Current Molecular Pharmacology - Current Issue
Volume 17, Issue 1, 2024
-
-
Stimulation of Soluble Guanylyl Cyclase (sGC) by Cinaciguat Attenuates Sepsis-induced Cardiac Injury
Authors: Wanqian Li, Cheng Zheng, Xijiang Zhang, Binhui Wang, Enjian Shen, Lingjun Wang, Guang Chen and Ronghai LinBackgroundCinaciguat is a soluble Guanylyl Cyclase (sGC) activator that plays a crucial role in cardiovascular diseases. Previous research has shown that cinaciguat is involved in the progression of cardiomyopathy, which encompasses cardiac enlargement, heart dysfunction, and doxorubicin-induced heart damage. However, its therapeutic potential in sepsis-induced cardiomyopathy remains unknown.
ObjectivesThis study examined the impact of cinaciguat on Lipopolysaccharide (LPS)-induced myocardial injury and the underlying molecular mechanisms.
MethodsThe mice model was established through intraperitoneal injection of LPS (10 mg/kg), and an in vitro model was generated by stimulating H9c2 cells with LPS (10 μg/ml) for 12 h. Subsequently, the sGC activator cinaciguat was used to assess its effects on LPS-induced cardiac injury. Additionally, echocardiography was conducted 12 hours after modeling to analyze cardiac function in mice. We used various methods to evaluate inflammation, and apoptosis, including Enzyme-Linked Immunosorbent Assay (ELISA), terminal deoxynucleotidyl transferase-mediated deoxyuridine Triphosphate Nick End Labeling (TUNEL) assay, Hematoxylin and Eosin (HE) staining, western blotting and Real-Time Polymerase Chain Reaction (RT-PCR). Additionally, the protein kinase cGMP-dependent 1 (PRKG1)/cAMP-Response Element Binding protein (CREB) signaling pathway and Mitochondrial Ferritin (FtMt) in LPS-induced cardiac injury was assessed via western blot analysis.
ResultsLPS-induced cardiac dysfunction and increased levels of cardiac injury markers Cardiac Troponin T (cTnT) in vivo. This change was accompanied by an increase in inflammatory cytokines through Interleu-1β (IL-1β), Tumor Necrosis Factor α (TNF-α), and Interleu-6 (IL-6). The expression of apoptosis, such as cleaved caspase-3, Bax, and Bcl-2, was also upregulated. However, these effects were reversed via treatment with cinaciguat. Additionally, cinaciguat alleviated LPS-induced cardiac inflammation and apoptosis by activating the PRKG1/CREB signaling pathway, and promoting FtMt expression. The same results were also obtained in H9c2 cardiomyocytes.
ConclusionWe demonstrated that cinaciguat alleviated LPS-induced cardiac dysfunction, inflammation, and apoptosis through the PRKG1/CREB/FtMt pathway, thereby protecting against LPS-induced cardiac injury. This study identified a new strategy for treating cardiac injury caused by sepsis.
-
-
-
The Role of miRNAs in Podocyte Injury in Diabetic Nephropathy: Mechanisms and Clinical Applications
Authors: Shan Hu, Jiafu Yan, Qiong Yuan, Tianjiao Meng, Zhi Cai, Yuanshuai Huang and Yuhan WangDiabetic kidney disease (DKD) is one of the most frequent complications of diabetes and, if left uncontrolled, can progress to renal failure. In the early stage of DKD, significant pathological changes occur in podocytes, leading to proteinuria. However, the mechanism of pathological changes in podocytes has not been clarified. Existing clinical diagnostic methods tend to overlook these subtle pathophysiological changes in the early stages, leading to missed optimal treatment time. Moreover, existing treatment methods are limited. Emerging evidence strongly suggests that podocyte injury is associated with distinct specific miRNA expression profiles that precede the onset of overt proteinuria and glomerular filtration rate decline. This review explores the role of microRNAs in podocyte damage-related pathways in DKD, such as reactive oxygen species (ROS) production and inflammatory responses. Furthermore, we discuss the potential clinical application of miRNAs as molecular markers and their feasibility as a molecular therapy.
