Skip to content
2000
image of An Overview of Biosensors and Human Respiratory Syncytial Virus (hRSV): A Systematic Review

Abstract

Background

Respiratory syncytial virus (RSV) causes more than 30 million cases of lower respiratory tract infections (LRTIs) and approximately 3 million hospitalizations globally each year. Although RSV is particularly dangerous for young children, older adults and individuals with underlying health conditions or weakened immune systems are also at risk. Rapid diagnosis of RSV infection is crucial to ensure timely treatment and prevent disease spread. While conventional diagnostic techniques exist, many are time-consuming, expensive, or labor-intensive. Biosensors have recently emerged as a promising alternative.

Methods

This review involved gathering original articles published in English from various databases, including PubMed, Scopus, Web of Science, and Embase, between August and October, 2024. Additionally, reference lists from these articles were examined in Google Scholar for further relevant sources. Out of 147 electronically searched citations, 15 articles met the inclusion criteria.

Results

Genosensors, particularly those employing Surface-Enhanced Raman Scattering (SERS) and electrochemical detection, demonstrated the most significant potential for RSV diagnosis. Biosensors are increasingly being applied for RSV detection due to their high sensitivity, accuracy, and rapid results. The most prevalent conventional techniques for RSV detection include immunofluorescence (IF), ELISA, cell culture, and RT-PCR (Real-time PCR). While molecular methods are fast and sensitive, they require advanced laboratory equipment and trained personnel. In contrast, biosensors offer a rapid, reliable, and cost-effective diagnostic approach.

Discussion

Biosensors have emerged as a powerful diagnostic platform for RSV, providing faster, more sensitive, and cost-effective detection compared to conventional methods. Continued development and clinical validation of biosensor technologies could transform RSV surveillance and management, especially in low-resource or point-of-care settings.

Conclusion

Biosensors represent a significant advancement in RSV diagnostics, particularly in resource-limited settings. Enhancing biosensor technology could improve accessibility, speed, and accuracy in RSV detection, ultimately leading to better patient outcomes and reduced disease transmission.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673405097251126094401
2026-01-26
2026-02-18
Loading full text...

Full text loading...

