Current Medicinal Chemistry - Online First
Description text for Online First listing goes here...
201 - 220 of 227 results
-
-
Mechanism Exploration of Astaxanthin in the Treatment of Adriamycin-induced Cardiotoxicity Based on Network Pharmacology and Experimental Validation
Authors: Yu Zhu, Mengyao Chen, Lin Xie, Yijun Pan, Yuntian Yang and Guoxing WanAvailable online: 28 October 2024More LessIntroductionAstaxanthin (AXT), a natural antioxidant recognized for its therapeutic potential in cancer and cardiovascular diseases, holds promise in mitigating adriamycin-induced cardiotoxicity (AIC). Nevertheless, the underlying mechanisms of AXT in AIC mitigation remain to be elucidated. Consequently, this study endeavors to elucidate the mechanism of AXT against AIC, employing an integrated approach.
MethodsNetwork pharmacology, molecular docking, and molecular dynamics simulations were harnessed to explore the molecular mechanism underlying AXT's action against AIC. Furthermore, the in-vitro AIC model was established with the H9c2 cell to generate transcriptome data for validation.
ResultsA total of 533 putative AXT targets and 1478 AIC-related genes were initially screened by database retrieval and bioinformatics analysis. A total of 248 potential targets of AXT against AIC and several signaling pathways were identified by network pharmacology and enrichment analysis. Two core genes (CCL2 and NOS3) and the AGE-RAGE signaling pathway in diabetic complications were further highlighted by transcriptome validation based on the AIC in-vitro model. Additionally, molecular docking and dynamics analyses supported the robust binding affinity of AXT with the core targets.
ConclusionThe study suggested that AXT might ameliorate AIC through the inhibition of CCL2 and NOS3 as well as AGE-RAGE signaling, which provide a theoretical basis for the development of a strategy against AIC.
-
-
-
Intermittent Fasting and Fasting-mimicking Diet: Promising Strategies in Cancer Management
Authors: Chuanqiang Zhang, Fengqing Fu, Xingchao Zhu, Xiangyu Ni, Sijia Yue, Hongya Wu and Tongguo ShiAvailable online: 24 October 2024More LessIn the current review, we aim to elucidate the advancements concerning the roles and fundamental mechanisms of intermittent fasting (IF)> and fasting-mimicking diet (FMD)> in cancers. As a dietary intervention,> IF and FMD> potentially impede tumor growth by modulating multiple signaling pathways, such as AKT, Nrf2, and AMPK pathways.> Moreover, IF and FMD have been reported to be associated with the tumor immune response by regulating various immune cells including tumor-associated macrophages (TAMs), monocytic myeloid-derived suppressor cells (MDSCs), T cells, and B cells.> Additionally, IF and FMD can enhance the efficacy and tolerability of therapy, concurrently reducing therapy-induced side effects.> Furthermore, several clinical trials have underscored the safety, feasibility, and positive impact on the quality of life associated with IF and FMD, thereby augmenting the effectiveness of conventional anti-tumor therapies while ameliorating treatment-related side effects. This review provides a comprehensive synthesis of findings and elucidates the underlying mechanisms of IF and FMD in cancer progression and therapy.
-
-
-
Potential Mechanisms of Covid-19 Related Nervous System Damage and Effects on Female Fertility
Authors: Chen-yue Qian, Si-ning Hu, liu huadong and Jing-jin LiuAvailable online: 24 October 2024More LessSigns and symptoms that persist or worsen beyond the “acute COVID-19” stage are referred to as long-COVID. These patients are more likely to suffer from multiple organ failure, readmission, and mortality. According to a recent theory, long-lasting COVID-19 symptoms may be caused by abnormal autonomic nervous system (ANS) activity, such as hypovolemia, brain stem involvement, and autoimmune reactions. Furthermore, COVID-19 can also cause impaired fertility in women, which may also be related to inflammation and immune responses. Currently, few treatments are available for long-COVID symptoms. This article reviews the major effects of COVID-19 on the nervous system and female fertility, as well as offers potential treatment approaches.
-
-
-
Design, Synthesis, Molecular Docking, Pharmacokinetic Properties, and Molecular Dynamics Simulation of Sulfonyl Derivatives of Benzimidazole against Parkinson’s Disease
Available online: 24 October 2024More LessIntroductionThe disability and mortality related to Parkinson's disease (PD), a neurodegenerative disease, are increasing globally at a faster rate than other neurological disorders. With no permanent cure for PD, there is an urgent need to develop novel and effective anti-PD drugs.
