Skip to content
2000
image of A Comprehensive Review on Extracellular Vesicles, Liposomes, and Biohybrid Nanocarriers for Enhanced Wound Healing and Precision Drug Delivery

Abstract

Nanomedicine has advanced drug delivery by addressing key challenges such as poor solubility, instability, and off-target effects. Yet, despite its promise, clinical translation remains limited, with few FDA-approved formulations and ongoing biocompatibility concerns. Extracellular vesicles (EVs), particularly those derived from mesenchymal stem cells, offer natural advantages as nanocarriers, including biocompatibility, immunomodulatory effects, and regenerative properties. However, their therapeutic application is constrained by low drug-loading capacity, rapid clearance, and batch-to-batch variability. To overcome these limitations, biohybrid vesicles—fusions of natural EVs and synthetic liposomes—have emerged as an innovative platform. These hybrids combine the biological targeting and immune-evasive features of EVs with the scalability, structural stability, and tunable drug-release capabilities of liposomes. Advanced fabrication methods, including freeze-thaw cycling, co-extrusion, and pH-mediated fusion, enhance biohybrid vesicle integrity and production. Surface modifications such as PEGylation and ligand attachment further improve biodistribution and cell-specific uptake. This review focuses on extracellular vesicles (EVs), liposomes, and biohybrid vesicles, examining their cellular interactions, design strategies, and therapeutic potential. It also explores the biological pathways involved in tissue repair and regeneration, while addressing key translational challenges such as standardisation and large-scale manufacturing. By leveraging the complementary advantages of natural and synthetic systems, biohybrid EVs represent a promising next-generation platform for precision nanomedicine. The review summarises current progress and proposes a roadmap for advancing these technologies toward clinical application, with a specific focus on wound management.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673429736251123123254
2026-01-16
2026-01-31
Loading full text...

Full text loading...

References

  1. Batrakova E.V. Kim M.S. Using exosomes, naturally-equipped nanocarriers, for drug delivery. J. Cont. Rel. 2015 219 396 405 10.1016/j.jconrel.2015.07.030 26241750
    [Google Scholar]
  2. Senapati S. Mahanta A.K. Kumar S. Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther. 2018 3 1 7 10.1038/s41392‑017‑0004‑3 29560283
    [Google Scholar]
  3. Chew B.C. Liew F.F. Tan H.W. Chung I. Chemical advances in therapeutic application of exosomes and liposomes. Curr. Med. Chem. 2022 29 25 4445 4473 10.2174/0929867329666220221094044 35189798
    [Google Scholar]
  4. Blanco E. Shen H. Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015 33 9 941 951 10.1038/nbt.3330 26348965
    [Google Scholar]
  5. Ishida T. Atobe K. Wang X. Kiwada H. Accelerated blood clearance of PEGylated liposomes upon repeated injections: Effect of doxorubicin-encapsulation and high-dose first injection. J. Cont. Rel. 2006 115 3 251 258 10.1016/j.jconrel.2006.08.017 17045355
    [Google Scholar]
  6. Zhang P. Sun F. Liu S. Jiang S. Anti-PEG antibodies in the clinic: Current issues and beyond PEGylation. J. Cont. Rel. 2016 244 Pt B 184 193 10.1016/j.jconrel.2016.06.040 27369864
    [Google Scholar]
  7. Armstrong J.P.K. Stevens M.M. Strategic design of extracellular vesicle drug delivery systems. Adv. Drug Deliv Rev. 2018 130 12 16 10.1016/j.addr.2018.06.017 29959959
    [Google Scholar]
  8. Montizaan D. Yang K. Reker-Smit C. Salvati A. Comparison of the uptake mechanisms of zwitterionic and negatively charged liposomes by HeLa cells. Nanomedicine 2020 30 102300 10.1016/j.nano.2020.102300 32931929
    [Google Scholar]
  9. Skotland T. Hessvik N.P. Sandvig K. Llorente A. Exosomal lipid composition and the role of ether lipids and phosphoinositides in exosome biology. J. Lipid Res. 2019 60 1 9 18 10.1194/jlr.R084343 30076207
    [Google Scholar]
  10. Szlasa W. Zendran I. Zalesińska A. Tarek M. Kulbacka J. Lipid composition of the cancer cell membrane. J. Bioenerg. Biomembr. 2020 52 5 321 342 10.1007/s10863‑020‑09846‑4 32715369
    [Google Scholar]
  11. Skotland T. Sagini K. Sandvig K. Llorente A. An emerging focus on lipids in extracellular vesicles. Adv. Drug Deliv. Rev. 2020 159 308 321 10.1016/j.addr.2020.03.002 32151658
    [Google Scholar]
  12. Dang X.T.T. Kavishka J.M. Zhang D.X. Pirisinu M. Le M.T.N. Extracellular vesicles as an efficient and versatile system for drug delivery. Cells 2020 9 10 2191 10.3390/cells9102191 33003285
    [Google Scholar]
  13. Phillips W. Willms E. Hill A.F. Understanding extracellular vesicle and nanoparticle heterogeneity: Novel methods and considerations. Proteomics 2021 21 13-14 2000118 10.1002/pmic.202000118 33857352
    [Google Scholar]
  14. Dreier L.B. Nagata Y. Lutz H. Gonella G. Hunger J. Backus E.H.G. Bonn M. Saturation of charge-induced water alignment at model membrane surfaces. Sci. Adv. 2018 4 3 eaap7415 10.1126/sciadv.aap7415 29670939
    [Google Scholar]
  15. Lechanteur A. Sanna V. Duchemin A. Evrard B. Mottet D. Piel G. Cationic liposomes carrying siRNA: Impact of lipid composition on physicochemical properties, cytotoxicity and endosomal escape. Nanomaterials 2018 8 5 270 10.3390/nano8050270 29695068
    [Google Scholar]
  16. Fuhs T. Klausen L.H. Sønderskov S.M. Han X. Dong M. Direct measurement of surface charge distribution in phase separating supported lipid bilayers. Nanoscale 2018 10 9 4538 4544 10.1039/C7NR09522H 29461548
    [Google Scholar]
  17. Naureen J. Debabrata M. Exosomes and their role in the micro-/macro-environment: A comprehensive review. J. Biomed. Res. 2017 31 5 386 394 10.7555/JBR.30.20150162 28290182
    [Google Scholar]
  18. Mulcahy L.A. Pink R.C. Carter D.R.F. Routes and mechanisms of extracellular vesicle uptake. J. Extracell. Vesicles. 2014 3 1 24641 10.3402/jev.v3.24641 25143819
    [Google Scholar]
  19. Maas S.L.N. Breakefield X.O. Weaver A.M. Extracellular vesicles: Unique intercellular delivery vehicles. Trends. Cell Biol. 2017 27 3 172 188 10.1016/j.tcb.2016.11.003 27979573
    [Google Scholar]
  20. Meldolesi J. Exosomes and ectosomes in intercellular communication. Curr. Biol. 2018 28 8 R435 R444 10.1016/j.cub.2018.01.059 29689228
    [Google Scholar]
  21. Nicholson C. Shah N. Ishii M. Annamalai B. Brandon C. Rodgers J. Nowling T. Rohrer B. Mechanisms of extracellular vesicle uptake in stressed retinal pigment epithelial cell monolayers. Biochim. Biophys. Acta. Mol. Basis. Dis. 2020 1866 3 165608 10.1016/j.bbadis.2019.165608 31740401
    [Google Scholar]
  22. Ha D. Yang N. Nadithe V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: Current perspectives and future challenges. Acta. Pharm. Sin. B. 2016 6 4 287 296 10.1016/j.apsb.2016.02.001 27471669
    [Google Scholar]
  23. Sahu T. Ratre Y.K. Chauhan S. Bhaskar L.V.K.S. Nair M.P. Verma H.K. Nanotechnology based drug delivery system: Current strategies and emerging therapeutic potential for medical science. J. Drug Deliv. Sci. Technol. 2021 63 102487 10.1016/j.jddst.2021.102487
    [Google Scholar]
  24. Zaborowski M.P. Balaj L. Breakefield X.O. Lai C.P. Extracellular vesicles: Composition, biological relevance, and methods of study. Bioscience 2015 65 8 783 797 10.1093/biosci/biv084 26955082
    [Google Scholar]
  25. Abels E.R. Breakefield X.O. Introduction to extracellular vesicles: Biogenesis, RNA cargo selection, content, release, and uptake. Cell Mol. Neurobiol. 2016 36 3 301 312 10.1007/s10571‑016‑0366‑z 27053351
    [Google Scholar]
  26. Samuelson I. Vidal-Puig A.J. Fed-EXosome: Extracellular vesicles and cell–cell communication in metabolic regulation. Essays Biochem. 2018 62 2 165 175 10.1042/EBC20170087 29717059
    [Google Scholar]
  27. Ahmed K.S. Hussein S.A. Ali A.H. Korma S.A. Lipeng Q. Jinghua C. Liposome: Composition, characterisation, preparation, and recent innovation in clinical applications. J. Drug Target 2019 27 7 742 761 10.1080/1061186X.2018.1527337 30239255
    [Google Scholar]
  28. Abu Lila A.S. Ishida T. Liposomal delivery systems: Design optimization and current applications. Biol. Pharm. Bull. 2017 40 1 1 10 10.1248/bpb.b16‑00624 28049940
    [Google Scholar]
  29. Akbarzadeh A. Rezaei-Sadabady R. Davaran S. Joo S.W. Zarghami N. Hanifehpour Y. Samiei M. Kouhi M. Nejati-Koshki K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett. 2013 8 1 102 10.1186/1556‑276X‑8‑102 23432972
    [Google Scholar]
  30. Salimi A. Liposomes as a novel drug delivery system: Fundamental and pharmaceutical application. Asian J. Pharm. 2018 12 01 10.22377/ajp.v12i01.2037
    [Google Scholar]
  31. Al-Jipouri A. Almurisi S.H. Al-Japairai K. Bakar L.M. Doolaanea A.A. Liposomes or extracellular vesicles: A comprehensive comparison of both lipid bilayer vesicles for pulmonary drug delivery. Polymers 2023 15 2 318 10.3390/polym15020318 36679199
    [Google Scholar]
  32. Sercombe L. Veerati T. Moheimani F. Wu S.Y. Sood A.K. Hua S. Advances and challenges of liposome assisted drug delivery. Front Pharmacol. 2015 6 286 10.3389/fphar.2015.00286 26648870
    [Google Scholar]
  33. Zasadzinski J.A. Shin J.E. Forbes N. Ogunyankin M. Designer nanoparticle-liposome hybrid capsules for drug delivery. Microsc. Microanal. 2015 21 S3 2285 2286 10.1017/S1431927615012209
    [Google Scholar]
  34. Su X. Wang H. Li Q. Chen Z. Extracellular vesicles: A review of their therapeutic potentials, sources, biodistribution, and administration routes. Int. J. Nanomed. 2025 20 3175 3199 10.2147/IJN.S502591 40098717
    [Google Scholar]
  35. Jing B. Qian R. Jiang D. Gai Y. Liu Z. Guo F. Ren S. Gao Y. Lan X. An R. Extracellular vesicles-based pre-targeting strategy enables multi-modal imaging of orthotopic colon cancer and image-guided surgery. J. Nanobiotechnol. 2021 19 1 151 10.1186/s12951‑021‑00888‑3 34022897
    [Google Scholar]