-
-
-
(R)-STU104 and Brefeldin-A Synergistically Enhance the Therapeutic Effect On IBD By Inhibiting the TAK1-MKK3-P38 Signaling Pathway
Authors: Haidong Li, Xiaoyan Shen, Xiaogang Qin and Yongxia LiuIntroductionInflammatory Bowel Disease (IBD) imposes a huge burden on both patients and the society. Standard treatments are often ineffective and can lead to adverse effects. Biological Tumor Necrosis Factor (TNF-α) inhibitors, though effective, have issues with immunogenicity and high costs. Our study investigates the potential of Brefeldin A (BFA) and (R)-STU104 in treating IBD by targeting the Transforming Growth Factor-β-Activated Kinase 1 (TAK1) - Mitogen-Activated Protein Kinase Kinase 3 (MKK3)-p38 pathway.
MethodsRAW264.7 cells (Murine Leukemia macrophage cell line) were treated with (R)-STU104 and BFA to evaluate their impact on the TAK1-MKK3-p38 pathway using Western blotting and RT-qPCR. In vivo, C57BL/6 mice were given Dextran Sulfate Sodium (DSS) to induce IBD, and the effects of BFA and (R)-STU104 were assessed by monitoring Disease Activity Index (DAI), colon length, and cytokine levels.
ResultsBoth compounds inhibited the MKK3-p38 pathway and reduced TNF-α mRNA expression levels in a dose-dependent manner. Combination therapy showed an enhanced inhibitory effect, reducing mRNA levels of TNF-α, Interleukin (IL)-1β, and IL-6. In the DSS-induced IBD model, this combination alleviated symptoms, improved DAI scores, increased colon length, and reduced inflammatory cell infiltration.
DiscussionThis study delved into the synergistic effect of BFA combined with (R)-STU104 on IBD treatment, and revealed that this combination can more effectively inhibit inflammatory responses, as well as enhance disease condition improvement. (R)-STU104selectively suppresses TNF-α production by targeting the p38 signaling pathway, and this suppressive effect is further strengthened when used in tandem with BFA. While,the combination therapy shows potential as an effective IBD treatment strategy,additional research is necessary to confirm its clinical applicability.
ConclusionBFA and (R)-STU104 exert synergistic anti-inflammatory effects by inhibiting the TAK1-MKK3-p38 pathway, suggesting a new therapeutic approach for IBD. Further studies are required to determine the clinical potential of this combination therapy.
-
-
-
Network Pharmacology and Bioinformatics of Flavonoids from Scutellaria baicalensis stems: Mitigating Aβ-Induced Cognitive Impairment in Rats via the MEK-ERK-CREB Pathway
Authors: Yan Chen, Shuai Ma, Jing Huo, Shengkai Ding, Qianqian Liu, Chen Li, Yinhui Yao and Yazhen ShangIntroductionThis study investigates the effects and mechanisms of Scutellaria baicalensis flavonoids (SSF) on passive avoidance learning and memory deficits induced by composite amyloid-β proteins (Aβ) via the MEK-ERK-CREB signaling pathway in rats based on network pharmacology and bioinformatics.
MethodsNetwork pharmacology and bioinformatics identified target pathways. An Alzheimer's disease model was induced in male wistar rats using Aβ25-35, AlCl3, and RHTGF-β1(referred to as compound Aβ). Memory impairment was confirmed with the Morris water maze. Modeled rats were assigned to a control group and three SSF-treated groups for 33 days. Passive avoidance learning abilities were assessed with a step-down test, and p-creb-ser133 expression in the hippocampus was detected via immunohistochemistry. Real-time qPCR and western blotting measured mRNA and protein levels of c-Raf, MEKs, Rsk, and zif268 in the hippocampus and cortex.