MethodTargeting monoamine oxidases (MAO), which catalyze the breakdown of neurotransmitters, is one way to treat neurodegenerative diseases. In this context, an initial molecular docking of twenty designed sulfonyl derivatives of benzimidazole against monoamine oxidase B (MAO-B) associated with PD was conducted using AutoDock Vina.
ResultThe results were compared with those of the conventional inhibitors, selegiline and rasagiline. Based on the docking score, the in-silico pharmacokinetic properties (ADME), drug-likeness, and toxicity profiles of the newly synthesized molecules were examined using SwissADME, PreADMET, ProTox-3.0, vNN, and ADMETlab web tools. Then, twelve potential derivatives were synthesized and characterized by IR, 1H-NMR, 13C-NMR, 19F-NMR (for some compounds), and mass spectrometry. Derivatives 2cj and 1bj were the two molecules having the best binding affinity of -11.9 and -11.8 kcal/mol, respectively, against MAO-B, exhibiting a higher binding affinity compared to that of some commercially available drugs. A 50 ns MD simulation run was performed to observe the stability of the top two docked complexes, MAO-B-2cj and MAO-B-1bj, in order to further validate the efficacy of those two substances. Moreover, the MM-PBSA method was used to calculate the final, binding free energy of the simulated (MAO-B-2cj) complex.
ConclusionThis study indicates that the binding affinity of most of the hits was superior to that of known MAO inhibitors; therefore, these newly synthesized benzimidazole derivatives may be developed into essential drug candidates for the treatment of PD.
-
-
-
Machine Learning-based Macrophage Signature for Predicting Prognosis and Immunotherapy Benefits in Cholangiocarcinoma
Authors: Junkai Huang, Yu Chen, Zhiguo Tan, Yinghui Song, Kang Chen, Sulai Liu, Chuang Peng and Xu ChenAvailable online: 24 October 2024More LessAimsWe aimed to develop a macrophage signature for predicting clinical outcomes and immunotherapy benefits in cholangiocarcinoma.
BackgroundMacrophages are potent immune effector cells that can change phenotype in different environments to exert anti-tumor and anti-tumor functions. The role of macrophages in the prognosis and therapy benefits of cholangiocarcinoma was not fully clarified.
ObjectiveThe objective of this study is to develop a prognostic model for cholangiocarcinoma.
MethodsThe macrophage-related signature (MRS) was developed using 10 machine learning methods with TCGA, GSE89748 and GSE107943 datasets. Several indicators (TIDE score, TMB score and MATH score) and two immunotherapy datasets (IMvigor210 and GSE91061) were used to investigate the performance of MRS in predicting the benefits of immunotherapy.
ResultsThe Lasso + CoxBoost method's MRS was considered a robust and stable model that demonstrated good accuracy in predicting the clinical outcome of patients with cholangiocarcinoma; the AUC of the 2-, 3-, and 4-year ROC curves in the TCGA dataset were 0.965, 0.957, and 1.000. Moreover, MRS acted as an independent risk factor for the clinical outcome of cholangiocarcinoma cases. Cholangiocarcinoma cases with higher MRS scores are correlated with a higher TIDE score, higher tumor escape score, higher MATH score, and lower TMB score. Further analysis suggested high MRS score indicated a higher gene set score correlated with cancer-related hallmarks.
ConclusionWith regard to cholangiocarcinoma, the current study created a machine learning-based MRS that served as an indication for forecasting the prognosis and therapeutic advantages of individual cases.
-
-
-
Unraveling the Ferroptosis-inducing Potential of Methanol Leaves Extract of Prosopis Juliflora Via Downregulation of SLC7A11 and GPX4 mRNA Expression in A549 Lung Cancer Cells
Available online: 24 October 2024More LessIntroductionProsopis juliflora has been employed in many traditional treatments. As evidenced by our earlier research, Prosopis juliflora leaf methanol extract (PJME) has a promising future in the fight against lung cancer. It may also be used in conjunction with other treatments to effectively manage lung cancer. Aims and objective: The main objective of this study was to explore the potential of PJME to inhibit lung cancer in A549 cells, along with its underlying mechanisms of action.
MethodThe antiproliferative effects were determined using MTT and LDH tests. Apoptosis-inducing capacity was evaluated using the DAPI staining, caspase-3 test, cytochrome C assay, PARP cleavage, and qRT-PCR. To investigate the mechanism of action of PJME in lung cancer, the levels of ROS, MMP, GSH, MDA, and specific ferroptosis indicators were measured.