  36. Long C. Wang J. Gan W. Qin X. Yang R. Chen X. Therapeutic potential of exosomes from adipose-derived stem cells in chronic wound healing. Front Surg. 2022 9 1030288 10.3389/fsurg.2022.1030288 36248361
    [Google Scholar]
  37. da Costa V.R. Araldi R.P. Vigerelli H. D’Ámelio F. Mendes T.B. Gonzaga V. Policíquio B. Colozza-Gama G.A. Valverde C.W. Kerkis I. Exosomes in the tumor microenvironment: From biology to clinical applications. Cells 2021 10 10 2617 10.3390/cells10102617 34685596
    [Google Scholar]
  38. Xu H.L. Chen P.P. ZhuGe D-L. Zhu Q-Y. Jin B-H. Shen B-X. Xiao J. Zhao Y-Z. Liposomes with silk fibroin hydrogel core to stabilize bfgf and promote the wound healing of mice with deep second-degree scald. Adv. Healthc. Mater. 2017 6 19 1700344 10.1002/adhm.201700344 28661050
    [Google Scholar]
  39. Nunes P.S. Rabelo A.S. Souza J.C.C. Santana B.V. da Silva T.M.M. Serafini M.R. dos Passos Menezes P. dos Santos Lima B. Cardoso J.C. Alves J.C.S. Frank L.A. Guterres S.S. Pohlmann A.R. Pinheiro M.S. de Albuquerque R.L.C. Araújo A.A.S. Gelatin-based membrane containing usnic acid-loaded liposome improves dermal burn healing in a porcine model. Int. J. Pharm. 2016 513 1-2 473 482 10.1016/j.ijpharm.2016.09.040 27633280
    [Google Scholar]
  40. Umar A.K. Sriwidodo S. Maksum I.P. Wathoni N. Film-Forming spray of water-soluble chitosan containing liposome-coated human epidermal growth factor for wound healing. Molecules 2021 26 17 5326 10.3390/molecules26175326 34500760
    [Google Scholar]
  41. Tarin M. Oryani M.A. Javid H. Hashemzadeh A. Karimi-Shahri M. Advancements in chitosan-based nanocomposites with ZIF-8 nanoparticles: Multifunctional platforms for wound healing applications. Carbohydr. Polym. 2025 362 123656 10.1016/j.carbpol.2025.123656 40409814
    [Google Scholar]
  42. Rilla K. Mustonen A.M. Arasu U.T. Härkönen K. Matilainen J. Nieminen P. Extracellular vesicles are integral and functional components of the extracellular matrix. Matrix. Biol. 2019 75-76 201 219 10.1016/j.matbio.2017.10.003 29066152
    [Google Scholar]
  43. Wang Q. Lu W. Yin T. Lu L. Calycosin suppresses TGF-β-induced epithelial-to-mesenchymal transition and migration by upregulating BATF2 to target PAI-1 via the Wnt and PI3K/Akt signaling pathways in colorectal cancer cells. J. Exp. Clin. Cancer Res. 2019 38 1 1 12 10.1186/s13046‑019‑1243‑7 31174572
    [Google Scholar]
  44. Ramasubramanian L. Kumar P. Wang A. Engineering extracellular vesicles as nanotherapeutics for regenerative medicine. Biomolecules 2019 10 1 48 10.3390/biom10010048 31905611
    [Google Scholar]
  45. Than U.T.T. Leavesley D.I. Parker T.J. Characteristics and roles of extracellular vesicles released by epidermal keratinocytes. J. Eur. Acad. Dermatol. Venereol. 2019 33 12 2264 2272 10.1111/jdv.15859 31403744
    [Google Scholar]
  46. Qiu G. Zheng G. Ge M. Wang J. Huang R. Shu Q. Xu J. Functional proteins of mesenchymal stem cell-derived extracellular vesicles. Stem. Cell Res. Ther. 2019 10 1 359 10.1186/s13287‑019‑1484‑6 31779700
    [Google Scholar]
  47. Rani S. Ritter T. The exosome-A naturally secreted nanoparticle and its application to wound healing. Adv. Mater. 2016 28 27 5542 5552 10.1002/adma.201504009 26678528
    [Google Scholar]
  48. Casado-Díaz A. Quesada-Gómez J.M. Dorado G. Extracellular vesicles derived from mesenchymal stem cells (MSC) in regenerative medicine: Applications in skin wound healing. Front Bioeng. Biotechnol. 2020 8 146 10.3389/fbioe.2020.00146 32195233
    [Google Scholar]
  49. Ellis S. Lin E.J. Tartar D. Immunology of wound healing. Curr. Dermatol. Rep. 2018 7 4 350 358 10.1007/s13671‑018‑0234‑9 30524911
    [Google Scholar]
  50. Okonkwo U. DiPietro L. Diabetes and wound angiogenesis. Int. J. Mol. Sci. 2017 18 7 1419 10.3390/ijms18071419 28671607
    [Google Scholar]
  51. Rousselle P. Montmasson M. Garnier C. Extracellular matrix contribution to skin wound re-epithelialization. Matrix. Biol. 2019 75 12 26 10.1016/j.matbio.2018.01.002 29330022
    [Google Scholar]
  52. Than U.T.T. Guanzon D. Leavesley D. Parker T. Association of extracellular membrane vesicles with cutaneous wound healing. Int. J. Mol. Sci. 2017 18 5 956 10.3390/ijms18050956 28468315
    [Google Scholar]
  53. Zhang Y. Liu Y. Liu H. Tang W.H. Exosomes: Biogenesis, biologic function and clinical potential. Cell Biosci. 2019 9 1 19 10.1186/s13578‑019‑0282‑2 30815248
    [Google Scholar]
  54. Liang Y. Duan L. Lu J. Xia J. Engineering exosomes for targeted drug delivery. Theranostics 2021 11 7 3183 3195 10.7150/thno.52570 33537081
    [Google Scholar]
  55. Zhang J. Chen C. Hu B. Niu X. Liu X. Zhang G. Zhang C. Li Q. Wang Y. Exosomes derived from human endothelial progenitor cells accelerate cutaneous wound healing by promoting angiogenesis through Erk1/2 signaling. Int. J. Biol. Sci. 2016 12 12 1472 1487 10.7150/ijbs.15514 27994512
    [Google Scholar]
  56. Xie Y. Guan Q. Guo J. Chen Y. Yin Y. Han X. Hydrogels for exosome delivery in biomedical applications. Gels 2022 8 6 328 10.3390/gels8060328 35735672
    [Google Scholar]
  57. Raghav A. Tripathi P. Mishra B.K. Jeong G.B. Banday S. Gautam K.A. Mateen Q.N. Singh P. Singh M. Singla A. Ahmad J. Mesenchymal stromal cell-derived tailored exosomes treat bacteria-associated diabetes foot ulcers: A customized approach from bench to bed. Front Microbiol. 2021 12 712588 10.3389/fmicb.2021.712588 34385994
    [Google Scholar]
  58. Liu W. Yu M. Xie D. Wang L. Ye C. Zhu Q. Liu F. Yang L. Melatonin-stimulated MSC-derived exosomes improve diabetic wound healing through regulating macrophage M1 and M2 polarization by targeting the PTEN/AKT pathway. Stem. Cell Res. Ther. 2020 11 1 259 10.1186/s13287‑020‑01756‑x 32600435
    [Google Scholar]
  59. Ding J.Y. Chen M.J. Wu L.F. Shu G.F. Fang S.J. Li Z.Y. Chu X.R. Li X.K. Wang Z.G. Ji J.S. Mesenchymal stem cell-derived extracellular vesicles in skin wound healing: Roles, opportunities and challenges. Mil. Med. Res. 2023 10 1 36 10.1186/s40779‑023‑00472‑w 37587531
    [Google Scholar]
  60. Alexander J.K. Cox G.M. Tian J.B. Zha A.M. Wei P. Kigerl K.A. Reddy M.K. Dagia N.M. Sielecki T. Zhu M.X. Satoskar A.R. McTigue D.M. Whitacre C.C. Popovich P.G. Macrophage migration inhibitory factor (MIF) is essential for inflammatory and neuropathic pain and enhances pain in response to stress. Exp. Neurol. 2012 236 2 351 362 10.1016/j.expneurol.2012.04.018 22575600
    [Google Scholar]
  61. Mittal M. Tiruppathi C. Nepal S. Zhao Y.Y. Grzych D. Soni D. Prockop D.J. Malik A.B. TNFα-stimulated gene-6 (TSG6) activates macrophage phenotype transition to prevent inflammatory lung injury. Proc. Natl. Acad. Sci. USA 2016 113 50 E8151 E8158 10.1073/pnas.1614935113 27911817
    [Google Scholar]
  62. Bozzuto G. Molinari A. Liposomes as nanomedical devices. Int. J. Nanomed. 2015 10 975 999 10.2147/IJN.S68861 25678787
    [Google Scholar]
  63. Dehghani M. Gulvin S.M. Flax J. Gaborski T.R. Systematic evaluation of PKH labelling on extracellular vesicle size by nanoparticle tracking analysis. Sci. Rep. 2020 10 1 9533 10.1038/s41598‑020‑66434‑7 32533028
    [Google Scholar]
  64. Feng K. Xie X. Yuan J. Gong L. Zhu Z. Zhang J. Li H. Yang Y. Wang Y. Reversing the surface charge of MSC-derived small extracellular vesicles by εPL-PEG-DSPE for enhanced osteoarthritis treatment. J. Extracell. Vesicles. 2021 10 13 e12160 10.1002/jev2.12160 34724347
    [Google Scholar]
  65. Morimoto K. Ishitobi J. Noguchi K. Kira R. Kitayama Y. Goto Y. Fujiwara D. Michigami M. Harada A. Takatani-Nakase T. Fujii I. Futaki S. Kanada M. Nakase I. Extracellular microvesicles modified with arginine-rich peptides for active macropinocytosis induction and delivery of therapeutic molecules. ACS Appl. Mater. Interfaces. 2024 16 14 17069 17079 10.1021/acsami.3c14592 38563247
    [Google Scholar]
  66. Khorramdel M. Ghadikolaii F.P. Hashemy S.I. Javid H. Tabrizi M.H. Nanoformulated meloxicam and rifampin: Inhibiting quorum sensing and biofilm formation in Pseudomonas aeruginosa. Nanomedicine 2024 19 7 615 632 10.2217/nnm‑2023‑0268 38348578
    [Google Scholar]
  67. Mazumdar S. Chitkara D. Mittal A. Exploration and insights into the cellular internalization and intracellular fate of amphiphilic polymeric nanocarriers. Acta. Pharm. Sin. B. 2021 11 4 903 924 10.1016/j.apsb.2021.02.019 33996406
    [Google Scholar]
  68. Corbeil D. Santos M.F. Karbanová J. Kurth T. Rappa G. Lorico A. Uptake and fate of extracellular membrane vesicles: Nucleoplasmic reticulum-associated late endosomes as a new gate to intercellular communication. Cells 2020 9 9 1931 10.3390/cells9091931 32825578
    [Google Scholar]
  69. Kooijmans S.A.A. de Jong O.G. Schiffelers R.M. Exploring interactions between extracellular vesicles and cells for innovative drug delivery system design. Adv. Drug Deliv. Rev. 2021 173 252 278 10.1016/j.addr.2021.03.017 33798644
    [Google Scholar]
  70. Costa Verdera H. Gitz-Francois J.J. Schiffelers R.M. Vader P. Cellular uptake of extracellular vesicles is mediated by clathrin-independent endocytosis and macropinocytosis. J. Cont. Rel. 2017 266 100 108 10.1016/j.jconrel.2017.09.019 28919558
    [Google Scholar]
  71. Yáñez-Mó M. Siljander P.R.M. Andreu Z. Bedina Zavec A. Borràs F.E. Buzas E.I. Buzas K. Casal E. Cappello F. Carvalho J. Colás E. Cordeiro-da Silva A. Fais S. Falcon-Perez J.M. Ghobrial I.M. Giebel B. Gimona M. Graner M. Gursel I. Gursel M. Heegaard N.H.H. Hendrix A. Kierulf P. Kokubun K. Kosanovic M. Kralj-Iglic V. Krämer-Albers E.M. Laitinen S. Lässer C. Lener T. Ligeti E. Linē A. Lipps G. Llorente A. Lötvall J. Manček-Keber M. Marcilla A. Mittelbrunn M. Nazarenko I. Nolte-’t Hoen E.N.M. Nyman T.A. O’Driscoll L. Olivan M. Oliveira C. Pállinger É. del Portillo H.A. Reventós J. Rigau M. Rohde E. Sammar M. Sánchez-Madrid F. Santarém N. Schallmoser K. Stampe Ostenfeld M. Stoorvogel W. Stukelj R. Van der Grein S.G. Helena Vasconcelos M. Wauben M.H.M. De Wever O. Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles 2015 4 1 27066 10.3402/jev.v4.27066 25979354
    [Google Scholar]