ResultsPathways such as the calcium signaling pathway, Apelin signaling pathway and cAMP signaling pathway were highlighted by KEGG analysis. The model had an 83.30% success rate. Model rats showed dry coats and unresponsiveness, while SSF treatment improved appearance and behavior. In passive avoidance tests, model rats made more errors and had shorter latencies (P < 0.01). They also showed decreased p-CREB-Ser133 and increased c-Raf, Rsk, and P-MEKs levels (P < 0.01), with reduced Zif268 (P < 0.01). SSF reversed these effects, enhancing p-CREB-Ser133 and Zif268 while regulating c-Raf, Rsk, and P-MEKs (P < 0.01).
ConclusionSSF ameliorates learning and memory impairments induced by composite Aβ, acting through the MEK-ERK-CREB pathway in rats.
-
-
-
Ergothioneine Suppresses Amyloid β-Induced Tau Phosphorylation and Cytotoxicity by Inactivating Glycogen Synthase Kinase-3β in Cultured Neurons
Authors: Fumiya Shibagaki, Yusei Hayashi, Satoshi Matsumoto and Noritaka NakamichiBackgroundAmyloid-beta (Aβ) oligomers, formed by Aβ aggregation, are the causative agent of Alzheimer’s disease and induce the hyperphosphorylation of tau protein (Tau) and neurotoxicity. The antioxidant ergothioneine (ERGO) is transferred to the brain after oral ingestion and protects against Aβ-induced neurotoxicity and cognitive dysfunction. However, the impact of ERGO on Aβ oligomer-induced Tau phosphorylation remains unclear.
ObjectiveTo investigate the effects of ERGO on Aβ-induced Tau phosphorylation and their mechanism in neurons.
MethodSH-SY5Y cells differentiated into cholinergic neuron-like cells or primary cultured neurons derived from the murine hippocampus were pretreated with ERGO and exposed to Aβ25–35 oligomers. Cytotoxicity was evaluated by assessing the chemiluminescence of dead cell-derived proteases. The expression of phosphorylated (p-) Tau at serine 396, p-glycogen synthase kinase-3 beta (GSK-3β) at serine 9, amyloid precursor protein (APP), beta-site amyloid precursor protein cleaving enzyme 1 (BACE1; β-secretase), and nicastrin, which is a component protein of the γ-secretase complex, was assessed by western blotting.
ResultDifferentiated SH-SY5Y cells exhibited increased neurite outgrowth and mRNA expression of choline acetyltransferase, and showed cholinergic neuron-like characteristics compared with those of undifferentiated cells. ERGO significantly suppressed the Aβ25–35 oligomer-induced increased cytotoxicity and p-Tau expression in differentiated SH-SY5Y cells and cultured hippocampal neurons. ERGO recovered the decreased expression of p-GSK-3β at serine 9, indicating its inactivation, and the increased expression of APP, BACE1, and nicastrin induced by Aβ25–35 oligomer exposure in cultured hippocampal neurons. These ERGO effects on Aβ25–35 oligomers were inhibited by treatment with LY294002, which activated GSK-3β.
ConclusionERGO may suppress the increased expression of p-Tau and proteins involved in Aβ production induced by Aβ oligomers by inactivating GSK-3β, thereby mitigating neurotoxicity.
-
-
-
Regulatory Mechanisms of STAT3 in GBM and its Impact on TMZ Resistance
Authors: Guangyao Lv, Xueying Li, Hongtu Deng, Jianqiao Zhang and Xinfu GaoSTAT3, a key member of the Signal Transducer and Activator of Transcription (STAT) family, plays a vital role in the development and progression of glioblastoma (GBM), as well as in the resistance to the chemotherapy drug temozolomide (TMZ). This review outlines the dysregulation of STAT3 in GBM, focusing on its activation mechanisms and its contribution to TMZ resistance. STAT3 can be activated by cytokines, like IL-6, growth factors, and membrane receptors, like EGFR. In GBM, constitutively active STAT3 enhances tumor growth and therapy resistance. Specifically, resistance to TMZ, a standard chemotherapeutic agent for GBM, is facilitated by STAT3-induced expression of the DNA repair enzyme O6-methylguanine-DNA methyltransferase and anti-apoptotic proteins like Bcl-2, as well as through the regulation of microRNAs. To combat TMZ resistance in GBM, strategies that inhibit STAT3 activity have been explored. Recent advancements, such as the use of small molecule inhibitors targeting STAT3 and its upstream or downstream regulators, RNA-based therapies, as well as the development of nanocarriers for targeted delivery of STAT3-targeting small interfering RNA across the blood-brain barrier, have demonstrated significant potential in enhancing the sensitivity of GBM to TMZ. These targeted therapies hold promise for improving the treatment outcomes of patients with GBM.
