Current Medicinal Chemistry - Online First
Description text for Online First listing goes here...
201 - 207 of 207 results
-
-
Structure-Activity Relationship of Substituted Pyrazoline Derivatives as Small Molecule Tyrosine Kinase Inhibitors
Authors: Saleem Akbar, Subham Das, Aman Kumar Mahto, Rikeshwer Prasad Dewangan and Bahar AhmedAvailable online: 17 October 2024More LessBackgroundTyrosine kinase inhibitors (TKIs) target certain cell signalling pathways, and have become a promising class of medications for the treatment of cancer in recent years. Because of their distinct structure and adaptable chemistry, pyrazolines have drawn a lot of interest from organic and medicinal chemists. Their exceptional TKI activity has prompted them to investigate chemotherapy for cancer.
ObjectiveWe aim to develop agents that inhibit tyrosine kinases highly effective with the least amount of harm possible, perhaps improving the course of cancer treatment.
MethodsThis review compiled current information from recent literature sources, including in vitro, in vivo, approved medications, active clinical trials, and the structure-activity relationships (SAR) linked to various pyrazoline analogues used as small-molecule Tyrosine Kinase Inhibitors in cancer treatment.
ResultsThis study focuses on SAR inside the pyrazoline ring and its derivatives as TKIs, and it emphasizes current developments, including patents, authorized medications, and compounds in clinical trials.
ConclusionBy enhancing our understanding of these compounds, our goal is to aid in making the roles of pharmacologists, scientists, and researchers who are designing and developing next-generation anticancer drugs with pyrazoline scaffolds easier. The future holds immense potential for the continued evolution of pyrazoline-based therapies, offering renewed hope in the ongoing battle against cancer.
-
-
-
Impact of Obesity, Menopause, and Depression in Women’s Health: An Attempt to Decipher the Complex Relationship
Authors: Pervej Alom Barbhuiya and Manash Pratim PathakAvailable online: 16 October 2024More LessBackgroundMenopause symptoms may be distressing, especially when they appear at a time when women are expected to play significant responsibilities in society. Numerous biological systems are influenced by the hormonal changes that start during the menopausal transition. This review attempts to decipher the complex relationship between obesity, menopause, and depression, citing some recent longitudinal and cross-sectional studies. Additionally, this study provides a summary of the different phytoestrogens, their sources, and probable mechanisms of action in addition to available therapeutic alternatives.
MethodologyFor this review purpose, the authors have gone through a vast number of articles from various scientific databases like PubMed, Google Scholar, and Web of Science.
ResultsIt is becoming clear that the physiological basis for these menopausal symptoms is complicated and connected to estrogen deficiency, but not alone. Other hormones like FSH, LH, progesterone, and inhibin B are the major ones that are both directly and indirectly responsible for most of the menopausal symptoms. Numerous longitudinal and cross-sectional studies have found a direct relationship between the incidence of menopause and depression as well as obesity. Phytoestrogens like stilbene, lignans, isoflavone, and coumestan have been reported to be the alternatives to synthetic estrogen with lesser side effects, as reported in various studies.
ConclusionThe complex relationship between depression, menopause, and obesity presents a complex obstacle to women's health and overall well-being. There might be a lot of promising prospects for revolutionary advancements in women's health during the menopausal stage in the future. Promising drug development that targets not just one but also the three conditions -obesity, menopause, and depression - as well as more thorough research are needed to improve the healthcare system for women who suffer from these conditions.
-
-
-
Synthesis of 2,4-Bis(trifluoromethyl)benzaldehyde Hybrid Thiosemicarbazones as Prolyl Oligopeptidase Inhibitors for Neurodegenerative Disorders and their In-silico Analysis
Available online: 14 October 2024More LessIntroductionProlyl-specific oligopeptidase (POP), one of the brain's highly expressed enzymes, is an important target for the therapy of central nervous system disorders, notably autism spectrum disorder, schizophrenia, Parkinson's, Alzheimer's disease, and dementia.
