C.L.H. Grace A. London B. Dudley S.C. Jr. Cardiac Na+ current regulation by pyridine nucleotides. Circ. Res. 2009 105 8 737 745 10.1161/CIRCRESAHA.109.197277 19745168
    [Google Scholar]
  58. Veerman C.C. Wilde A.A.M. Lodder E.M. The cardiac sodium channel gene SCN5A and its gene product NaV1.5: Role in physiology and pathophysiology. Gene 2015 573 2 177 187 10.1016/j.gene.2015.08.062 26361848
    [Google Scholar]
  59. Mason F.E. Pronto J.R.D. Alhussini K. Maack C. Voigt N. Cellular and mitochondrial mechanisms of atrial fibrillation. Basic Res. Cardiol. 2020 115 6 72 10.1007/s00395‑020‑00827‑7 33258071
    [Google Scholar]
  60. Barbey O. Pierre S. Duran M.J. Sennoune S. Lévy S. Maixent J.M. Specific up-regulation of mitochondrial F0F1-ATPase activity after short episodes of atrial fibrillation in sheep. J. Cardiovasc. Electrophysiol. 2000 11 4 432 438 10.1111/j.1540‑8167.2000.tb00339.x 10809497
    [Google Scholar]
  61. Gould P.A. Yii M. McLean C. Finch S. Marshall T. Lambert G.W. Kaye D.M. Evidence for increased atrial sympathetic innervation in persistent human atrial fibrillation. Pacing Clin. Electrophysiol. 2006 29 8 821 829 10.1111/j.1540‑8159.2006.00447.x 16922997
    [Google Scholar]
  62. Oral H. Crawford T. Frederick M. Gadeela N. Wimmer A. Dey S. Sarrazin J.F. Kuhne M. Chalfoun N. Wells D. Good E. Jongnarangsin K. Chugh A. Bogun F. Pelosi F. Jr Morady F. Inducibility of paroxysmal atrial fibrillation by isoproterenol and its relation to the mode of onset of atrial fibrillation. J. Cardiovasc. Electrophysiol. 2008 19 5 466 470 10.1111/j.1540‑8167.2007.01089.x 18266669
    [Google Scholar]
  63. Patterson E. Po S.S. Scherlag B.J. Lazzara R. Triggered firing in pulmonary veins initiated by in vitro autonomic nerve stimulation. Heart Rhythm 2005 2 6 624 631 10.1016/j.hrthm.2005.02.012 15922271
    [Google Scholar]
  64. Li P. Yao L.Y. Jiang Y.J. Wang D.D. Wang T. Wu Y.P. Li B.X. Li X.T. Soybean isoflavones protect SH-SY5Y neurons from atrazine-induced toxicity by activating mitophagy through stimulation of the BEX2/BNIP3/NIX pathway. Ecotoxicol. Environ. Saf. 2021 227 112886 10.1016/j.ecoenv.2021.112886 34673406
    [Google Scholar]
  65. Mu N. Wang Y. Li X. Du Z. Wu Y. Su M. Wang Y. Sun X. Su L. Liu X. Crotonylated BEX2 interacts with NDP52 and enhances mitophagy to modulate chemotherapeutic agent-induced apoptosis in non-small-cell lung cancer cells. Cell Death Dis. 2023 14 9 645 10.1038/s41419‑023‑06164‑6 37777549
    [Google Scholar]
  66. Zhou S. Zhong H. Wang Y. Wang X. Pan H. Liu X. Hu L. JNK/MAPK pathway regulation by BEX2 gene silencing in alcoholic hepatitis mice: Effects on oxidative stress. Alcohol. Clin. Exp. Res. 2023 47 10 1869 1882 10.1111/acer.15178 37864534
    [Google Scholar]
  67. Subati T. Kim K. Yang Z. Murphy M.B. Van Amburg J.C. Christopher I.L. Dougherty O.P. Woodall K.K. Smart C.D. Johnson J.E. Fogo A.B. Amarnath V. Agrawal V. Barnett J.V. Saffitz J.E. Murray K.T. Oxidative stress causes mitochondrial and electrophysiologic dysfunction to promote atrial fibrillation in Pitx2 +/− mice. Circ. Arrhythm. Electrophysiol. 2025 18 3 013199 10.1161/CIRCEP.124.013199 39989351
    [Google Scholar]
  68. Zhang Y. Gong H. Jin L. Liu P. Fan J. Qin X. Zheng Q. Succinate predisposes mice to atrial fibrillation by impairing mitochondrial function via SUCNR1/AMPK axis. Redox Biol. 2025 81 103576 10.1016/j.redox.2025.103576 40031129
    [Google Scholar]
  69. Cao Z. Fu Y. Ke Y. Li Y. Guo K. Long X. Luo Y. Zhao Q. Mitochondrial damage mediates STING activation driving obesity-mediated atrial fibrillation. Europace 2025 27 4 euaf081 10.1093/europace/euaf081 40186485