ResultsThe experimental data of the current study indicated that exposure of A549 cells to PJME reduced cell viability and increased cellular cytotoxicity. The apoptosis-inducing ability of PJME in A549 cells was validated by enhanced nuclear condensation, level of the caspase-3, cytochrome C, and PARP release. In addition, qRT-PCR investigations verified that the administration of PJME led to a decrease in the expression of anti-apoptotic gene Bcl2 while enhancing the mRNA level of pro-apoptotic genes, such as Bax and caspase-3, in A549 cells.
ConclusionThe study also found that PJME has the ability to activate ferroptosis pathways, as evidenced by elevated reactive oxygen species (ROS) generation, changes in the levels of antioxidant markers (MDA and GSH), and decreased expression of SLC7A11 and GPX4. The results of the present study clearly showed that PJME inhibited the proliferation of A549 cells and induced ferroptosis by reducing the expression of the important targets SLC7A11 and GPX4. Further research is necessary to fully understand the clinical efficacy of PJME before it can be investigated as supplemental or adjuvant therapy for lung cancer.
-
-
-
Unveiling the Therapeutic Potential of Small Molecule of SVAK-12: A Comprehensive In Silico, In Vitro, and In Vivo Studies on its Neuroprotective Effects and Molecular Interactions in Parkinson's Disease
Available online: 23 October 2024More LessIntroductionParkinson's disease (PD) is a neurodegenerative disorder associated with a progressive loss of dopaminergic cells and as of now, there is no established definitive treatment available for this condition.
MethodIn this study, the focus was on investigating the impact of SVAK-12, a small molecule that can cross the blood-brain barrier and remain stable without structural changes. The effect of SVAK-12 was investigated in vitro on neurotoxicity, in vivo model of Parkinson's Diseases and in silico.
ResultThrough in vitro and in vivo experiments, as well as molecular docking simulations, it was found that SVAK-12 (375 ng.ml) led to increased cell viability, reduced cellular damage, and decreased production of NO and ROS. Additionally, it boosted levels of important neurotrophic factors like BDNF (130.49%) and GDNF (116.38%), potentially aiding in alleviating motor disability and depression. The study also highlighted SVAK-12's potential as a therapeutic candidate for neurological disorders due to its ability to increase tyrosine hydroxylase expression and dopamine levels (4.84 times). While it did not significantly improve motor symptoms in vivo, it did enhance motor asymmetry in the forelimbs and gene expression related to brain regions. Besides, it induced significant BMP-2 gene expression in substantial nigra regions without significant changes in GDNF and Nurr1 gene expression in the striatum expression. The docking of SVAK-12, Levodopa, Amantadine, Biperiden, Selegiline, and Rasagiline to the binding site of GFRα1, sortilin, and TrkB showed that SVAK-12 had greater MolDock score than Selegiline and Amantadine for GFRα1 and greater than amantadine for Sortilin and TrKB.
ConclusionOverall, the study suggests that SVAK-12's neuro-biocompatibility, ability to reduce free radicals, and enhanced neurotrophic factors make it a promising candidate as a neuroprotective drug.
-
-
-
Multiple Machine Learning Models, Molecular Subtyping and Single- cell Analysis Identify PANoptosis-related Core Genes and their Association with Subtypes in Crohn’s Disease
Authors: Yi Chen, Lu Zhang, Wan-Ying Huang, Rong-Quan He, Zhi-Guang Huang, Hui Li, Rui Song, Jia-Wei Zhang, Juan He and Gang ChenAvailable online: 21 October 2024More LessBackgroundPANoptosis plays an important role in many inflammatory diseases. However, there are no reports on the association between PANoptosis and CD.
Materials and MethodsThis study used five machine learning algorithms - least absolute shrinkage and selection operator, support vector machine, random forest, decision tree and Gaussian mixture models - to construct CD’s PANoptosis signature. Unsupervised hierarchical clustering analysis was used to identify PANoptosis-associated subgroups of CD. Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA) were conducted to compare the PANoptosis-associated subgroups of CD among the potential biological mechanisms. Single sample GSEA was used to assess immune microenvironmental differences among the subgroups. The potential role of PANoptosis in CD was further explored using single-cell RNA-Seq (scRNA-Seq) for PANoptosis scoring, differential analysis, pseudotime analysis, cellular communication analysis and weighted gene co-expression network analysis (WGCNA) analysis.