MethodThe current study was designed to investigate 2,4-bis(trifluoromethyl) benzaldehyde-based thiosemicarbazones as POP inhibitors to treat the above-mentioned disorders. A variety of techniques, such as nuclear magnetic resonance (NMR), mass spectrometry (MS), and Fourier-transform infrared spectroscopy (FTIR), were used for the structural confirmation of synthesized compounds. After in-vitro evaluation, all of these compounds were found to be prominent inhibitors of the POP enzyme (IC50= 10.14 - 41.73 µM).
ResultCompound 3a emerged as the most active compound (IC50 10.14 ± 0.72 µM) of the series. The kinetic study of the most active 3a (Ki =13.66 0.0012 µM) indicated competitive inhibition of the aforementioned enzyme.
ConclusionMoreover, molecular docking depicted a noticeable role of thiosemicarbazide moiety in the binding of these molecules within the active site of the POP enzyme.
-
-
-
Mitochondrial Dysfunction Associated with mtDNA Mutation: Mitochondrial Genome Editing in Atherosclerosis Research
Available online: 11 October 2024More LessBackgroundAtherosclerosis is a complex cardiovascular disease often associated with mitochondrial dysfunction, which can lead to various cellular and metabolic abnormalities. Within the mitochondrial genome, specific mutations have been implicated in contributing to mitochondrial dysfunction. Atherosclerosis-associated m.15059G>A mutation has been of particular interest due to its potential role in altering mitochondrial function and cellular health.
ObjectiveThis study aims to investigate the role of the atherosclerosis-associated m.15059G>A mutation in the development of mitochondrial dysfunction in monocyte-like cells.
MethodsMonocyte-like cytoplasmic hybrid cell line TC-HSMAM1, which contains the m.15059G>A mutation in mtDNA, was used. The MitoCas9 vector was utilized to eliminate mtDNA copies carrying the m.15059G>A mutation from TC-HSMAM1 cybrids. Mitochondrial membrane potential, generation of reactive oxygen species, and lipid peroxidation levels were assessed using flow cytometry. Cellular reduced glutathione levels were assessed using the confocal microscopy. The oxygen consumption rate was measured using polarographic oxygen respirometry.
ResultsThe elimination of the m.15059G>A mutation resulted in a significant increase in mitochondrial membrane potential and improved mitochondrial efficiency while also causing a decrease in the generation of reactive oxygen species, lipid peroxidation, as well as cellular bioenergetic parameters, such as proton leak and non-mitochondrial oxygen consumption. At the same time, no changes were found in the intracellular antioxidant system after the mitochondrial genome editing.
ConclusionsThe presence of the m.15059G>A mutation contributes to mitochondrial dysfunction by reducing mitochondrial membrane potential, increasing the generation of reactive oxygen species and lipid peroxidation, and altering mitochondrial bioenergetics. Elimination of the mtDNA containing atherogenic mutation leads to an improvement in mitochondrial function.
-
-
-
Discovery of 5-(Substituted Phenyl)-2-aryl Benzimidazole Derivatives as SIRT1 Activators: Their Design, in silico Studies, Synthesis, and in vitro Evaluation
Authors: Shilpi Chauhan, Ashwani Kumar, Rajnish Kumar and Deepika SainiAvailable online: 10 October 2024More LessAimSilent information regulator two homologue one (SIRT1) is an emerging target for managing metabolic disorders. This study aimed to synthesize novel 5-(substituted phenyl)-2-aryl benzimidazole derivatives and evaluate them for SIRT1 activation.
MethodsThe compounds were designed according to the findings of the QSAR models framed in our previous studies. Molecular docking and dynamics studies were also performed to explore the interactions of designed compounds with the active site of the SIRT1 enzyme using AutoDock Vina and Schrödinger Maestro version 11.8.012, respectively. Compounds with good binding affinity were synthesized by Suzuki-Miyaura cross-coupling and spectrally characterized. The molecules were evaluated for their in vitro SIRT1 activation properties using a fluorescent screening kit. Based on the results of in vitro assay, a structure-activity relationship was established. SwissADME was employed to calculate the pharmacokinetics characteristics of the synthesized molecules.