  72. Fraley R. Straubinger R.M. Rule G. Springer E.L. Papahadjopoulos D. Liposome-mediated delivery of deoxyribonucleic acid to cells: Enhanced efficiency of delivery by changes in lipid composition and incubation conditions. Biochemistry 1981 20 24 6978 6987 10.1021/bi00527a031 6274382
    [Google Scholar]
  73. Chan Y.H.M. Boxer S.G. Model membrane systems and their applications. Curr. Opin. Chem. Biol. 2007 11 6 581 587 10.1016/j.cbpa.2007.09.020 17976391
    [Google Scholar]
  74. Magee W.E. Goff C.W. Schoknecht J. Smith M.D. Cherian K. The interaction of cationic liposomes containing entrapped horseradish peroxidase with cells in culture. J. Cell Biol. 1974 63 2 492 504 10.1083/jcb.63.2.492 4138544
    [Google Scholar]
  75. Papahadjopoulos D. Mayhew E. Poste G. Smith S. Vail W.J. Incorporation of lipid vesicles by mammalian cells provides a potential method for modifying cell behaviour. Nature 1974 252 5479 163 166 10.1038/252163a0 4371572
    [Google Scholar]
  76. Joseph K.C. Alving C.R. Wistar R. Forssman-containing liposomes: Complement-dependent damage due to interaction with a monoclonal IgM. J. Immunol. 1974 112 5 1949 1951 10.4049/jimmunol.112.5.1949 4206499
    [Google Scholar]
  77. Wang Y. Xu H. Wang B. Wang R. Wang C. Shang D. Characterization and anticancer activity of a folic acid conjugated and cationic peptide L-K6 encapsulated cancer-targeting liposomal drug delivery system. Int. J. Pept. Res. Ther. 2022 28 3 82 10.1007/s10989‑022‑10393‑2
    [Google Scholar]
  78. Martel A.L. Fraleigh N.L. Picard E. Lewicky J.D. Pawelec G. Lee H. Ma G.W. Mousavifar L. Roy R. Le H.T. Novel immunomodulatory properties of low dose cytarabine entrapped in a mannosylated cationic liposome. Int. J. Pharm. 2021 606 120849 10.1016/j.ijpharm.2021.120849 34216770
    [Google Scholar]
  79. Rothkopf C. Fahr A. Fricker G. Scherphof G.L. Kamps J.A.A.M. Uptake of phosphatidylserine-containing liposomes by liver sinusoidal endothelial cells in the serum-free perfused rat liver. Biochim. Biophys. Acta. Biomembr. 2005 1668 1 10 16 10.1016/j.bbamem.2004.10.013 15670726
    [Google Scholar]
  80. Alshehri A. Grabowska A. Stolnik S. Pathways of cellular internalisation of liposomes delivered siRNA and effects on siRNA engagement with target mRNA and silencing in cancer cells. Sci. Rep. 2018 8 1 1 9 29311619
    [Google Scholar]
  81. Gregoriadis G. Swain C.P. Wills E.J. Tavill A.S. Drug-carrier potential of liposomes in cancer chemotherapy. Lancet 1974 303 7870 1313 1316 10.1016/S0140‑6736(74)90682‑5 4134296
    [Google Scholar]
  82. Düzgüneş N. Nir S. Mechanisms and kinetics of liposome–cell interactions. Adv. Drug. Deliv. Rev. 1999 40 1-2 3 18 10.1016/S0169‑409X(99)00037‑X 10837777
    [Google Scholar]
  83. Manojlovic V. Winkler K. Bunjes V. Neub A. Schubert R. Bugarski B. Leneweit G. Membrane interactions of ternary phospholipid/cholesterol bilayers and encapsulation efficiencies of a RIP II protein. Colloids Surf. B. Biointerfaces 2008 64 2 284 296 10.1016/j.colsurfb.2008.02.001 18359207
    [Google Scholar]
  84. Petrini M. Lokerse W.J.M. Mach A. Hossann M. Merkel O.M. Lindner L.H. Effects of surface charge, PEGylation and functionalization with dipalmitoylphosphatidyldiglycerol on liposome–cell interactions and local drug delivery to solid tumors via thermosensitive liposomes. Int. J. Nanomed. 2021 16 4045 4061 10.2147/IJN.S305106 34163158
    [Google Scholar]
  85. Tang J. Rakshit M. Chua H.M. Darwitan A. Nguyen L.T.H. Muktabar A. Venkatraman S. Ng K.W. Liposome interaction with macrophages and foam cells for atherosclerosis treatment: Effects of size, surface charge and lipid composition. Nanotechnology 2021 32 50 505105 10.1088/1361‑6528/ac2810 34536952
    [Google Scholar]
  86. Allen T.M. Cullis P.R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug. Deliv. Rev. 2013 65 1 36 48 10.1016/j.addr.2012.09.037 23036225
    [Google Scholar]
  87. Andar A.U. Hood R.R. Vreeland W.N. DeVoe D.L. Swaan P.W. Microfluidic preparation of liposomes to determine particle size influence on cellular uptake mechanisms. Pharm. Res. 2014 31 2 401 413 10.1007/s11095‑013‑1171‑8 24092051
    [Google Scholar]
  88. Pagano R.E. Weinstein J.N. Interactions of liposomes with mammalian cells. Annu. Rev. Biophys. Bioeng. 1978 7 1 435 468 10.1146/annurev.bb.07.060178.002251 352245
    [Google Scholar]
  89. Banerjee R. Liposomes: Applications in medicine. J. Biomater. Appl. 2001 16 1 3 21 10.1106/RA7U‑1V9C‑RV7C‑8QXL 11475357
    [Google Scholar]
  90. Lee K.D. Hong K. Papahadjopoulos D. Recognition of liposomes by cells: In vitro binding and endocytosis mediated by specific lipid headgroups and surface charge density. Biochim. Biophys. Acta Biomembr. 1992 1103 2 185 197 10.1016/0005‑2736(92)90086‑2 1543703
    [Google Scholar]
  91. Friend D.S. Papahadjopoulos D. Debs R.J. Endocytosis and intracellular processing accompanying transfection mediated by cationic liposomes. Biochim. Biophys. Acta Biomembr. 1996 1278 1 41 50 10.1016/0005‑2736(95)00219‑7 8611605
    [Google Scholar]
  92. Xiang S. Sarem M. Shah S. Shastri V.P. Liposomal treatment of cancer cells modulates uptake pathway of polymeric nanoparticles by altering membrane stiffness. Small 2018 14 14 1704245 10.1002/smll.201704245 29460335
    [Google Scholar]
  93. Pitto M. Palestini P. Ferraretto A. Marazzi M. Donati V. Falcone L. Masserini M. Interaction of liposomes composed of phospholipids, GM1 ganglioside and cholesterol with human keratinocytes in culture. Arch. Dermatol. Res. 1999 291 4 232 237 10.1007/s004030050399 10335921
    [Google Scholar]
  94. Ngo K.X. Umakoshi H. Shimanouchi T. Kuboi R. Characterization of heat-induced interaction of neutral liposome with lipid membrane of Streptomyces griseus cell. Colloids Surf B Biointerfaces 2009 73 2 399 407 10.1016/j.colsurfb.2009.06.015 19592227
    [Google Scholar]
  95. de la Puente P. Azab A.K. Nanoparticle delivery systems, general approaches, and their implementation in multiple myeloma. Eur. J. Haematol. 2017 98 6 529 541 10.1111/ejh.12870 28208215
    [Google Scholar]
  96. Federico C. Alhallak K. Sun J. Duncan K. Azab F. Sudlow G.P. de la Puente P. Muz B. Kapoor V. Zhang L. Yuan F. Markovic M. Kotsybar J. Wasden K. Guenthner N. Gurley S. King J. Kohnen D. Salama N.N. Thotala D. Hallahan D.E. Vij R. DiPersio J.F. Achilefu S. Azab A.K. Tumor microenvironment-targeted nanoparticles loaded with bortezomib and ROCK inhibitor improve efficacy in multiple myeloma. Nat. Commun. 2020 11 1 6037 10.1038/s41467‑020‑19932‑1 33247158
    [Google Scholar]
  97. Panahi P. Pourdakan O. Zarrinnahad H. Mahmoudi S. Aghaie G. Hosseini F. Alemzadeh S.A. Raeesi M.M. Mirhendi H. Mehravi B. Design and synthesis of nanocarriers containing posaconazole against etiological agents of mucormycosis. bioRxiv 2025 10.1101/2025.05.08.652746
    [Google Scholar]
  98. Ismail Y. Harish M. Voleti V.K. Ahamed H.N. Mohamed T.A.L.H. Descriptive review on liposomal drug delivery system: Review article. J. Pharma. Insights Res. 2024 2 4 45 58 10.69613/93vtyy97
    [Google Scholar]
  99. Koyanagi T. Cifelli J.L. Leriche G. Onofrei D. Holland G.P. Yang J. Thiol-triggered release of intraliposomal content from liposomes made of extremophile-inspired tetraether lipids. Bioconjug. Chem. 2017 28 8 2041 2045 10.1021/acs.bioconjchem.7b00342 28708392
    [Google Scholar]
  100. Tarin M. Oryani M.A. Javid H. Karimi-Shahri M. Exosomal PD-L1 in non-small cell lung Cancer: Implications for immune evasion and resistance to immunotherapy. Int. Immunopharmacol. 2025 155 114519 10.1016/j.intimp.2025.114519 40199140
    [Google Scholar]
  101. Akbari Oryani M. Tarin M. Rahnama Araghi L. Rastin F. Javid H. Hashemzadeh A. Karimi-Shahri M. Synergistic cancer treatment using porphyrin-based metal-organic Frameworks for photodynamic and photothermal therapy. J. Drug. Target 2025 33 4 473 491 10.1080/1061186X.2024.2433551 39618308
    [Google Scholar]
  102. Rastin F. Javid H. Oryani M.A. Rezagholinejad N. Afshari A.R. Karimi-Shahri M. Immunotherapy for colorectal cancer: Rational strategies and novel therapeutic progress. Int. Immunopharmacol. 2024 126 111055 10.1016/j.intimp.2023.111055 37992445
    [Google Scholar]
  103. Liu Y.J. Wang C. A review of the regulatory mechanisms of extracellular vesicles-mediated intercellular communication. Cell Commun. Signal 2023 21 1 77 10.1186/s12964‑023‑01103‑6 37055761
    [Google Scholar]
  104. Minakawa T. Yamashita J.K. Versatile extracellular vesicle-mediated information transfer: intercellular synchronization of differentiation and of cellular phenotypes, and future perspectives. Inflamm. Regen. 2024 44 1 4 10.1186/s41232‑024‑00318‑5 38225584
    [Google Scholar]
  105. Jackson Cullison S.R. Flemming J.P. Karagoz K. Wermuth P.J. Mahoney M.G. Mechanisms of extracellular vesicle uptake and implications for the design of cancer therapeutics. J. Extracell Biol. 2024 3 11 e70017 10.1002/jex2.70017 39483807
    [Google Scholar]
  106. Large D.E. Abdelmessih R.G. Fink E.A. Auguste D.T. Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Adv. Drug Deliv. Rev. 2021 176 113851 10.1016/j.addr.2021.113851 34224787
    [Google Scholar]
  107. Cheng Y. Zeng Q. Han Q. Xia W. Effect of pH, temperature and freezing-thawing on quantity changes and cellular uptake of exosomes. Protein. Cell 2019 10 4 295 299 10.1007/s13238‑018‑0529‑4 29616487
    [Google Scholar]
  108. Jafari D. Malih S. Eini M. Jafari R. Gholipourmalekabadi M. Sadeghizadeh M. Samadikuchaksaraei A. Improvement, scaling-up, and downstream analysis of exosome production. Crit. Rev. Biotechnol. 2020 40 8 1098 1112 10.1080/07388551.2020.1805406 32772758
    [Google Scholar]
  109. Joo H.S. Suh J.H. Lee H.J. Bang E.S. Lee J.M. Current knowledge and future perspectives on mesenchymal stem cell-derived exosomes as a new therapeutic agent. Int. J. Mol. Sci. 2020 21 3 727 10.3390/ijms21030727 31979113
    [Google Scholar]
  110. Sim P. Strudwick X.L. Song Y. Cowin A.J. Garg S. Influence of acidic pH on wound healing in vivo: A novel perspective for wound treatment. Int. J. Mol. Sci. 2022 23 21 13655 10.3390/ijms232113655 36362441