ResultsCD’s PANoptosis signature consisted of seven genes: CEACAM6, CHP2, PIK3R1, CASP10, PSMB1, PSMB8 and UBC. The PANoptosis signature in multiple cohorts had a strong ability to recognise CD. The levels of immune cell infiltration and the vigour of the immune responses significantly varied between the two subpopulations of CD associated with PANoptosis. Multiple lines of evidence from the GO, KEGG, GSEA, GSVA, scRNA-Seq and WGCNA analyses suggested that I-kappaB kinase/NF-kappaB signalling, mitogen-activated protein kinase (MAPK), leukocyte activation and leukocyte migration were mechanisms closely associated with PANoptosis in CD.
ConclusionThis study is the first to construct a PANoptosis signature with excellent efficacy in recognising CD. PANoptosis may mediate the process of CD through inflammatory and immune mechanisms, such as NF- kappaB, MAPK and leukocyte migration.
-
-
-
Focused Insights into Liposomal Nanotherapeutics for Antimicrobial Treatment
Authors: Kiran Jani, Swapnil Mehta, Riya Patel, Bhupendra Prajapati and Gayatri PatelAvailable online: 17 October 2024More LessAddressing infectious conditions presents a formidable challenge, primarily due to the escalating issue of bacterial resistance. This, coupled with limited financial resources and stagnant antibiotic research, compounds the antibiotic crisis. Innovative strategies, including novel antibiotic development and alternative solutions, are crucial to combat microbial resistance. Nanotherapeutics offers a promising approach to enhance drug delivery systems. Integration into lipid-based nanoscale delivery systems, particularly through therapeutic substance encapsulation in liposomal carriers, significantly prolongs drug presence at infection sites. This not only reduces toxicity but also shields antibiotics from degradation. Lipidic carriers, particularly liposomes, exhibit remarkable specificity in targeting infectious cells. This holds great promise in combating antimicrobial resistance and potentially transforming treatment for multi-drug resistant infections. Leveraging liposomal carriers may lead to breakthroughs in addressing drug-resistant bacterial infections. This review emphasizes the potential of antimicrobial-loaded liposomes as a novel delivery system for bacterial infections. Encapsulating antimicrobial agents within liposomes enhances treatment efficiency. Moreover, liposomal systems counteract challenges posed by antimicrobial resistance, offering hope in managing persistent multidrug-resistant infections. In the battle against bacterial resistance and the antibiotics crisis, the use of antimicrobial-loaded liposomes as delivery vehicles shows great promise. This innovative approach not only extends drug effectiveness and reduces toxicity but also provides a path to address highly resistant infectious conditions. As research advances, liposomal nanotherapeutics may emerge as a transformative solution in the fight against bacterial infections.
-
-
-
Structure-Activity Relationship of Substituted Pyrazoline Derivatives as Small Molecule Tyrosine Kinase Inhibitors
Authors: Saleem Akbar, Subham Das, Aman Kumar Mahto, Rikeshwer Prasad Dewangan and Bahar AhmedAvailable online: 17 October 2024More LessBackgroundTyrosine kinase inhibitors (TKIs) target certain cell signalling pathways, and have become a promising class of medications for the treatment of cancer in recent years. Because of their distinct structure and adaptable chemistry, pyrazolines have drawn a lot of interest from organic and medicinal chemists. Their exceptional TKI activity has prompted them to investigate chemotherapy for cancer.
ObjectiveWe aim to develop agents that inhibit tyrosine kinases highly effective with the least amount of harm possible, perhaps improving the course of cancer treatment.
MethodsThis review compiled current information from recent literature sources, including in vitro, in vivo, approved medications, active clinical trials, and the structure-activity relationships (SAR) linked to various pyrazoline analogues used as small-molecule Tyrosine Kinase Inhibitors in cancer treatment.
ResultsThis study focuses on SAR inside the pyrazoline ring and its derivatives as TKIs, and it emphasizes current developments, including patents, authorized medications, and compounds in clinical trials.
ConclusionBy enhancing our understanding of these compounds, our goal is to aid in making the roles of pharmacologists, scientists, and researchers who are designing and developing next-generation anticancer drugs with pyrazoline scaffolds easier. The future holds immense potential for the continued evolution of pyrazoline-based therapies, offering renewed hope in the ongoing battle against cancer.