    [Google Scholar]
  70. Haemers P. Hamdi H. Guedj K. Suffee N. Farahmand P. Popovic N. Claus P. LePrince P. Nicoletti A. Jalife J. Wolke C. Lendeckel U. Jaïs P. Willems R. Hatem S.N. Atrial fibrillation is associated with the fibrotic remodelling of adipose tissue in the subepicardium of human and sheep atria. Eur. Heart J. 2017 38 1 53 61 10.1093/eurheartj/ehv625 26612579
    [Google Scholar]
  71. Sulzgruber P. Thaler B. Koller L. Baumgartner J. Pilz A. Steininger M. Schnaubelt S. Fleck T. Laufer G. Steinlechner B. Winter M.P. Goliasch G. Wojta J. Niessner A. CD4+CD28null T lymphocytes are associated with the development of atrial fibrillation after elective cardiac surgery. Sci. Rep. 2018 8 1 9624 10.1038/s41598‑018‑28046‑0 29941960
    [Google Scholar]
  72. Kazem N. Sulzgruber P. Thaler B. Baumgartner J. Koller L. Laufer G. Steinlechner B. Hohensinner P. Wojta J. Niessner A. CD8+CD28null T lymphocytes are associated with the development of atrial fibrillation after elective cardiac surgery. Thromb. Haemost. 2020 120 8 1182 1187 10.1055/s‑0040‑1713096 32594507
    [Google Scholar]
  73. Ma Y. Wang Y. Ke Y. Zhao Q. Fan J. Chen Y. Comprehensive analysis of lactylation-related gene and immune microenvironment in atrial fibrillation. Front. Cardiovasc. Med. 2025 12 1567310 10.3389/fcvm.2025.1567310 40329965
    [Google Scholar]
  74. Yuan Y. Martsch P. Chen X. Martinez E. Li L. Song J. Poppenborg T. Bruns F. Kim J.H. Kamler M. Martin J.F. Abu-Taha I. Dobrev D. Li N. Atrial cardiomyocyte-restricted cleavage of gasdermin D promotes atrial arrhythmogenesis. Eur. Heart J. 2025 46 13 1250 1262 10.1093/eurheartj/ehaf024 39927987
    [Google Scholar]
  75. Keefe J.A. Wang J. Song J. Ni L. Wehrens X.H.T. Immune cells and arrhythmias. Cardiovasc. Res. 2025 121 3 382 395 10.1093/cvr/cvaf017 39937651
    [Google Scholar]
  76. Munir M. Sayed A. Addison D. Epperla N. Cardiovascular toxicities associated with novel cellular immune therapies. Blood Adv. 2024 8 24 6282 6296 10.1182/bloodadvances.2024013849 39418640
    [Google Scholar]
  77. Ping Y. Shan J. Liu Y. Liu F. Wang L. Liu Z. Li J. Yue D. Wang L. Chen X. Zhang Y. Taurine enhances the antitumor efficacy of PD-1 antibody by boosting CD8+ T cell function. Cancer Immunol. Immunother. 2023 72 4 1015 1027 10.1007/s00262‑022‑03308‑z 36261540
    [Google Scholar]
  78. Naderi A. Liu J. Hughes-Davies L. BEX2 has a functional interplay with c-Jun/JNK and p65/RelA in breast cancer. Mol. Cancer 2010 9 1 111 10.1186/1476‑4598‑9‑111 20482821
    [Google Scholar]
  79. Tamai K. Nakamura-Shima M. Shibuya-Takahashi R. Kanno S.I. Yasui A. Mochizuki M. Iwai W. Wakui Y. Abue M. Yamamoto K. Miura K. Mizuma M. Unno M. Kawamura S. Sato I. Yasuda J. Yamaguchi K. Sugamura K. Satoh K. BEX2 suppresses mitochondrial activity and is required for dormant cancer stem cell maintenance in intrahepatic cholangiocarcinoma. Sci. Rep. 2020 10 1 21592 10.1038/s41598‑020‑78539‑0 33299012
    [Google Scholar]
  80. Xie K. Zhang Y. Ou X. Xiao Y. Luo J. Tan S. Taurine ameliorates liver fibrosis by repressing Fpr2-regulated macrophage M1 polarization. Eur. J. Pharmacol. 2025 997 177614 10.1016/j.ejphar.2025.177614 40216178
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673385885251125154331
Loading
/content/journals/cmc/10.2174/0109298673385885251125154331
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keywords: GEO ; Atrial fibrillation ; ATP1B4 ; BEX2 ; bioinformatic ; SLC6A6 ; nicotinamide adenine dinucleotide
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test