    [Google Scholar]
  111. Power G. Moore Z. O’Connor T. Measurement of pH, exudate composition and temperature in wound healing: A systematic review. J. Wound Care 2017 26 7 381 397 10.12968/jowc.2017.26.7.381 28704150
    [Google Scholar]
  112. Strohal R. Mittlböck M. Hämmerle G. The management of critically colonized and locally infected leg ulcers with an acid-oxidizing solution: A pilot study. Adv Skin Wound Care 2018 31 4 163 171 10.1097/01.ASW.0000530687.23867.bd 29561341
    [Google Scholar]
  113. Felber A.E. Dufresne M.H. Leroux J.C. pH-sensitive vesicles, polymeric micelles, and nanospheres prepared with polycarboxylates. Adv. Drug Deliv. Rev. 2012 64 11 979 992 10.1016/j.addr.2011.09.006 21996056
    [Google Scholar]
  114. Zhang H. Li R. Lu X. Mou Z. Lin G. Docetaxel-loaded liposomes: Preparation, pH sensitivity, Pharmacokinetics, and tissue distribution. J. Zhejiang Univ. Sci. B. 2012 13 12 981 989 10.1631/jzus.B1200098 23225853
    [Google Scholar]
  115. Soares D.C.F. de Oliveira M.C. dos Santos R.G. Andrade M.S. Vilela J.M.C. Cardoso V.N. Ramaldes G.A. Liposomes radiolabeled with 159Gd-DTPA-BMA: Preparation, physicochemical characterization, release profile and in vitro cytotoxic evaluation. Eur. J. Pharm. Sci. 2011 42 5 462 469 10.1016/j.ejps.2011.01.010 21296148
    [Google Scholar]
  116. Majeed A. Ranjha N.M. Hanif M. Abbas G. Khan M.A. Development and evaluation of ivabradine HCl-loaded polymeric microspheres prepared with eudragit L100-55 (methacrylic acid-ethyl acrylate copolymer) and ethyl cellulose for controlled drug release. Acta. Pol. Pharm. 2017 74 2 565 578 29624261
    [Google Scholar]
  117. Moustafine R.I. Zaharov I.M. Kemenova V.A. Physicochemical characterization and drug release properties of Eudragit® E PO/Eudragit® L 100-55 interpolyelectrolyte complexes. Eur. J. Pharm. Biopharm. 2006 63 1 26 36 10.1016/j.ejpb.2005.10.005 16380241
    [Google Scholar]
  118. Hamman J.H. Chitosan based polyelectrolyte complexes as potential carrier materials in drug delivery systems. Mar. Drugs 2010 8 4 1305 1322 10.3390/md8041305 20479980
    [Google Scholar]
  119. Khan M.Z.I. Prebeg Ž. Kurjaković N. A pH-dependent colon targeted oral drug delivery system using methacrylic acid copolymers. J. Cont. Rel. 1999 58 2 215 222 10.1016/S0168‑3659(98)00151‑5 10053194
    [Google Scholar]
  120. Elamir A. Ajith S. Sawaftah N.A. Abuwatfa W. Mukhopadhyay D. Paul V. Al-Sayah M.H. Awad N. Husseini G.A. Ultrasound-triggered herceptin liposomes for breast cancer therapy. Sci. Rep. 2021 11 1 7545 10.1038/s41598‑021‑86860‑5 33824356
    [Google Scholar]
  121. Attarian F. Hatamian G. Nosrati S. Akbari Oryani M. Javid H. Hashemzadeh A. Tarin M. Role of liposomes in chemoimmunotherapy of breast cancer. J. Drug Target 2025 33 6 887 915 10.1080/1061186X.2025.2467139 39967479
    [Google Scholar]
  122. Shahid N. Erum A. Zaman M. Iqbal M.O. Riaz R. Tulain R. Hussain T. Amjad M.W. Raja M.A.G. Farooq U. Aman W. Fabrication of thiolated chitosan based biodegradable nanoparticles of ticagrelor and their pharmacokinetics. Polym. Polymer. Compos. 2022 30 09673911221108742 10.1177/09673911221108742
    [Google Scholar]
  123. Moghassemi S. Hadjizadeh A. Nano-niosomes as nanoscale drug delivery systems: An illustrated review. J. Cont. Rel. 2014 185 22 36 10.1016/j.jconrel.2014.04.015 24747765
    [Google Scholar]
  124. Panthi V.K. Fairfull-Smith K.E. Islam N. Liposomal drug delivery strategies to eradicate bacterial biofilms: Challenges, recent advances, and future perspectives. Int. J. Pharm. 2024 655 124046 10.1016/j.ijpharm.2024.124046 38554739
    [Google Scholar]
  125. Tang Q. Dong M. Xu Z. Xue N. Jiang R. Wei X. Gu J. Li Y. Xin R. Wang J. Xiao X. Zhou X. Yin S. Wang Y. Chen J. Red blood cell-mimicking liposomes loading curcumin promote diabetic wound healing. J. Cont. Rel. 2023 361 871 884 10.1016/j.jconrel.2023.07.049 37532149
    [Google Scholar]
  126. Zhao Y. Zhao Y. Xu B. Liu H. Chang Q. Microenvironmental dynamics of diabetic wounds and insights for hydrogel-based therapeutics. J. Tissue Eng. 2024 15 20417314241253290 10.1177/20417314241253290 38818510
    [Google Scholar]
  127. Chen T.S. Arslan F. Yin Y. Tan S.S. Lai R.C. Choo A.B.H. Padmanabhan J. Lee C.N. de Kleijn D.P.V. Lim S.K. Enabling a robust scalable manufacturing process for therapeutic exosomes through oncogenic immortalization of human ESC-derived MSCs. J. Transl. Med. 2011 9 1 47 10.1186/1479‑5876‑9‑47 21513579
    [Google Scholar]
  128. Wang X. Gu H. Huang W. Peng J. Li Y. Yang L. Qin D. Essandoh K. Wang Y. Peng T. Fan G.C. Hsp20-mediated activation of exosome biogenesis in cardiomyocytes improves cardiac function and angiogenesis in diabetic mice. Diabetes 2016 65 10 3111 3128 10.2337/db15‑1563 27284111
    [Google Scholar]
  129. Guix F.X. Sannerud R. Berditchevski F. Arranz A.M. Horré K. Snellinx A. Thathiah A. Saido T. Saito T. Rajesh S. Overduin M. Kumar-Singh S. Radaelli E. Corthout N. Colombelli J. Tosi S. Munck S. Salas I.H. Annaert W. De Strooper B. Tetraspanin 6: A pivotal protein of the multiple vesicular body determining exosome release and lysosomal degradation of amyloid precursor protein fragments. Mol. Neurodegener. 2017 12 1 25 10.1186/s13024‑017‑0165‑0 28279219
    [Google Scholar]
  130. Belhadj Z. He B. Deng H. Song S. Zhang H. Wang X. Dai W. Zhang Q. A combined “eat me/don’t eat me” strategy based on extracellular vesicles for anticancer nanomedicine. J. Extracell. Vesicles 2020 9 1 1806444 10.1080/20013078.2020.1806444 32944191
    [Google Scholar]
  131. Laulagnier K. Javalet C. Hemming F.J. Chivet M. Lachenal G. Blot B. Chatellard C. Sadoul R. Amyloid precursor protein products concentrate in a subset of exosomes specifically endocytosed by neurons. Cell Mol. Life Sci. 2018 75 4 757 773 10.1007/s00018‑017‑2664‑0 28956068
    [Google Scholar]
  132. Liu Y. Castro Bravo K.M. Liu J. Targeted liposomal drug delivery: A nanoscience and biophysical perspective. Nanoscale Horiz 2021 6 2 78 94 10.1039/D0NH00605J 33400747
    [Google Scholar]
  133. Sun D. Lu Z.R. Structure and function of cationic and ionizable lipids for nucleic acid delivery. Pharm. Res. 2023 40 1 27 46 10.1007/s11095‑022‑03460‑2 36600047
    [Google Scholar]
  134. Luiz M.T. Dutra J.A.P. Tofani L.B. de Araújo J.T.C. Di Filippo L.D. Marchetti J.M. Chorilli M. Targeted liposomes: A nonviral gene delivery system for cancer therapy. Pharmaceutics 2022 14 4 821 10.3390/pharmaceutics14040821 35456655
    [Google Scholar]
  135. Lee Y. Thompson D.H. Stimuli-responsive liposomes for drug delivery. Wiley Interdiscip Rev. Nanomed. Nanobiotechnol. 2017 9 5 e1450 10.1002/wnan.1450 28198148
    [Google Scholar]
  136. Yin X. Harmancey R. McPherson D.D. Kim H. Huang S.L. Liposome-based carriers for CRISPR genome editing. Int. J. Mol. Sci. 2023 24 16 12844 10.3390/ijms241612844 37629024
    [Google Scholar]
  137. Ruoslahti E. RGD and other recognition sequences for integrins. Annu. Rev. Cell Dev. Biol. 1996 12 1 697 715 10.1146/annurev.cellbio.12.1.697 8970741
    [Google Scholar]
  138. Mukherjee D. Paul D. Sarker S. Hasan M.N. Ghosh R. Prasad S.E. Vemula P.K. Das R. Adhikary A. Pal S.K. Rakshit T. Polyethylene glycol-mediated fusion of extracellular vesicles with cationic liposomes for the design of hybrid delivery systems. ACS Appl. Bio. Mater 2021 4 12 8259 8266 10.1021/acsabm.1c00804 35005950
    [Google Scholar]
  139. Atienzar-Aroca S. Flores-Bellver M. Serrano-Heras G. Martinez-Gil N. Barcia J.M. Aparicio S. Perez-Cremades D. Garcia-Verdugo J.M. Diaz-Llopis M. Romero F.J. Sancho-Pelluz J. Oxidative stress in retinal pigment epithelium cells increases exosome secretion and promotes angiogenesis in endothelial cells. J. Cell Mol. Med. 2016 20 8 1457 1466 10.1111/jcmm.12834 26999719
    [Google Scholar]
  140. Li Z.L. Lv L.L. Tang T.T. Wang B. Feng Y. Zhou L.T. Cao J.Y. Tang R.N. Wu M. Liu H. Crowley S.D. Liu B.C. HIF-1α inducing exosomal microRNA-23a expression mediates the cross-talk between tubular epithelial cells and macrophages in tubulointerstitial inflammation. Kidney Int. 2019 95 2 388 404 10.1016/j.kint.2018.09.013 30551896
    [Google Scholar]
  141. Haque N. Rahman M. T. Abu Kasim N. H. Alabsi A. M. Hypoxic culture conditions as a solution for mesenchymal stem cell based regenerative therapy. ScientificWorldJournal 2013 2013 632972 10.1155/2013/632972 24068884
    [Google Scholar]
  142. Almeria C. Weiss R. Roy M. Tripisciano C. Kasper C. Weber V. Egger D. Hypoxia conditioned mesenchymal stem cell-derived extracellular vesicles induce increased vascular tube formation in vitro. Front Bioeng. Biotechnol. 2019 7 292 10.3389/fbioe.2019.00292 31709251
    [Google Scholar]
  143. Salomon C. Ryan J. Sobrevia L. Kobayashi M. Ashman K. Mitchell M. Rice G.E. Exosomal signaling during hypoxia mediates microvascular endothelial cell migration and vasculogenesis. PLoS One 2013 8 7 e68451 10.1371/journal.pone.0068451 23861904
    [Google Scholar]
  144. Zhang H.C. Liu X.B. Huang S. Bi X.Y. Wang H.X. Xie L.X. Wang Y.Q. Cao X.F. Lv J. Xiao F.J. Yang Y. Guo Z.K. Microvesicles derived from human umbilical cord mesenchymal stem cells stimulated by hypoxia promote angiogenesis both in vitro and in vivo. Stem Cells Dev 2012 21 18 3289 3297 10.1089/scd.2012.0095 22839741
    [Google Scholar]
  145. Buravkova L.B. Andreeva E.R. Gogvadze V. Zhivotovsky B. Mesenchymal stem cells and hypoxia: Where are we? Mitochondrion 2014 19 Pt A 105 112 10.1016/j.mito.2014.07.005 25034305
    [Google Scholar]
  146. Efimenko A. Starostina E. Kalinina N. Stolzing A. Angiogenic properties of aged adipose derived mesenchymal stem cells after hypoxic conditioning. J. Transl. Med. 2011 9 1 10 10.1186/1479‑5876‑9‑10 21244679
    [Google Scholar]
  147. Lavrentieva A. Majore I. Kasper C. Hass R. Effects of hypoxic culture conditions on umbilical cord-derived human mesenchymal stem cells. Cell Commun. Signal. 2010 8 1 18 10.1186/1478‑811X‑8‑18 20637101