-
-
-
The Potential of Nanotechnology in Anti-Cancer Drug to Regulate Nrf2 Signaling for Cancer Therapeutic Purposes
Available online: 17 October 2024More LessNuclear factor erythroid 2-related factor 2 (Nrf2) is a regulator of the cellular antioxidant defense system that plays an important role in reducing the risk of various pathophysiological conditions, including cancer. Targeting Nrf2 presents an attractive therapeutic approach to overcome these challenges and improve cancer treatment outcomes. Nanoparticles, with their unique physicochemical properties, offer several advantages over conventional therapies for targeting Nrf2. These include enhanced stability, improved permeability and retention effect, and precise targeting capabilities. Moreover, delivery systems based on nanotechnology have shown promise in overcoming the limitations of conventional cancer therapies, including ineffective precision targeting and momentous complications. The therapeutic efficacy of Nrf2 inhibitors may be enhanced by using nanoparticles for specific drug targeting and deeper tissue penetration. This involves optimizing nanoparticle formulations, understanding their interactions with the biological environment, and ensuring their safety and biocompatibility. Effective nanoparticle formulations are being developed to transport Nrf2 inhibitors, which can significantly improve treatment outcomes and address the limitations of conventional cancer therapies. Further studies are needed to explore the potential of nanotechnology in targeting Nrf2 for cancer therapeutic purposes.
-
-
-
Elucidating the Role of Autophagy-related Genes in Polycystic Ovary Syndrome: Implications for Diagnostic Models and Immune Response Regulation
Authors: Nan Li, Kai Yu, Delun Huang, Hua Guo, Xuehong Zhu and Zhong LinAvailable online: 17 October 2024More LessBackgroundPolycystic Ovary Syndrome (PCOS) is a common endocrine disorder that negatively affects female reproductive capacity. Although the association between autophagy and PCOS is known, there are few detailed studies on the association between autophagy-related genes and PCOS.
MethodsPublicly available gene expression datasets (GSE102293, GSE138518, GSE34526, GSE114419, GSE137684, GSE155489) were used in a comprehensive analysis to identify a role for autophagy in PCOS. Batch effects were mitigated using the sva package, followed by WGCNA (weighted gene correlation network analysis) and ssGSEA (single sample gene set enrichment analysis) to identify autophagy-related genes. Recursive feature elimination (RFE) and LASSO COX methods were used to identify important hub genes, and their correlation with immune cell activity was assessed using ssGSEA and Pearson correlation analysis.
ResultsHigh autophagy scores were observed in PCOS samples, and the dark green gene module with the highest autophagy correlation was identified. The differential analysis identified a total of 169 up-regulated genes versus 2 down-regulated genes in the PCOS samples, which were intersected by taking the intersection with the deep green module genes and resulted in 121 key genes. Subsequently, 6 hub genes (MMP25, CSF3R, SLPI, MMP9, CLEC4E, and SIGLEC10) were further identified based on RFE and LASSO algorithms. Diagnostic efficacy based on ROC curves showed six autophagy-associated hub genes with AUC values as high as 0.959 and 0.896 in the training and validation sets, respectively. Finally, we observed that these hub genes are strongly associated with immune function, especially chronic inflammation and aberrant immune activation pathways.
ConclusionIn this study, we identified autophagy genes closely related to PCOS and constructed a gene model with high diagnostic accuracy. These findings not only provided potential new biomarkers for the diagnosis of PCOS but also revealed the key role of autophagy in the pathogenesis of PCOS.
-
-
-
Impact of Obesity, Menopause, and Depression in Women’s Health: An Attempt to Decipher the Complex Relationship
Authors: Pervej Alom Barbhuiya and Manash Pratim PathakAvailable online: 16 October 2024More LessBackgroundMenopause symptoms may be distressing, especially when they appear at a time when women are expected to play significant responsibilities in society. Numerous biological systems are influenced by the hormonal changes that start during the menopausal transition. This review attempts to decipher the complex relationship between obesity, menopause, and depression, citing some recent longitudinal and cross-sectional studies. Additionally, this study provides a summary of the different phytoestrogens, their sources, and probable mechanisms of action in addition to available therapeutic alternatives.
MethodologyFor this review purpose, the authors have gone through a vast number of articles from various scientific databases like PubMed, Google Scholar, and Web of Science.
ResultsIt is becoming clear that the physiological basis for these menopausal symptoms is complicated and connected to estrogen deficiency, but not alone. Other hormones like FSH, LH, progesterone, and inhibin B are the major ones that are both directly and indirectly responsible for most of the menopausal symptoms. Numerous longitudinal and cross-sectional studies have found a direct relationship between the incidence of menopause and depression as well as obesity. Phytoestrogens like stilbene, lignans, isoflavone, and coumestan have been reported to be the alternatives to synthetic estrogen with lesser side effects, as reported in various studies.