References

  1. Krilov L.R. Respiratory syncytial virus disease: Update on treatment and prevention. Expert Rev. Anti Infect. Ther. 2011 9 1 27 32 10.1586/eri.10.140 21171875
    [Google Scholar]
  2. Percze K. Szakács Z. Scholz É. András J. Szeitner Z. Kieboom C.H. Ferwerda G. Jonge M.I. Gyurcsányi R.E. Mészáros T. Aptamers for respiratory syncytial virus detection. Sci. Rep. 2017 7 1 42794 10.1038/srep42794 28220811
    [Google Scholar]
  3. Barczak S. Badura B. Lembas A. Mikuła T. Wiercińska-Drapało A. Severe course of HIV-related Kaposi’s sarcoma with cutaneous, visceral and oral manifestations in a late-presenting patient. Prospects. Pharm. Sci. 2024 22 2 26 29 10.56782/pps.188
    [Google Scholar]
  4. Díaz P. Calhoun W.J. Hinton K.L. Avendaño L.F. Gaggero A. Simon V. Arredondo S.M. Pinto R. Díaz A. Differential effects of respiratory syncytial virus and adenovirus on mononuclear cell cytokine responses. Am. J. Respir. Crit. Care Med. 1999 160 4 1157 1164 10.1164/ajrccm.160.4.9804075 10508802
    [Google Scholar]
  5. Bawage S.S. Tiwari P.M. Pillai S. Dennis V. Singh S.R. Recent advances in diagnosis, prevention, and treatment of human respiratory syncytial virus. Adv. Virol. 2013 2013 1 1 26 10.1155/2013/595768 24382964
    [Google Scholar]
  6. Esfandiari A.H. Hajipir Farkhani H. Hashemi Javan Z. Vojdani A. Velayati M. Mahaki H. Biosensors for detection of hepatitis B virus. Curr. Med. Chem. 2024 32 4725 4741 10.2174/0109298673295474240531100312 38860910
    [Google Scholar]
  7. Rochelet M. Solanas S. Grossiord C. Maréchal P. Résa C. Vienney F. Barranger C. Joannes M. A thin layer-based amperometric enzyme immunoassay for the rapid and sensitive diagnosis of respiratory syncytial virus infections. Talanta 2012 100 139 144 10.1016/j.talanta.2012.07.088 23141321
    [Google Scholar]
  8. Perez J.W. Haselton F.R. Wright D.W. Viral detection using DNA functionalized gold filaments. Analyst (Lond.) 2009 134 8 1548 1553 10.1039/b904191e 20448919
    [Google Scholar]
  9. Shi L. Sun Q. He J. Xu H. Liu C. Zhao C. Xu Y. Wu C. Xiang J. Gu D. Long J. Lan H. Development of SPR biosensor for simultaneous detection of multiplex respiratory viruses. Biomed. Mater. Eng. 2015 26 1_suppl Suppl. 1 S2207 S2216 10.3233/BME‑151526 26406000
    [Google Scholar]
  10. Ribeiro B.V. Cordeiro T.A.R. Oliveira e Freitas G.R. Ferreira L.F. Franco D.L. Biosensors for the detection of respiratory viruses: A review. Talanta Open 2020 2 100007 10.1016/j.talo.2020.100007 34913046
    [Google Scholar]
  11. Białobrzeska W. Firganek D. Czerkies M. Lipniacki T. Skwarecka M. Dziąbowska K. Cebula Z. Malinowska N. Bigus D. Bięga E. Pyrć K. Pala K. Żołędowska S. Nidzworski D. Electrochemical immunosensors based on screen-printed gold and glassy carbon electrodes: Comparison of performance for respiratory syncytial virus detection. Biosensors 2020 10 11 175 10.3390/bios10110175 33202922
    [Google Scholar]
  12. Tanzadehpanah H. Mahaki H. Manoochehri H. Soleimani M. Najafi R. AS1411 aptamer improves therapeutic efficacy of PEGylated nanoliposomes loaded with gefitinib in the mice bearing CT26 colon carcinoma. J. Nanopart. Res. 2022 24 12 252 10.1007/s11051‑022‑05630‑0
    [Google Scholar]
  13. Jang M. Park H. Park H. Yoon Y. Lee S. Min J. Lee T. Establishment of the rapid electrochemical-SELEX monitoring system by using ACEF technique and its application to dengue virus aptasensor fabrication. Chem. Eng. J. 2024 497 154806 10.1016/j.cej.2024.154806
    [Google Scholar]
  14. Kukushkin V. Ambartsumyan O. Subekin A. Astrakhantseva A. Gushchin V. Nikonova A. Dorofeeva A. Zverev V. Keshek A. Meshcheryakova N. Zaborova O. Gambaryan A. Zavyalova E. Multiplex lithographic SERS aptasensor for detection of several respiratory viruses in one pot. Int. J. Mol. Sci. 2023 24 9 8081 10.3390/ijms24098081 37175786
    [Google Scholar]
  15. Cai Z. Song Y. Wu Y. Zhu Z. James Yang C. Chen X. An electrochemical sensor based on label-free functional allosteric molecular beacons for detection target DNA/miRNA. Biosens. Bioelectron. 2013 41 783 788 10.1016/j.bios.2012.10.002 23102830
    [Google Scholar]
  16. Babaei A. Pouremamali A. Rafiee N. Sohrabi H. Mokhtarzadeh A. de la Guardia M. Genosensors as an alternative diagnostic sensing approaches for specific detection of virus species: A review of common techniques and outcomes. Trends Analyt. Chem. 2022 155 116686 10.1016/j.trac.2022.116686 35611316
    [Google Scholar]
  17. Cajigas S. Alzate D. Fernández M. Muskus C. Orozco J. Electrochemical genosensor for the specific detection of SARS-CoV-2. Talanta 2022 245 123482 10.1016/j.talanta.2022.123482 35462140
    [Google Scholar]
  18. Cao M. Sun Q. Zhang X. Ma Y. Wang J. Detection and differentiation of respiratory syncytial virus subgroups A and B with colorimetric toehold switch sensors in a paper-based cell-free system. Biosens. Bioelectron. 2021 182 113173 10.1016/j.bios.2021.113173 33773383
    [Google Scholar]
  19. Li X. Wang R. Liu L. Hun X. Ti3C2@WSe2 as photoelectractive materials coupling with recombinase polymerase amplification for nucleic acid detection. Anal. Chim. Acta 2022 1214 339961 10.1016/j.aca.2022.339961 35649644
    [Google Scholar]