    [Google Scholar]
  148. Ito A. Aoyama T. Yoshizawa M. Nagai M. Tajino J. Yamaguchi S. Iijima H. Zhang X. Kuroki H. The effects of short-term hypoxia on human mesenchymal stem cell proliferation, viability and p16INK4A mRNA expression: Investigation using a simple hypoxic culture system with a deoxidizing agent. J. Stem. Cells Regen. Med 2015 11 1 25 31 10.46582/jsrm.1101005 26195892
    [Google Scholar]
  149. Klyachko N.L. Arzt C.J. Li S.M. Gololobova O.A. Batrakova E.V. Extracellular vesicle-based therapeutics: Preclinical and clinical investigations. Pharmaceutics 2020 12 12 1171 10.3390/pharmaceutics12121171 33271883
    [Google Scholar]
  150. Hu P. Yang Q. Wang Q. Shi C. Wang D. Armato U. Prà I.D. Chiarini A. Mesenchymal stromal cells-exosomes: A promising cell-free therapeutic tool for wound healing and cutaneous regeneration. Burns Trauma 2019 7 s41038-019-0178-8 10.1186/s41038‑019‑0178‑8 31890717
    [Google Scholar]
  151. Long M. Lu A. Lu M. Weng L. Chen Q. Zhu L. Chen Z. Azo-inserted responsive hybrid liposomes for hypoxia-specific drug delivery. Acta. Biomater. 2020 115 343 357 10.1016/j.actbio.2020.07.061 32771598
    [Google Scholar]
  152. Sadeghi N. Kok R.J. Bos C. Zandvliet M. Geerts W.J.C. Storm G. Moonen C.T.W. Lammers T. Deckers R. Hyperthermia-triggered release of hypoxic cell radiosensitizers from temperature-sensitive liposomes improves radiotherapy efficacy in vitro. Nanotechnology 2019 30 26 264001 10.1088/1361‑6528/ab0ce6 30836341
    [Google Scholar]
  153. Jiang X. Zhang B. Zhou Z. Meng L. Sun Z. Xu Y. Xu Q. Yuan A. Yu L. Qian H. Wu J. Hu Y. Liu B. Enhancement of radiotherapy efficacy by pleiotropic liposomes encapsulated paclitaxel and perfluorotributylamine. Drug Deliv 2017 24 1 1419 1428 10.1080/10717544.2017.1378939 28937321
    [Google Scholar]
  154. Sharma A. Arambula J.F. Koo S. Kumar R. Singh H. Sessler J.L. Kim J.S. Hypoxia-targeted drug delivery. Chem. Soc. Rev. 2019 48 3 771 813 10.1039/C8CS00304A 30575832
    [Google Scholar]
  155. Ma Y. Poole K. Goyette J. Gaus K. Introducing membrane charge and membrane potential to T cell signaling. Front. Immunol. 2017 8 1513 10.3389/fimmu.2017.01513 29170669
    [Google Scholar]
  156. Midekessa G. Godakumara K. Ord J. Viil J. Lättekivi F. Dissanayake K. Kopanchuk S. Rinken A. Andronowska A. Bhattacharjee S. Rinken T. Fazeli A. Zeta potential of extracellular vesicles: Toward understanding the attributes that determine colloidal stability. ACS Omega 2020 5 27 16701 16710 10.1021/acsomega.0c01582 32685837
    [Google Scholar]
  157. Morelli A.E. Larregina A.T. Shufesky W.J. Sullivan M.L.G. Stolz D.B. Papworth G.D. Zahorchak A.F. Logar A.J. Wang Z. Watkins S.C. Falo L.D. Thomson A.W. Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells. Blood 2004 104 10 3257 3266 10.1182/blood‑2004‑03‑0824 15284116
    [Google Scholar]
  158. Shukla D. Liu J. Blaiklock P. Shworak N.W. Bai X. Esko J.D. Cohen G.H. Eisenberg R.J. Rosenberg R.D. Spear P.G. A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry. Cell 1999 99 1 13 22 10.1016/S0092‑8674(00)80058‑6 10520990
    [Google Scholar]
  159. Christianson H.C. Svensson K.J. van Kuppevelt T.H. Li J.P. Belting M. Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity. Proc. Natl. Acad. Sci. USA 2013 110 43 17380 17385 10.1073/pnas.1304266110 24101524
    [Google Scholar]
  160. Antes T.J. Middleton R.C. Luther K.M. Ijichi T. Peck K.A. Liu W.J. Valle J. Echavez A.K. Marbán E. Targeting extracellular vesicles to injured tissue using membrane cloaking and surface display. J. Nanobiotechnology. 2018 16 1 61 10.1186/s12951‑018‑0388‑4 30165851
    [Google Scholar]
  161. Hurwitz S.N. Meckes D.G. Extracellular vesicle integrins distinguish unique cancers. Proteomes 2019 7 2 14 10.3390/proteomes7020014 30979041
    [Google Scholar]
  162. Tian T. Wang Y. Wang H. Zhu Z. Xiao Z. Visualizing of the cellular uptake and intracellular trafficking of exosomes by live-cell microscopy. J. Cell Biochem. 2010 111 2 488 496 10.1002/jcb.22733 20533300
    [Google Scholar]
  163. Ochoa-Sánchez C. Rodríguez-León E. Iñiguez-Palomares R. Rodríguez-Beas C. Brief comparison of the efficacy of cationic and anionic liposomes as nonviral delivery systems. ACS Omega 2024 9 47 46664 46678 10.1021/acsomega.4c06714 39619565
    [Google Scholar]
  164. Felgner P.L. Gadek T.R. Holm M. Roman R. Chan H.W. Wenz M. Northrop J.P. Ringold G.M. Danielsen M. Lipofection: A highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Acad. Sci. USA 1987 84 21 7413 7417 10.1073/pnas.84.21.7413 2823261
    [Google Scholar]
  165. AlQahtani A.D. O’Connor D. Domling A. Goda S.K. Strategies for the production of long-acting therapeutics and efficient drug delivery for cancer treatment. Biomed. Pharmacothe. 2019 113 108750 10.1016/j.biopha.2019.108750 30849643
    [Google Scholar]
  166. Bus T. Traeger A. Schubert U.S. The great escape: How cationic polyplexes overcome the endosomal barrier. J. Mater. Chem. B. Mater. Biol. Med. 2018 6 43 6904 6918 10.1039/C8TB00967H 32254575
    [Google Scholar]
  167. Lin W. Fang J. Wei S. He G. Liu J. Li X. Peng X. Li D. Yang S. Li X. Yang L. Li H. Extracellular vesicle-cell adhesion molecules in tumours: Biofunctions and clinical applications. Cell Commun Signal 2023 21 1 246 10.1186/s12964‑023‑01236‑8 37735659
    [Google Scholar]
  168. Ibsen S. Benchimol M. Simberg D. Schutt C. Steiner J. Esener S. A novel nested liposome drug delivery vehicle capable of ultrasound triggered release of its payload. J. Cont. Rel. 2011 155 3 358 366 10.1016/j.jconrel.2011.06.032 21745505
    [Google Scholar]
  169. Puri A. Kramer-Marek G. Campbell-Massa R. Yavlovich A. Tele S.C. Lee S.B. Clogston J.D. Patri A.K. Blumenthal R. Capala J. HER2-specific affibody-conjugated thermosensitive liposomes (Affisomes) for improved delivery of anticancer agents. J. Liposome Res. 2008 18 4 293 307 10.1080/08982100802457377 18937120
    [Google Scholar]
  170. Bonsergent E. Grisard E. Buchrieser J. Schwartz O. Théry C. Lavieu G. Quantitative characterization of extracellular vesicle uptake and content delivery within mammalian cells. Nat. Commun. 2021 12 1 1864 10.1038/s41467‑021‑22126‑y 33767144
    [Google Scholar]
  171. Jankovičová J. Sečová P. Michalková K. Antalíková J. Tetraspanins, more than markers of extracellular vesicles in reproduction. Int. J. Mol. Sci. 2020 21 20 7568 10.3390/ijms21207568 33066349
    [Google Scholar]
  172. Fanaei M. Monk P.N. Partridge L.J. The role of tetraspanins in fusion. Biochem. Soc. Trans. 2011 39 2 524 528 10.1042/BST0390524 21428932
    [Google Scholar]
  173. Nazarenko I. Rana S. Baumann A. McAlear J. Hellwig A. Trendelenburg M. Lochnit G. Preissner K.T. Zöller M. Cell surface tetraspanin Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activation. Cancer Res. 2010 70 4 1668 1678 10.1158/0008‑5472.CAN‑09‑2470 20124479
    [Google Scholar]
  174. Franzen C. A. Simms P. E. Van Huis A. F. Foreman K. E. Kuo P. C. Gupta G. N. Characterization of uptake and internalization of exosomes by bladder cancer cells. Biomed. Res. Int. 2014 619829 10.1155/2014/619829 24575409
    [Google Scholar]
  175. Marlin S.D. Springer T.A. Purified intercellular adhesion molecule-1 (ICAM-1) is a ligand for lymphocyte function-associated antigen 1 (LFA-1). Cell 1987 51 5 813 819 10.1016/0092‑8674(87)90104‑8 3315233
    [Google Scholar]
  176. Hwang I. Shen X. Sprent J. Direct stimulation of naïve T cells by membrane vesicles from antigen-presenting cells: Distinct roles for CD54 and B7 molecules. Proc. Natl. Acad. Sci. USA 2003 100 11 6670 6675 10.1073/pnas.1131852100 12743365
    [Google Scholar]
  177. Hao S. Bai O. Li F. Yuan J. Laferte S. Xiang J. Mature dendritic cells pulsed with exosomes stimulate efficient cytotoxic T-lymphocyte responses and antitumour immunity. Immunology 2007 120 1 90 102 10.1111/j.1365‑2567.2006.02483.x 17073943
    [Google Scholar]
  178. Xie Y. Zhang H. Li W. Deng Y. Munegowda M.A. Chibbar R. Qureshi M. Xiang J. Dendritic cells recruit T cell exosomes via exosomal LFA-1 leading to inhibition of CD8+ CTL responses through downregulation of peptide/MHC class I and Fas ligand-mediated cytotoxicity. J. Immunol. 2010 185 9 5268 5278 10.4049/jimmunol.1000386 20881190
    [Google Scholar]
  179. Hanayama R. Tanaka M. Miwa K. Shinohara A. Iwamatsu A. Nagata S. Identification of a factor that links apoptotic cells to phagocytes. Nature 2002 417 6885 182 187 10.1038/417182a 12000961
    [Google Scholar]
  180. Garcia-Vallejo J.J. van Kooyk Y. The physiological role of DC-SIGN: A tale of mice and men. Trends Immunol 2013 34 10 482 486 10.1016/j.it.2013.03.001 23608151
    [Google Scholar]
  181. Näslund T.I. Paquin-Proulx D. Paredes P.T. Vallhov H. Sandberg J.K. Gabrielsson S. Exosomes from breast milk inhibit HIV-1 infection of dendritic cells and subsequent viral transfer to CD4+ T cells. AIDS 2014 28 2 171 180 10.1097/QAD.0000000000000159 24413309
    [Google Scholar]
  182. Escrevente C. Keller S. Altevogt P. Costa J. Interaction and uptake of exosomes by ovarian cancer cells. BMC Cancer 2011 11 1 108 10.1186/1471‑2407‑11‑108 21439085
    [Google Scholar]
  183. Barrès C. Blanc L. Bette-Bobillo P. André S. Mamoun R. Gabius H.J. Vidal M. Galectin-5 is bound onto the surface of rat reticulocyte exosomes and modulates vesicle uptake by macrophages. Blood 2010 115 3 696 705 10.1182/blood‑2009‑07‑231449 19903899
    [Google Scholar]
  184. Cardeñes B. Clares I. Bezos T. Toribio V. López-Martín S. Rocha A. Peinado H. Yáñez-Mó M. Cabañas C. ALCAM/CD166 is involved in the binding and uptake of cancer-derived extracellular vesicles. Int. J. Mol. Sci. 2022 23 10 5753 10.3390/ijms23105753 35628559
    [Google Scholar]
  185. Gallart-Palau X. Serra A. Sze S.K. Enrichment of extracellular vesicles from tissues of the central nervous system by PROSPR. Mol. Neurodegener 2016 11 1 41 10.1186/s13024‑016‑0108‑1 27216497
    [Google Scholar]
  186. Joshi B.S. de Beer M.A. Giepmans B.N.G. Zuhorn I.S. Endocytosis of extracellular vesicles and release of their cargo from endosomes. ACS Nano 2020 14 4 4444 4455 10.1021/acsnano.9b10033 32282185