ConclusionThe complex relationship between depression, menopause, and obesity presents a complex obstacle to women's health and overall well-being. There might be a lot of promising prospects for revolutionary advancements in women's health during the menopausal stage in the future. Promising drug development that targets not just one but also the three conditions -obesity, menopause, and depression - as well as more thorough research are needed to improve the healthcare system for women who suffer from these conditions.
-
-
-
Thrombosis in Hypertension: Pathophysiology, Biomarkers, and the Effect of Antihypertensive Treatment
Available online: 16 October 2024More LessHypertension, characterized by elevated blood pressure levels, remains a global health concern due to its association with cardiovascular complications, notably thrombosis. Thrombosis, the formation of blood clots within blood vessels, poses a significant risk for myocardial infarction, stroke, and limb ischemia, leading to adverse patient outcomes. Understanding the pathophysiological mechanisms underlying thrombosis in hypertension is crucial for developing effective preventive and therapeutic strategies. Hypertension induces structural and functional alterations in the vasculature, endothelium, and platelets, creating a prothrombotic milieu. Endothelial dysfunction, increased platelet activation, and alterations in coagulation factors contribute to the heightened thrombotic risk observed in hypertensive individuals. Biomarkers associated with thrombotic events, such as mean platelet volume, D-Dimer, and fibrinogen offer valuable insights into the pathogenesis of thrombosis and may serve as prognostic indicators for cardiovascular events in hypertensive populations. Investigating the impact of antihypertensive treatment on thrombotic risk is essential, as these medications exert pleiotropic effects on the vasculature and hemostatic system. By elucidating the intricate interplay between hypertension and thrombosis, this review aims to enhance our understanding of cardiovascular risk in hypertensive individuals and identify novel therapeutic targets for preventing thrombotic complications.
-
-
-
Parthenolide Inhibits Tumor Cell Growth and Metastasis in Melanoma A2058 Cells
Authors: Zahra Dorostgou, Malihe Hoseyni, Afsaneh Bahrami, Rahele Zhiani and Mahnaz MohtashamiAvailable online: 16 October 2024More LessBackgroundSkin melanoma is a potentially lethal cancer and ranks as the 17th most common cancer worldwide. Overcoming resistance to advanced-stage melanoma is a significant challenge in its treatment. Parthenolide (PAR) is recognized as a potent anticancer small molecule, yet its potential in treating melanoma is poorly investigated.
ObjectiveOur objective was to investigate the apoptotic and anti-metastatic properties of PAR against the A2058 melanoma cells in vitro.
MethodsThis study employed various assays, such as cytotoxicity, apoptosis, cell cycle analysis, reactive oxygen species (ROS) production, mRNA expressions, western blotting, gelatin zymography, and scratch assay. The synergy between PAR and dacarbazine, a chemotherapy drug for treating skin cancer, was also assessed.
ResultsOur study revealed that PAR significantly reduced the viability of A2058 cancer cells, demonstrating greater potency against cancer cells compared to normal L929 cells (IC50: 20 µM vs. 27 µM after 24h). PAR increased ROS production, elevated mRNA expression of pro-apoptotic Bax and NME1 genes, and decreased expression of the MITF gene. PAR induced apoptosis and cell cycle arrest in A2058 cells, as evidenced by the increased proportion of cells in the late apoptotic phase and sub-G1 cell cycle arrest. MMP-2 and MMP-9 mRNA and protein expressions, gelatinase activity, and the migration of A2058 cells were also decreased by PAR, suggesting its potential to suppress cancer cell invasion.
ConclusionThese results, along with the synergic effect with dacarbazine, indicated that PAR may have the potential to be a therapeutic drug for melanoma by triggering apoptosis and suppressing invasion and migration.
-
-
-
Development and Validation of a Cholesterol-related Gene Signature for Prognostic Assessment in Head and Neck Squamous Cell Carcinoma
Authors: Jiarong Zheng, Dalong Shu, Rongwei Xu, Yuchen Zheng, Pei Lin, Yunfan Lin, Xinyuan Zhao, Li Cui, Xin Liao and Bing GuoAvailable online: 15 October 2024More LessAimThis study seeks to develop a prognostic risk signature for head and neck squamous cell carcinoma (HNSCC) based on cholesterol-related genes (CholRG), aiming to enhance prognostic accuracy in clinical practice.
BackgroundHNSCC poses significant challenges due to its aggressive behavior and limited response to standard treatments, resulting in elevated morbidity and mortality rates.In order to improve prognostic prediction in HNSCC, our study is inspired by the realization that cholesterol metabolism plays a critical role in accelerating the progression of cancer. To this end, we are developing a unique risk signature using CholRG.