ResultsThe molecular docking studies revealed that all the activators were effectively docked in the catalytic active site. All compounds demonstrated interactions with important amino acids like Glu230 and Arg446. In molecular dynamics simulations, the root mean square deviation (RMSD) of compound 5m and protein SIRT1 remained stable, i.e., below 3mm. Compound 5m, 4-(2-(3,4-dihydroxy-5-nitrophenyl)-1H-benzo[d]imidazol-5-yl)benzaldehyde, was the most potent compound with an EC50 value of 0.006 mM (±0.001) and maximum activation of 240.5%. All the synthesized compounds had acceptable theoretical ADME profiles, and drug-likeness properties complied with Lipinski’s rule.
ConclusionAccording to the findings, synthesized compounds may be viable leads for SIRT1 activators and may be used to advance preclinical in vivo research utilizing animal models.
-
-
-
Targeting Fructosamine Oxidase (Amadoriase II) in Aspergillus fumigatus: Comprehensive Virtual Screening, ADMET Analysis, and Molecular Dynamics Simulation of Triazole Derivatives
Available online: 12 September 2024More LessIntroductionAspergillus fumigatus, a significant fungal pathogen, poses a threat to human health, especially in immunocompromised individuals. Addressing the need for novel antifungal strategies, this study employs virtual screening to identify potential inhibitors of Fructosamine oxidase, also known as Amadoriase II, a crucial enzyme in A. fumigatus (PDB ID: 3DJE).
MethodVirtual screening of 81,197 triazole derivatives was subjected to computational analysis, aiming to pinpoint molecules with high binding affinity to the active site of Fructosamine oxidase. Subsequently, an in-depth ADMET analysis assessed the pharmacokinetic properties of lead compounds, ensuring their viability for further development. Molecular dynamics simulations were performed to evaluate the stability of top-ranked compounds over time.
ResultsThe results unveil a subset of triazole derivatives displaying promising interactions, suggesting their potential as inhibitors for further investigation.
ConclusionThis approach contributes to the development of targeted antifungal agents, offering a rational starting point for experimental validation and drug development against Aspergillus fumigatus infections.
-
-
-
Mitochondrial DNA Mutations in Colorectal Cancer Stem Cells: Implications for Tumor Dynamics and Therapeutic Strategies
Available online: 11 September 2024More LessThis review offers an in-depth analysis of mitochondrial DNA (mtDNA) mutations in colorectal cancer stem cells (CSCs), emphasizing their significant impact on tumor dynamics and potential therapeutic strategies. CSCs are a special subpopulation due to their unique capabilities for self-renewal, differentiation, and resistance to conventional therapies. Given that CSCs significantly differ from other tumor cell subpopulations, particularly in their metabolic properties, and considering that colorectal cancer is a malignancy characterized by mitochondrial dysfunction, this review aims to put together existing data on the differences in the mitochondrial genome of CSCs compared to other colorectal tumor cell subpopulations. Additionally, the review seeks to explore the potential roles of these differences and to identify new ideas for therapeutic strategies. Key topics include the identification and properties of CSCs in colorectal cancer, the distinctive features of the mitochondrial genome, and the functional consequences of mtDNA mutations. The review hypothesizes that CSCs rely on well-functioning mitochondria for crucial aspects like energy production; yet, mtDNA mutations can lead to mitochondrial dysfunction, altering CSC characteristics and influencing cancer progression. The article discusses emerging therapeutic approaches targeting mitochondrial function in colorectal CSCs and highlights the need for advanced research, including the development of preclinical models and exploration of targeted therapies, to improve the understanding and treatment of colorectal cancer.
-