    [Google Scholar]
  187. Nguyen H.N.T. Vuong C.K. Fukushige M. Usuda M. Takagi L.K. Yamashita T. Obata-Yasuoka M. Hamada H. Osaka M. Tsukada T. Hiramatsu Y. Ohneda O. Extracellular vesicles derived from SARS-CoV-2 M-protein-induced triple negative breast cancer cells promoted the ability of tissue stem cells supporting cancer progression. Front Oncol 2024 14 1346312 10.3389/fonc.2024.1346312 38515582
    [Google Scholar]
  188. Jacobson R. Ha S. Tani S. Ghosh S. Jarajapu Y.P.R. Brand R.E. Kim J. Choi Y. Differential extracellular vesicle concentration and their biomarker expression of integrin αv/β5, EpCAM, and glypican-1 in pancreatic cancer models. Sci. Rep. 2024 14 1 14273 10.1038/s41598‑024‑65209‑8 38902362
    [Google Scholar]
  189. Kanada M. Linenfelser L. Cox E. Gilad A. A. A dual-reporter platform for screening tumor-targeted extracellular vesicles. Pharmaceutics 2022 14 3 475 10.3390/pharmaceutics14030475 35335849
    [Google Scholar]
  190. Xia W. Tao Z. Zhu B. Zhang W. Liu C. Chen S. Song M. Targeted delivery of drugs and genes using polymer nanocarriers for cancer therapy. Int. J. Mol. Sci. 2021 22 17 9118 10.3390/ijms22179118 34502028
    [Google Scholar]
  191. Torchilin V.P. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat. Rev. Drug. Discov. 2014 13 11 813 827 10.1038/nrd4333 25287120
    [Google Scholar]
  192. Barenholz Y.C. Doxil® — The first FDA-approved nano-drug: Lessons learned. J. Cont. Rel. 2012 160 2 117 134 10.1016/j.jconrel.2012.03.020 22484195
    [Google Scholar]
  193. Sonju J.J. Dahal A. Singh S.S. Jois S.D. Peptide-functionalized liposomes as therapeutic and diagnostic tools for cancer treatment. J. Cont. Rel. 2021 329 624 644 10.1016/j.jconrel.2020.09.055 33010333
    [Google Scholar]
  194. Tenchov R. Bird R. Curtze A.E. Zhou Q. Lipid nanoparticles— From liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano 2021 15 11 16982 17015 10.1021/acsnano.1c04996 34181394
    [Google Scholar]
  195. Lopes D. Lopes J. Pereira-Silva M. Peixoto D. Rabiee N. Veiga F. Moradi O. Guo Z.H. Wang X.D. Conde J. Makvandi P. Paiva-Santos A.C. Bioengineered exosomal-membrane-camouflaged abiotic nanocarriers: Neurodegenerative diseases, tissue engineering and regenerative medicine. Mil. Med. Res. 2023 10 1 19 10.1186/s40779‑023‑00453‑z 37101293
    [Google Scholar]
  196. Hasan N. Imran M. Jain D. Jha S.K. Nadaf A. Chaudhary A. Rafiya K. Jha L.A. Almalki W.H. Mohammed Y. Kesharwani P. Ahmad F.J. Advanced targeted drug delivery by bioengineered white blood cell-membrane camouflaged nanoparticulate delivery nanostructures. Environ. Res. 2023 238 Pt 1 117007 10.1016/j.envres.2023.117007 37689337
    [Google Scholar]
  197. Graván P. Marchal J.A. Galisteo-González F. Improving tumor treatment: Cell membrane-coated nanoparticles for targeted therapies. Mater Today Bio 2025 32 101716 10.1016/j.mtbio.2025.101716 40391023
    [Google Scholar]
  198. Kooijmans S.A.A. Fliervoet L.A.L. van der Meel R. Fens M.H.A.M. Heijnen H.F.G. van Bergen en Henegouwen P.M.P. Vader P. Schiffelers R.M. PEGylated and targeted extracellular vesicles display enhanced cell specificity and circulation time. J. Cont. Rel. 2016 224 77 85 10.1016/j.jconrel.2016.01.009 26773767
    [Google Scholar]
  199. Wang X. Zhao X. Zhong Y. Shen J. An W. Biomimetic exosomes: A new generation of drug delivery system. Front Bioeng. Biotechnol. 2022 10 865682 10.3389/fbioe.2022.865682 35677298
    [Google Scholar]
  200. Sudimack J. Lee R.J. Targeted drug delivery via the folate receptor. Adv. Drug Deliv. Rev. 2000 41 2 147 162 10.1016/S0169‑409X(99)00062‑9 10699311
    [Google Scholar]
  201. Javid H. Oryani M.A. Rezagholinejad N. Esparham A. Tajaldini M. Karimi-Shahri M. RGD peptide in cancer targeting: Benefits, challenges, solutions, and possible integrin–RGD interactions. Cancer Med. 2024 13 2 e6800 10.1002/cam4.6800 38349028
    [Google Scholar]
  202. Nikitovic D. Kukovyakina E. Berdiaki A. Tzanakakis A. Luss A. Vlaskina E. Yagolovich A. Tsatsakis A. Kuskov A. Enhancing tumor targeted therapy: The role of iRGD peptide in advanced drug delivery systems. Cancers 2024 16 22 3768 10.3390/cancers16223768 39594723
    [Google Scholar]
  203. Domenis R. Cifù A. Quaglia S. Pistis C. Moretti M. Vicario A. Parodi P.C. Fabris M. Niazi K.R. Soon-Shiong P. Curcio F. Pro inflammatory stimuli enhance the immunosuppressive functions of adipose mesenchymal stem cells-derived exosomes. Sci. Rep. 2018 8 1 13325 10.1038/s41598‑018‑31707‑9 30190615
    [Google Scholar]
  204. Riazifar M. Mohammadi M.R. Pone E.J. Yeri A. Lässer C. Segaliny A.I. McIntyre L.L. Shelke G.V. Hutchins E. Hamamoto A. Calle E.N. Crescitelli R. Liao W. Pham V. Yin Y. Jayaraman J. Lakey J.R.T. Walsh C.M. Van Keuren-Jensen K. Lotvall J. Zhao W. Stem cell-derived exosomes as nanotherapeutics for autoimmune and neurodegenerative disorders. ACS Nano 2019 13 6 6670 6688 10.1021/acsnano.9b01004 31117376
    [Google Scholar]
  205. Liang Y.C. Wu Y.P. Li X.D. Chen S.H. Ye X.J. Xue X.Y. Xu N. TNF-α-induced exosomal miR-146a mediates mesenchymal stem cell-dependent suppression of urethral stricture. J. Cell Physiol. 2019 234 12 23243 23255 10.1002/jcp.28891 31144307
    [Google Scholar]
  206. Song Y. Dou H. Li X. Zhao X. Li Y. Liu D. Ji J. Liu F. Ding L. Ni Y. Hou Y. Exosomal miR-146a contributes to the enhanced therapeutic efficacy of interleukin-1β-primed mesenchymal stem cells against sepsis. Stem Cells 2017 35 5 1208 1221 10.1002/stem.2564 28090688
    [Google Scholar]
  207. Glebov K. Löchner M. Jabs R. Lau T. Merkel O. Schloss P. Steinhäuser C. Walter J. Serotonin stimulates secretion of exosomes from microglia cells. Glia 2015 63 4 626 634 10.1002/glia.22772 25451814
    [Google Scholar]
  208. Watson K. Koumangoye R. Thompson P. Sakwe A.M. Patel T. Pratap S. Ochieng J. Fetuin-A triggers the secretion of a novel set of exosomes in detached tumor cells that mediate their adhesion and spreading. FEBS Lett 2012 586 19 3458 3463 10.1016/j.febslet.2012.07.071 22980907
    [Google Scholar]
  209. Crawford S. Diamond D. Brustolon L. Penarreta R. Effect of increased extracellular ca on microvesicle production and tumor spheroid formation. Cancer Microenviron 2011 4 1 93 103 10.1007/s12307‑010‑0049‑0 21505564
    [Google Scholar]
  210. Koren E. Torchilin V.P. Cell-penetrating peptides: Breaking through to the other side. Trends. Mol. Med. 2012 18 7 385 393 10.1016/j.molmed.2012.04.012 22682515
    [Google Scholar]
  211. Zylberberg C. Matosevic S. Pharmaceutical liposomal drug delivery: A review of new delivery systems and a look at the regulatory landscape. Drug Deliv 2016 23 9 3319 3329 10.1080/10717544.2016.1177136 27145899
    [Google Scholar]
  212. Franzé S. Selmin F. Samaritani E. Minghetti P. Cilurzo F. Lyophilization of liposomal formulations: Still necessary, still challenging. Pharmaceutics 2018 10 3 139 10.3390/pharmaceutics10030139 30154315
    [Google Scholar]
  213. Lener T. Gimona M. Aigner L. Börger V. Buzas E. Camussi G. Chaput N. Chatterjee D. Court F.A. del Portillo H.A. O’Driscoll L. Fais S. Falcon-Perez J.M. Felderhoff-Mueser U. Fraile L. Gho Y.S. Görgens A. Gupta R.C. Hendrix A. Hermann D.M. Hill A.F. Hochberg F. Horn P.A. de Kleijn D. Kordelas L. Kramer B.W. Krämer-Albers E.M. Laner-Plamberger S. Laitinen S. Leonardi T. Lorenowicz M.J. Lim S.K. Lötvall J. Maguire C.A. Marcilla A. Nazarenko I. Ochiya T. Patel T. Pedersen S. Pocsfalvi G. Pluchino S. Quesenberry P. Reischl I.G. Rivera F.J. Sanzenbacher R. Schallmoser K. Slaper-Cortenbach I. Strunk D. Tonn T. Vader P. van Balkom B.W.M. Wauben M. Andaloussi S.E. Théry C. Rohde E. Giebel B. Applying extracellular vesicles based therapeutics in clinical trials – An ISEV position paper. J. Extracell. Vesicles 2015 4 1 30087 10.3402/jev.v4.30087 26725829
    [Google Scholar]
  214. Théry C. Gho Y.S. Quesenberry P. Journal of extracellular vesicles: The seven year itch! J. Extracell. Vesicles 2019 8 1 1654729 10.1080/20013078.2019.1654729 31552132
    [Google Scholar]
  215. Witwer K.W. Buzás E.I. Bemis L.T. Bora A. Lässer C. Lötvall J. Nolte-’t Hoen E.N. Piper M.G. Sivaraman S. Skog J. Théry C. Wauben M.H. Hochberg F. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J. Extracell. Vesicles 2013 2 1 20360 10.3402/jev.v2i0.20360 24009894
    [Google Scholar]
  216. Goh W.J. Zou S. Ong W.Y. Torta F. Alexandra A.F. Schiffelers R.M. Storm G. Wang J.W. Czarny B. Pastorin G. Bioinspired cell-derived nanovesicles versus exosomes as drug delivery systems: A cost-effective alternative. Sci. Rep. 2017 7 1 14322 10.1038/s41598‑017‑14725‑x 29085024
    [Google Scholar]
  217. Chen J. Zheng M. Xiao Q. Wang H. Chi C. Lin T. Wang Y. Yi X. Zhu L. Recent advances in microfluidic-based extracellular vesicle analysis. Micromachines 2024 15 5 630 10.3390/mi15050630 38793203
    [Google Scholar]
  218. Armstrong J.P.K. Holme M.N. Stevens M.M. Re-engineering extracellular vesicles as smart nanoscale therapeutics. ACS Nano 2017 11 1 69 83 10.1021/acsnano.6b07607 28068069
    [Google Scholar]
  219. Ganguly M. Debraj D. Mazumder N. Carpenter J. Manickam S. Pandit A.B. Impact of ultrasonication on the oxidative stability of oil-in-water nanoemulsions: Investigations into kinetics and strategies to control lipid oxidation. Ind. Eng. Chem. Res. 2024 63 23 10212 10225 10.1021/acs.iecr.4c00506
    [Google Scholar]
  220. Gardiner C. Di Vizio D. Sahoo S. Théry C. Witwer K.W. Wauben M. Hill A.F. Techniques used for the isolation and characterization of extracellular vesicles: Results of a worldwide survey. J. Extracell. Vesicles 2016 5 1 32945 10.3402/jev.v5.32945 27802845
    [Google Scholar]
  221. Vogel R. Coumans F.A.W. Maltesen R.G. Böing A.N. Bonnington K.E. Broekman M.L. Broom M.F. Buzás E.I. Christiansen G. Hajji N. Kristensen S.R. Kuehn M.J. Lund S.M. Maas S.L.N. Nieuwland R. Osteikoetxea X. Schnoor R. Scicluna B.J. Shambrook M. de Vrij J. Mann S.I. Hill A.F. Pedersen S. A standardized method to determine the concentration of extracellular vesicles using tunable resistive pulse sensing. J. Extracell. Vesicles 2016 5 1 31242 10.3402/jev.v5.31242 27680301