ObjectiveThe aim of this study was to create a CholRG-based risk signature to predict HNSCC prognosis, aiding in clinical decision-making accurately.
MethodThe TCGA HNSCC dataset, along with GSE41613 and GSE65858, was obtained from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases, respectively. A CholRG-based risk signature was then developed and validated across various independent HNSCC cohorts. Moreover, a nomogram model incorporating CholRG-based risk signature was established. Additionally, functional enrichment analysis was conducted, and the immune landscapes of the high- and low-risk groups were compared. Finally, in vitro experiments were performed using lipid-based transfection to deliver siRNAs targeting ACAT1 to SCC1 and SCC23 cell lines, further examining the effects of ACAT1 knockdown on these cells.
ResultsUtilizing RNA-seq, microarray, and clinical data from public databases, we constructed and validated a CholRG-based risk signature that includes key genes such as ACAT1, CYP19A1, CYP27A1, FAXDC2, INSIG2, PRKAA2, and SEC14L2, which can effectively predict the clinical outcome of HNSCC. Additionally, our findings were reinforced by a nomogram model that integrates the risk score with clinical variables for more clinically practical prognostic assessment. In addition, patients at high risk show hypoxia and increased oncogenic pathways such as mTORC1 signaling, as well as a suppressed immune microenvironment marked by a reduction in the infiltration of important immune cells. Notably, in vitro experiments showed that ACAT1 depletion significantly suppressed the proliferation, colony formation, and invasion capabilities of HNSCC cells, confirming ACAT1's role in promoting malignancy.
ConclusionCollectively, our study not only underscores the importance of cholesterol metabolism in HNSCC pathogenesis but also highlights the CholRG-based risk signature as a promising tool for enhancing prognostic accuracy and personalizing therapeutic strategies.
-
-
-
Synthesis of 2,4-Bis(trifluoromethyl)benzaldehyde Hybrid Thiosemicarbazones as Prolyl Oligopeptidase Inhibitors for Neurodegenerative Disorders and their In-silico Analysis
Available online: 14 October 2024More LessIntroductionProlyl-specific oligopeptidase (POP), one of the brain's highly expressed enzymes, is an important target for the therapy of central nervous system disorders, notably autism spectrum disorder, schizophrenia, Parkinson's, Alzheimer's disease, and dementia.
MethodThe current study was designed to investigate 2,4-bis(trifluoromethyl) benzaldehyde-based thiosemicarbazones as POP inhibitors to treat the above-mentioned disorders. A variety of techniques, such as nuclear magnetic resonance (NMR), mass spectrometry (MS), and Fourier-transform infrared spectroscopy (FTIR), were used for the structural confirmation of synthesized compounds. After in-vitro evaluation, all of these compounds were found to be prominent inhibitors of the POP enzyme (IC50= 10.14 - 41.73 µM).
ResultCompound 3a emerged as the most active compound (IC50 10.14 ± 0.72 µM) of the series. The kinetic study of the most active 3a (Ki =13.66 0.0012 µM) indicated competitive inhibition of the aforementioned enzyme.
ConclusionMoreover, molecular docking depicted a noticeable role of thiosemicarbazide moiety in the binding of these molecules within the active site of the POP enzyme.
-
-
-
Identifying Mechanism of RSV for the Treatment of COVID-19 and Idiopathic Pulmonary Fibrosis via Suppressing Inflammation Response Through IL-17 Signaling Pathway from the Perspectives of in silico Study
Authors: Jiahao Wang, Jiamiao Shi, Ning Jia and Qinru SunAvailable online: 11 October 2024More LessBackgroundBoth coronavirus disease 2019 (COVID-19) and idiopathic pulmonary fibrosis (IPF) could cause severe pulmonary injury and have extremely dismal prognoses with a high risk of mortality. Resveratrol (RSV), a natural polyphenol, has promising potential in the treatment of viral infection and pulmonary fibrosis.
ObjectiveThe purpose of this research was to investigate the unclear mechanism of RSV as an anti-COVID-19 and IPF therapy.
MethodUtilizing relevant databases, the intersection of genes related to IPF, COVID-19, and possible RSV targets was discovered. Then the obtained targets were investigated using GO and KEGG analysis, TP and PPI network analysis. Furthermore, the binding affinities between core targets and RSV were calculated using molecular docking.