  20. Zhang D. Huang L. Liu B. Ge Q. Dong J. Zhao X. Rapid and ultrasensitive quantification of multiplex respiratory tract infection pathogen via lateral flow microarray based on SERS nanotags. Theranostics 2019 9 17 4849 4859 10.7150/thno.35824 31410186
    [Google Scholar]
  21. Lomae A. Teekayupak K. Preechakasedkit P. Pasomsub E. Ozer T. Henry C.S. Citterio D. Vilaivan T. Chailapakul O. Ruecha N. Peptide nucleic acid probe-assisted paper-based electrochemical biosensor for multiplexed detection of respiratory viruses. Talanta 2024 279 126613 10.1016/j.talanta.2024.126613 39096788
    [Google Scholar]
  22. Shanmukh S. Jones L. Driskell J. Zhao Y. Dluhy R. Tripp R.A. Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate. Nano Lett. 2006 6 11 2630 2636 10.1021/nl061666f 17090104
    [Google Scholar]
  23. Turner A.P.F. Biosensors: Sense and sensibility. Chem. Soc. Rev. 2013 42 8 3184 3196 10.1039/c3cs35528d 23420144
    [Google Scholar]
  24. Esfandiari A.H. Mobarezi Z. Afarande H. Mahaki H. Ketabi K. Manoochehri H. Sheykhhasan M. Avan A. Meshkat Z. Tanzadehpanah H. Electrode modification in viral biosensors: A review. Curr. Med. Chem. 2025 32 36 8011 8034 10.2174/0109298673358036250303025326 40108922
    [Google Scholar]
  25. Hermanson G.T. Bioconjugate techniques. Academic press 2013
    [Google Scholar]
  26. Singh R. Srinivas S.P. Kumawat M. Daima H.K. Ligand-based surface engineering of nanomaterials: Trends, challenges, and biomedical perspectives. OpenNano 2024 15 100194 10.1016/j.onano.2023.100194
    [Google Scholar]
  27. Sharma S. Byrne H. O’Kennedy R.J. Antibodies and antibody-derived analytical biosensors. Essays Biochem. 2016 60 1 9 18 10.1042/EBC20150002 27365031
    [Google Scholar]
  28. Welch N.G. Scoble J.A. Muir B.W. Pigram P.J. Orientation and characterization of immobilized antibodies for improved immunoassays (Review). Biointerphases 2017 12 2 02D301 10.1116/1.4978435 28301944
    [Google Scholar]
  29. Liu Z. Wang C. Zheng S. Yang X. Han H. Dai Y. Xiao R. Simultaneously ultrasensitive and quantitative detection of influenza A virus, SARS-CoV-2, and respiratory syncytial virus via multichannel magnetic SERS-based lateral flow immunoassay. Nanomedicine 2023 47 102624 10.1016/j.nano.2022.102624 36328340
    [Google Scholar]
  30. Jeong S. Son S.U. Kim J. Cho S.I. Kang T. Kim S. Lim E.K. Ko Park S.H. Rapid and simultaneous multiple detection of a tripledemic using a dual-gate oxide semiconductor thin-film transistor-based immunosensor. Biosens. Bioelectron. 2023 241 115700 10.1016/j.bios.2023.115700 37757509
    [Google Scholar]
  31. McGill A. Marsh R. Craft A.W. Toms G.L. Analysis of the binding of monoclonal and polyclonal antibodies to the glycoproteins of antigenic variants of human respiratory syncytial virus by surface plasmon resonance. J. Immunol. Methods 2005 297 1-2 143 152 10.1016/j.jim.2004.12.017 15777938
    [Google Scholar]
  32. Valdez J. Bawage S. Gomez I. Singh S.R. Facile and rapid detection of respiratory syncytial virus using metallic nanoparticles. J. Nanobiotechnology 2016 14 1 13 10.1186/s12951‑016‑0167‑z 26921130
    [Google Scholar]
  33. Zhao Z. Huang C. Huang Z. Lin F. He Q. Tao D. Jaffrezic-Renault N. Guo Z. Advancements in electrochemical biosensing for respiratory virus detection: A review. Trends Analyt. Chem. 2021 139 116253 10.1016/j.trac.2021.116253 33727755
    [Google Scholar]
  34. Byrne B. Stack E. Gilmartin N. O’Kennedy R. Antibody-based sensors: Principles, problems and potential for detection of pathogens and associated toxins. Sensors 2009 9 6 4407 4445 10.3390/s90604407 22408533
    [Google Scholar]
  35. Yu J. Li Y. Zou H. Hou W. Li X. Zhou L. Peptide-Based electrochemical potential Scanning: A novel approach for disulfide manipulation in pediatric Respiratory syncytial virus detection. Bioelectrochemistry 2024 158 108705 10.1016/j.bioelechem.2024.108705 38669975
    [Google Scholar]
  36. Gräwe A. van der Veer H. Jongkees S.A.K. Flipse J. Rossey I. de Vries R.P. Saelens X. Merkx M. Direct and ultrasensitive bioluminescent detection of intact respiratory viruses. ACS Sens. 2024 9 10 5550 5560 10.1021/acssensors.4c01855 39375866
    [Google Scholar]
  37. Justino C.I.L. Gomes A.R. Freitas A.C. Duarte A.C. Rocha-Santos T.A.P. Graphene based sensors and biosensors. Trends Analyt. Chem. 2017 91 53 66 10.1016/j.trac.2017.04.003
    [Google Scholar]
  38. Vigneshvar S. Sudhakumari C.C. Senthilkumaran B. Prakash H. Recent advances in biosensor technology for potential applications: An overview. Front. Bioengineer. Biotechnol. 2016 4 11 10.3389/fbioe.2016.00011
    [Google Scholar]
  39. Białobrzeska W. Ficek M. Dec B. Osella S. Trzaskowski B. Jaramillo-Botero A. Pierpaoli M. Rycewicz M. Dashkevich Y. Łęga T. Malinowska N. Cebula Z. Bigus D. Firganek D. Bięga E. Dziąbowska K. Brodowski M. Kowalski M. Panasiuk M. Gromadzka B. Żołędowska S. Nidzworski D. Pyrć K. Goddard W.A. III Bogdanowicz R. Performance of electrochemical immunoassays for clinical diagnostics of SARS-CoV-2 based on selective nucleocapsid N protein detection: Boron-doped diamond, gold and glassy carbon evaluation. Biosens. Bioelectron. 2022 209 114222 10.1016/j.bios.2022.114222 35430407
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673405097251126094401
Loading
/content/journals/cmc/10.2174/0109298673405097251126094401
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test