    [Google Scholar]
  222. Mizuta R. Sasaki Y. Katagiri K. Sawada S. Akiyoshi K. Reversible conjugation of biomembrane vesicles with magnetic nanoparticles using a self-assembled nanogel interface: Single particle analysis using imaging flow cytometry. Nanoscale Adv 2022 4 8 1999 2010 10.1039/D1NA00834J 36133411
    [Google Scholar]
  223. Welsh J.A. Goberdhan D.C.I. O’Driscoll L. Buzas E.I. Blenkiron C. Bussolati B. Cai H. Di Vizio D. Driedonks T.A.P. Erdbrügger U. Falcon-Perez J.M. Fu Q.L. Hill A.F. Lenassi M. Lim S.K. Mahoney M.G. Mohanty S. Möller A. Nieuwland R. Ochiya T. Sahoo S. Torrecilhas A.C. Zheng L. Zijlstra A. Abuelreich S. Bagabas R. Bergese P. Bridges E.M. Brucale M. Burger D. Carney R.P. Cocucci E. Crescitelli R. Hanser E. Harris A.L. Haughey N.J. Hendrix A. Ivanov A.R. Jovanovic-Talisman T. Kruh-Garcia N.A. Ku’ulei-Lyn Faustino V. Kyburz D. Lässer C. Lennon K.M. Lötvall J. Maddox A.L. Martens-Uzunova E.S. Mizenko R.R. Newman L.A. Ridolfi A. Rohde E. Rojalin T. Rowland A. Saftics A. Sandau U.S. Saugstad J.A. Shekari F. Swift S. Ter-Ovanesyan D. Tosar J.P. Useckaite Z. Valle F. Varga Z. van der Pol E. van Herwijnen M.J.C. Wauben M.H.M. Wehman A.M. Williams S. Zendrini A. Zimmerman A.J. Théry C. Witwer K.W. Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. J. Extracell. Vesicles 2024 13 2 e12404 10.1002/jev2.12404 38326288 MISEV Consortium
    [Google Scholar]
  224. Surianarayanan R. Gurumallappa Shivakumar H. Varma Vegesna N.S.K. Srivastava A. Effect of sample concentration on the characterization of liposomes using dynamic light scattering technique. Pharm Methods 2016 7 1 70 74 10.5530/phm.2016.7.11
    [Google Scholar]
  225. Weber F. Rahnfeld L. Luciani P. Analytical profiling and stability evaluation of liposomal drug delivery systems: A rapid UHPLC-CAD-based approach for phospholipids in research and quality control. Talanta 2020 220 121320 10.1016/j.talanta.2020.121320 32928379
    [Google Scholar]
  226. Piffoux M. Silva A.K.A. Wilhelm C. Gazeau F. Tareste D. Modification of extracellular vesicles by fusion with liposomes for the design of personalized biogenic drug delivery systems. ACS Nano 2018 12 7 6830 6842 10.1021/acsnano.8b02053 29975503
    [Google Scholar]
  227. Vorselen D. Piontek M.C. Roos W.H. Wuite G.J.L. Mechanical characterization of liposomes and extracellular vesicles, a protocol. Front Mol. Biosci. 2020 7 139 10.3389/fmolb.2020.00139 32850949
    [Google Scholar]
  228. Jeyaram A. Jay S.M. Preservation and storage stability of extracellular vesicles for therapeutic applications. AAPS J. 2018 20 1 1 7 10.1208/s12248‑017‑0160‑y 29181730
    [Google Scholar]
  229. Wang Y. Xiong J. Ouyang K. Ling M. Luo J. Sun J. Xi Q. Chen T. Zhang Y. Extracellular vesicles: From large-scale production and engineering to clinical applications. J. Tissue Eng. 2025 16 20417314251319474 10.1177/20417314251319474 40322740
    [Google Scholar]
  230. Atallah C. Greige-Gerges H. Charcosset C. Development of cysteamine loaded liposomes in liquid and dried forms for improvement of cysteamine stability. Int. J. Pharm. 2020 589 119721 10.1016/j.ijpharm.2020.119721 32758591
    [Google Scholar]
  231. Nsairat H. Khater D. Sayed U. Odeh F. Al Bawab A. Alshaer W. Liposomes: Structure, composition, types, and clinical applications. Heliyon 2022 8 5 e09394 10.1016/j.heliyon.2022.e09394 35600452
    [Google Scholar]
  232. Liu X. Cao Y. Wang S. Liu J. Hao H. Extracellular vesicles: Powerful candidates in nano-drug delivery systems. Drug Deliv. Transl. Res. 2024 14 2 295 311 10.1007/s13346‑023‑01411‑x 37581742
    [Google Scholar]
  233. Haraszti R.A. Miller R. Stoppato M. Sere Y.Y. Coles A. Didiot M.C. Wollacott R. Sapp E. Dubuke M.L. Li X. Shaffer S.A. DiFiglia M. Wang Y. Aronin N. Khvorova A. Exosomes produced from 3D cultures of MSCs by tangential flow filtration show higher yield and improved activity. Mol. Ther. 2018 26 12 2838 2847 10.1016/j.ymthe.2018.09.015 30341012
    [Google Scholar]
  234. Cha J.M. Shin E.K. Sung J.H. Moon G.J. Kim E.H. Cho Y.H. Park H.D. Bae H. Kim J. Bang O.Y. Efficient scalable production of therapeutic microvesicles derived from human mesenchymal stem cells. Sci. Rep. 2018 8 1 1171 10.1038/s41598‑018‑19211‑6 29352188
    [Google Scholar]
  235. Gonzalez Gomez A. Syed S. Marshall K. Hosseinidoust Z. Liposomal nanovesicles for efficient encapsulation of staphylococcal antibiotics. ACS Omega 2019 4 6 10866 10876 10.1021/acsomega.9b00825 31460184
    [Google Scholar]
  236. Han J.Y. La Fiandra J.N. DeVoe D.L. Microfluidic vortex focusing for high throughput synthesis of size-tunable liposomes. Nat. Commun. 2022 13 1 6997 10.1038/s41467‑022‑34750‑3 36384946
    [Google Scholar]
  237. Roces C.B. Khadke S. Christensen D. Perrie Y. Scale-independent microfluidic production of cationic liposomal adjuvants and development of enhanced lymphatic targeting strategies. Mol. Pharm. 2019 16 10 4372 4386 10.1021/acs.molpharmaceut.9b00730 31437396
    [Google Scholar]
  238. Thietart S. Rautou P.E. Extracellular vesicles as biomarkers in liver diseases: A clinician’s point of view. J. Hepatol. 2020 73 6 1507 1525 10.1016/j.jhep.2020.07.014 32682050
    [Google Scholar]
  239. Kumar A. Gupta M. Braya S. Liposome characterization, applications and regulatory landscape in US. Int. J. Drug Regul. Aff. 2021 9 2 81 89 10.22270/ijdra.v9i2.474
    [Google Scholar]
  240. Liu P. Chen G. Zhang J. A review of liposomes as a drug delivery system: Current status of approved products, regulatory environments, and future perspectives. Molecules 2022 27 4 1372 10.3390/molecules27041372 35209162
    [Google Scholar]
  241. Agrawal S.S. Baliga V. Londhe V.Y. Liposomal formulations: A recent update. Pharmaceutics 2024 17 1 36 10.3390/pharmaceutics17010036 39861685
    [Google Scholar]
  242. Jasim A.J. Albukhaty S. Sulaiman G.M. Al-Karagoly H. Jabir M.S. Abomughayedh A.M. Mohammed H.A. Abomughaid M.M. Liposome nanocarriers based on γ Oryzanol: Preparation, characterization, and in vivo assessment of toxicity and antioxidant activity. ACS Omega 2024 9 3 3554 3564 10.1021/acsomega.3c07339 38284009
    [Google Scholar]
  243. Vrouwe J.P.M. Kamerling I.M.C. van Esdonk M.J. Metselaar J.M. Stuurman F.E. van der Pluijm G. Burggraaf J. Osanto S. An exploratory first-in-man study to investigate the pharmacokinetics and safety of liposomal dexamethasone at a 2- and 1-week interval in patients with metastatic castration resistant prostate cancer. Pharmacol. Res. Perspect. 2021 9 5 e00845 10.1002/prp2.845 34414692
    [Google Scholar]
  244. Yun G. Haleem I. Kim H. Yoon S. Park K.H. Lee J. Redispersible freeze-dried quercetin-loaded liposomal formulations stabilized With lyoprotectants. Bulll Korean Chem. Soc. 2019 40 6 594 597 10.1002/bkcs.11717
    [Google Scholar]
  245. van Alem C.M.A. Metselaar J.M. van Kooten C. Rotmans J.I. Recent advances in liposomal-based anti-inflammatory therapy. Pharmaceutics 2021 13 7 1004 10.3390/pharmaceutics13071004 34371695
    [Google Scholar]
  246. Tieu A. Slobodian M. Fergusson D.A. Montroy J. Burger D. Stewart D.J. Shorr R. Allan D.S. Lalu M.M. Methods and efficacy of extracellular vesicles derived from mesenchymal stromal cells in animal models of disease: A preclinical systematic review protocol. Syst. Rev. 2019 8 1 322 10.1186/s13643‑019‑1242‑y 31831057
    [Google Scholar]
  247. Larey A.M. Spoerer T.M. Daga K.R. Morfin M.G. Hynds H.M. Carpenter J. Hines K.M. Marklein R.A. High throughput screening of mesenchymal stromal cell morphological response to inflammatory signals for bioreactor-based manufacturing of extracellular vesicles that modulate microglia. Bioact. Mater. 2024 37 153 171 10.1016/j.bioactmat.2024.03.009 38549769
    [Google Scholar]
  248. Van Delen M. Derdelinckx J. Wouters K. Nelissen I. Cools N. A systematic review and meta-analysis of clinical trials assessing safety and efficacy of human extracellular vesicle-based therapy. J. Extracell. Vesicles 2024 13 7 e12458 10.1002/jev2.12458 38958077
    [Google Scholar]
  249. Joshi S. Hussain M.T. Roces C.B. Anderluzzi G. Kastner E. Salmaso S. Kirby D.J. Perrie Y. Microfluidics based manufacture of liposomes simultaneously entrapping hydrophilic and lipophilic drugs. Int. J. Pharm. 2016 514 1 160 168 10.1016/j.ijpharm.2016.09.027 27863660
    [Google Scholar]
  250. Al-Amin M.D. Bellato F. Mastrotto F. Garofalo M. Malfanti A. Salmaso S. Caliceti P. Dexamethasone loaded liposomes by thin-film hydration and microfluidic procedures: Formulation challenges. Int. J. Mol. Sci. 2020 21 5 1611 10.3390/ijms21051611 32111100
    [Google Scholar]
  251. Gabizón A. Ohana P. Amitay Y. Gorin J. Tzemach D. Mak L. Shmeeda H. Liposome co-encapsulation of anti-cancer agents for pharmacological optimization of nanomedicine-based combination chemotherapy. Cancer Drug Resist. 2021 4 2 463 484 10.20517/cdr.2020.87 35582027
    [Google Scholar]
  252. García-Manrique P. Gutiérrez G. Blanco-López M.C. Fully artificial exosomes: Towards new theranostic biomaterials. Trends Biotechnol 2018 36 1 10 14 10.1016/j.tibtech.2017.10.005 29074309
    [Google Scholar]
  253. Li Y.J. Wu J.Y. Liu J. Xu W. Qiu X. Huang S. Hu X.B. Xiang D.X. Artificial exosomes for translational nanomedicine. J. Nanobiotechnol. 2021 19 1 242 10.1186/s12951‑021‑00986‑2 34384440
    [Google Scholar]
  254. Xu X. Xu L. Wen C. Xia J. Zhang Y. Liang Y. Programming assembly of biomimetic exosomes: An emerging theranostic nanomedicine platform. Mater. Today Bio. 2023 22 100760 10.1016/j.mtbio.2023.100760 37636982
    [Google Scholar]
  255. Herrmann I.K. Wood M.J.A. Fuhrmann G. Extracellular vesicles as a next-generation drug delivery platform. Nat. Nanotechnol. 2021 16 7 748 759 10.1038/s41565‑021‑00931‑2 34211166
    [Google Scholar]