ResultsThe 1101 COVID-19 targets, 2166 IPF targets, and 341 RSV targets intersected with 21 overlapping targets. PPI network reveals the interactions among targets and TP network reveals interactions between targets and pathways. Five targets including JUN, CCL2, CXCL8, IL6, and SERPINE1 were identified as the core targets through two network analyses. GO analysis demonstrated chemotaxis, inflammatory response and angiogenesis were the significant pathophysiological processes. Combing TP network analysis and KEGG analysis, IL-17 signaling pathway was considered as the significant pathway. Except for JUN, molecular docking showed the binding energies of other four targets were lower than -5 kcal/mol indicating intimate interactions between RSV and other targets.
ConclusionsOur research elucidate the targets, pathways and pathophysiological processes of RSV involved in effects of anti-COVID-19 and IPF, suggesting RSV could be a therapeutic candidate for reducing infection and fibrosis.
-
-
-
Mitochondrial Dysfunction Associated with mtDNA Mutation: Mitochondrial Genome Editing in Atherosclerosis Research
Available online: 11 October 2024More LessBackgroundAtherosclerosis is a complex cardiovascular disease often associated with mitochondrial dysfunction, which can lead to various cellular and metabolic abnormalities. Within the mitochondrial genome, specific mutations have been implicated in contributing to mitochondrial dysfunction. Atherosclerosis-associated m.15059G>A mutation has been of particular interest due to its potential role in altering mitochondrial function and cellular health.
ObjectiveThis study aims to investigate the role of the atherosclerosis-associated m.15059G>A mutation in the development of mitochondrial dysfunction in monocyte-like cells.
MethodsMonocyte-like cytoplasmic hybrid cell line TC-HSMAM1, which contains the m.15059G>A mutation in mtDNA, was used. The MitoCas9 vector was utilized to eliminate mtDNA copies carrying the m.15059G>A mutation from TC-HSMAM1 cybrids. Mitochondrial membrane potential, generation of reactive oxygen species, and lipid peroxidation levels were assessed using flow cytometry. Cellular reduced glutathione levels were assessed using the confocal microscopy. The oxygen consumption rate was measured using polarographic oxygen respirometry.
ResultsThe elimination of the m.15059G>A mutation resulted in a significant increase in mitochondrial membrane potential and improved mitochondrial efficiency while also causing a decrease in the generation of reactive oxygen species, lipid peroxidation, as well as cellular bioenergetic parameters, such as proton leak and non-mitochondrial oxygen consumption. At the same time, no changes were found in the intracellular antioxidant system after the mitochondrial genome editing.
ConclusionsThe presence of the m.15059G>A mutation contributes to mitochondrial dysfunction by reducing mitochondrial membrane potential, increasing the generation of reactive oxygen species and lipid peroxidation, and altering mitochondrial bioenergetics. Elimination of the mtDNA containing atherogenic mutation leads to an improvement in mitochondrial function.
-
-
-
Synthesis, DFT, ADMET, and Docking studies of Novel Sulfonyl Piperidine Analogues containing 2,3-Dihydrobenzofuran-5-Carboxamide
Available online: 11 October 2024More LessBackgroundThe development of effective anti-cancer medicines with low side effects is imperative as cancer continues to be a leading cause of death globally. By obstructing the survival and growth of cancer cells, small-molecule medications have made tremendous progress in the field of cancer research. Several bioactive heterocyclic compounds, including derivatives of piperidine and 2,3-dihydrobenzofuran, have shown great promise and are found in various anti-cancer medications. Cancer growth and metastasis are hindered by these small molecule inhibitors, which interfere with vital signals that drive cancer cell proliferation.
ObjectiveThis study focuses on the synthesis and evaluation of novel Sulfonyl Piperidine Analogues containing 2,3-Dihydrobenzofuran-5-Carboxamide as potential anti-cancer agents.
MethodsThe synthesized compounds were characterized using spectroscopic techniques such as 1H NMR and ESI-MS. Protein-drug interaction studies, DFT analysis, and target prediction techniques were employed. The anti-cancer properties of the compounds were evaluated in vitro against MCF-7 cell lines. Compounds 5 and 7 were specifically investigated for their growth-inhibitory effects on MCF7 breast cancer cells.
ResultsCompounds5 and 7 demonstrated strong binding affinity towards both mutated BRCA1 (PDB ID: 1N5O) and BRCA2 (PDB ID:8BR9). Furthermore, they displayed notable efficacy against MCF-7 cell lines.
ConclusionSynthesized compounds displayed activity against MCF-7 cell lines, supporting findings from in-silico predictions. Further investigations are warranted to elucidate the mechanisms of action of these selected molecules against MCF-7 cell types.
-