  256. Krasilnikova O. Yakimova A. Ivanov S. Atiakshin D. Kostin A.A. Sosin D. Shegay P. Kaprin A.D. Klabukov I. Gene-activated materials in regenerative dentistry: Narrative review of technology and study sesults. Int. J. Mol. Sci. 2023 24 22 16250 10.3390/ijms242216250 38003439
    [Google Scholar]
  257. Danilushkina A.A. Emene C.C. Barlev N.A. Gomzikova M.O. Strategies for engineering of extracellular vesicles. Int. J. Mol. Sci. 2023 24 17 13247 10.3390/ijms241713247 37686050
    [Google Scholar]
  258. Frolova L. Li I. Targeting capabilities of native and bioengineered extracellular vesicles for drug delivery. Bioengineering 2022 9 10 496 10.3390/bioengineering9100496 36290464
    [Google Scholar]
  259. Sato Y.T. Umezaki K. Sawada S. Mukai S. Sasaki Y. Harada N. Shiku H. Akiyoshi K. Engineering hybrid exosomes by membrane fusion with liposomes. Sci. Rep. 2016 6 1 21933 10.1038/srep21933 26911358
    [Google Scholar]
  260. Cheng L. Zhang X. Tang J. Lv Q. Liu J. Gene-engineered exosomes-thermosensitive liposomes hybrid nanovesicles by the blockade of CD47 signal for combined photothermal therapy and cancer immunotherapy. Biomaterials 2021 275 120964 10.1016/j.biomaterials.2021.120964 34147721
    [Google Scholar]
  261. Karmacharya M. Kumar S. Cho Y.K. Tuning the extracellular vesicles membrane through fusion for biomedical applications. J. Funct. Biomater. 2023 14 2 117 10.3390/jfb14020117 36826916
    [Google Scholar]
  262. Liga A. Vliegenthart A.D.B. Oosthuyzen W. Dear J.W. Kersaudy-Kerhoas M. Exosome isolation: A microfluidic road-map. Lab Chip 2015 15 11 2388 2394 10.1039/C5LC00240K 25940789
    [Google Scholar]
  263. Jhan Y.Y. Prasca-Chamorro D. Palou Zuniga G. Moore D.M. Arun Kumar S. Gaharwar A.K. Bishop C.J. Engineered extracellular vesicles with synthetic lipids via membrane fusion to establish efficient gene delivery. Int. J. Pharm. 2020 573 118802 10.1016/j.ijpharm.2019.118802 31715354
    [Google Scholar]
  264. Allolio C. Harries D. Calcium ions promote membrane fusion by forming negative-curvature inducing clusters on specific anionic lipids. ACS Nano 2021 15 8 12880 12887 10.1021/acsnano.0c08614 34338519
    [Google Scholar]
  265. Garcia-Moro E. Zhang J. Calder L.J. Brown N.R. Gamblin S.J. Skehel J.J. Rosenthal P.B. Reversible structural changes in the Influenza hemagglutinin precursor at membrane fusion pH. Proc. Natl. Acad. Sci. USA 2022 119 33 e2208011119 10.1073/pnas.2208011119 35939703
    [Google Scholar]
  266. Lin Y. Wu J. Gu W. Huang Y. Tong Z. Huang L. Tan J. Exosome–liposome hybrid nanoparticles deliver CRISPR/Cas9 system in MSCs. Adv. Sci. 2018 5 4 1700611 10.1002/advs.201700611 29721412
    [Google Scholar]
  267. Malinin V.S. Frederik P. Lentz B.R. Osmotic and curvature stress affect PEG-induced fusion of lipid vesicles but not mixing of their lipids. Biophys. J. 2002 82 4 2090 2100 10.1016/S0006‑3495(02)75556‑2 11916865
    [Google Scholar]
  268. Doskocz J. Dałek P. Przybyło M. Trzebicka B. Foryś A. Kobyliukh A. Iglič A. Langner M. The elucidation of the molecular mechanism of the extrusion process. Materials 2021 14 15 4278 10.3390/ma14154278 34361472
    [Google Scholar]
  269. Ong S. Chitneni M. Lee K. Ming L. Yuen K. Evaluation of extrusion technique for nanosizing liposomes. Pharmaceutics 2016 8 4 36 10.3390/pharmaceutics8040036 28009829
    [Google Scholar]
  270. Rayamajhi S. Nguyen T.D.T. Marasini R. Aryal S. Macrophage-derived exosome-mimetic hybrid vesicles for tumor targeted drug delivery. Acta Biomater. 2019 94 482 494 10.1016/j.actbio.2019.05.054 31129363
    [Google Scholar]
  271. Chernomordik L.V. Zimmerberg J. Kozlov M.M. Membranes of the world unite! J. Cell Biol. 2006 175 2 201 207 10.1083/jcb.200607083 17043140
    [Google Scholar]
  272. Zhou Y. Raphael R.M. Solution pH alters mechanical and electrical properties of phosphatidylcholine membranes: Relation between interfacial electrostatics, intramembrane potential, and bending elasticity. Biophys. J. 2007 92 7 2451 2462 10.1529/biophysj.106.096362 17172308
    [Google Scholar]
  273. Mitkova D. Vitkova V. The aqueous surroundings alter the bending rigidity of lipid membranes. Russ. J. Electrochem. 2016 52 12 1172 1178 10.1134/S1023193516120090
    [Google Scholar]
  274. Akimov S. Polynkin M.A. Jiménez-Munguía I. Pavlov K.V. Batishchev O.V. Phosphatidylcholine membrane fusion is pH-dependent. Int. J. Mol. Sci. 2018 19 5 1358 10.3390/ijms19051358 29751591
    [Google Scholar]
  275. Yang Y. Hong Y. Nam G.H. Chung J.H. Koh E. Kim I.S. Virus-mimetic fusogenic exosomes for direct delivery of integral membrane proteins to target cell membranes. Adv. Mater. 2017 29 13 1605604 10.1002/adma.201605604 28165174
    [Google Scholar]
  276. Ren E. Chu C. Zhang Y. Wang J. Pang X. Lin X. Liu C. Shi X. Dai Q. Lv P. Wang X. Chen X. Liu G. Mimovirus vesicle-based biological orthogonal reaction for cancer diagnosis. Small Methods 2020 4 9 2000291 10.1002/smtd.202000291
    [Google Scholar]
  277. Guimarães Sá Correia M. Briuglia M.L. Niosi F. Lamprou D.A. Microfluidic manufacturing of phospholipid nanoparticles: Stability, encapsulation efficacy, and drug release. Int. J. Pharm. 2017 516 1-2 91 99 10.1016/j.ijpharm.2016.11.025 27840162
    [Google Scholar]
  278. Guimarães D. Noro J. Loureiro A. Lager F. Renault G. Cavaco-Paulo A. Nogueira E. Increased encapsulation efficiency of methotrexate in liposomes for rheumatoid arthritis therapy. Biomedicines 2020 8 12 630 10.3390/biomedicines8120630 33353028
    [Google Scholar]
  279. Pham D.T. Nguyen L.P. Pham Q.T.H. Pham C.K. Pham D.T.N. Viet N.T. Nguyen H.V.T. Tran T.Q. Nguyen D.T. A low-cost, flexible extruder for liposomes synthesis and application for Murrayafoline A delivery for cancer treatment. J. Biomater. Appl. 2022 37 5 872 880 10.1177/08853282221112491 35786069
    [Google Scholar]
  280. Zhang B. Tian X. Hao J. Xu G. Zhang W. Mesenchymal stem cell-derived extracellular vesicles in tissue regeneration. Cell Transplant 2020 29 10.1177/0963689720908500 32207341
    [Google Scholar]
  281. Krawczenko A. Klimczak A. Adipose tissue-derived mesenchymal stem/stromal cells and their contribution to angiogenic processes in tissue regeneration. Int. J. Mol. Sci. 2022 23 5 2425 10.3390/ijms23052425 35269568
    [Google Scholar]
  282. Keshtkar S. Azarpira N. Ghahremani M.H. Mesenchymal stem cell-derived extracellular vesicles: Novel frontiers in regenerative medicine. Stem. Cell Res. Ther. 2018 9 1 63 10.1186/s13287‑018‑0791‑7 29523213
    [Google Scholar]
  283. Wei Q. Wang Y. Ma K. Bian X. Li Q. Li B. Hu W. Li H. Fu X. Zhang C. Exosomes from human umbilical cord mesenchymal stem cells facilitate diabetic wound healing through miR-221-3p-mediated enhancement of angiogenesis. Research Square 2021 10.21203/rs.3.rs‑158498/v1
    [Google Scholar]
  284. Cui M.-D. Pan Z.-H. Pan L.-Q. Danggui buxue extract-loaded liposomes in thermosensitive gel enhance in vivo dermal wound healing via activation of the VEGF/PI3K/Akt and TGF-β/Smads signaling pathway. Evid. Based Complement. Alternat. Med. 2017 2017 8407249 10.1155/2017/8407249 29292400
    [Google Scholar]
  285. Melincovici C.S. Boşca A.B. Şuşman S. Mărginean M. Mihu C. Istrate M. Moldovan I.M. Roman A.L. Mihu C.M. Vascular endothelial growth factor (VEGF) - Key factor in normal and pathological angiogenesis. Rom. J. Morphol. Embryol. 2018 59 2 455 467 30173249
    [Google Scholar]
  286. Barvitenko N. Skverchinskaya E. Lawen A. Matteucci E. Saldanha C. Uras G. Manca A. Aslam M. Pantaleo A. Pleiotropic and potentially beneficial effects of reactive oxygen species on the intracellular signaling pathways in endothelial cells. Antioxidants 2021 10 6 904 10.3390/antiox10060904 34205032
    [Google Scholar]
  287. Iqubal M.K. Saleem S. Iqubal A. Chaudhuri A. Pottoo F.H. Ali J. Baboota S. Natural, synthetic and their combinatorial nanocarriers based drug delivery system in the treatment paradigm for wound healing via dermal targeting. Curr. Pharm. Des. 2020 26 36 4551 4568 10.2174/1381612826666200612164511 32532188
    [Google Scholar]
  288. Marofi F. Alexandrovna K.I. Margiana R. Bahramali M. Suksatan W. Abdelbasset W.K. Chupradit S. Nasimi M. Maashi M.S. MSCs and their exosomes: A rapidly evolving approach in the context of cutaneous wounds therapy. Stem. Cell Res. Ther. 2021 12 1 597 10.1186/s13287‑021‑02662‑6 34863308
    [Google Scholar]
  289. Li X. Xie X. Lian W. Shi R. Han S. Zhang H. Lu L. Li M. Exosomes from adipose-derived stem cells overexpressing Nrf2 accelerate cutaneous wound healing by promoting vascularization in a diabetic foot ulcer rat model. Exp. Mol. Med. 2018 50 4 1 14 10.1038/s12276‑018‑0058‑5 29651102
    [Google Scholar]
  290. Jiang L. Zhang Y. Liu T. Wang X. Wang H. Song H. Wang W. Exosomes derived from TSG-6 modified mesenchymal stromal cells attenuate scar formation during wound healing. Biochimie 2020 177 40 49 10.1016/j.biochi.2020.08.003 32800897
    [Google Scholar]
  291. Zare H. Rezayi M. Aryan E. Meshkat Z. Hatamluyi B. Neshani A. Ghazvini K. Derakhshan M. Sankian M. Nanotechnology-driven advances in the treatment of diabetic wounds. Biotechnol. Appl. Biochem. 2021 68 6 1281 1306 33044005
    [Google Scholar]
  292. Lv Q. Cheng L. Lu Y. Zhang X. Wang Y. Deng J. Zhou J. Liu B. Liu J. Thermosensitive exosome–liposome hybrid nanoparticle-mediated chemoimmunotherapy for improved treatment of metastatic peritoneal cancer. Adv. Sci. 2020 7 18 2000515 10.1002/advs.202000515 32999828
    [Google Scholar]
  293. Sun L. Fan M. Huang D. Li B. Xu R. Gao F. Chen Y. Clodronate-loaded liposomal and fibroblast-derived exosomal hybrid system for enhanced drug delivery to pulmonary fibrosis. Biomaterials 2021 271 120761 10.1016/j.biomaterials.2021.120761 33774524
    [Google Scholar]
  294. Greenberg Z.F. Graim K.S. He M. Towards artificial intelligence-enabled extracellular vesicle precision drug delivery. Adv. Drug Deliv. Rev. 2023 199 114974 10.1016/j.addr.2023.114974 37356623
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673429736251123123254
Loading
/content/journals/cmc/10.2174/0109298673429736251123123254
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test