-
-
-
Tangeretin in the Treatment of Pulmonary Fibrosis: Current Advances and Future Perspectives
Authors: Ling-Jie Wang, Peng-Fei Guo, Yi-Zhao Chen, Hong-Wang Yan and Xue-Lin ZhangPulmonary fibrosis seriously endangers human health, with its incidence and mortality rates steadily increasing. Current treatment methods have limitations. This review focused on the research progress and future prospects of tangeretin in the treatment of pulmonary fibrosis. Tangeretin, a compound derived from the peel of citrus fruits, has garnered attention in pulmonary fibrosis research due to its unique chemical structure and its background in traditional medical applications. This paper discussed the pathological mechanisms of pulmonary fibrosis, including the initiation and persistent inflammation, abnormal activation and proliferation of fibroblasts, imbalance in extracellular matrix (ECM) metabolism, and the cycle of oxidative stress injury. Tangeretin has shown potential therapeutic effects, including anti-inflammation, regulation of ECM metabolism, and antioxidative stress activities. This paper reviewed the current research progress and possible therapeutic effects of tangeretin on pulmonary fibrosis and proposed future research directions for its application.
-
-
-
Mechanistic Insights into Isorhamnetin: Targeting MAPK and NF-κB Pathways to Mitigate LPS-induced Inflammation
IntroductionChronic inflammation may result in mucosal damage, presenting as pain, edema, convulsions, and fever symptoms. This study investigated the anti-inflammatory characteristics of isorhamnetin (ISO) and its potential as a medicinal agent.
MethodIn this study, in vitro tests were performed in which macrophages were activated with lipopolysaccharide (LPS) to evaluate the effect of ISO on inflammation. We concentrated on quantifying the synthesis of pro-inflammatory cytokines, interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF-α), as well as mediators, such as nitric oxide (NO) and prostaglandin E2 (PGE2), in LPS-stimulated RAW 264.7 cells.
ResultsThe findings indicated that ISO significantly decreased levels of NO and PGE2 while maintaining cellular integrity. ISO reduced the synthesis of pro-inflammatory cytokines in a dose-dependent manner. Moreover, ISO treatment decreased mRNA levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), which were enhanced following LPS exposure. Mechanistic investigations revealed that the anti-inflammatory properties of ISO were facilitated by the inhibition of phosphorylation in the mitogen-activated protein kinase (MAPK) family and the downregulation of nuclear factor-kappa B inhibitor (IκB-α) within both the MAPK and nuclear factor-kappa B (NF-κB) pathways.
ConclusionThese findings establish ISO as a viable alternative for treating inflammatory diseases by specifically inhibiting essential inflammatory pathways.
-
-
-
RIPK1/RIPK3/MLKL Necrosome Contributes to the Sepsis-induced Cardiorenal Necroptotic Inflammatory Injury and Mortality
Authors: Bahar Tunctan, Muhammed Ahmed-Reda Elosman, Sefika Pinar Senol, Elif Ikiz and Tuba KaraIntroductionDue to its critical role in inflammation and necroptotic cell death, RIPK1 has been considered a prominent therapeutic drug target for managing a wide variety of diseases, including sepsis. Therefore, we aimed to investigate whether the RIPK1-driven necroptotic pathway contributes to the nitrosative stress-mediated cardiorenal inflammatory necroptotic injury and mortality using RIPK1 inhibitor, Nec-1s, in the murine sepsis model induced by LPS.
MethodsExperiments were performed using mice injected intraperitoneally with DMSO or Nec-1s with saline and/or LPS. Following euthanasia and 6 hours after the injection of these agents, arteriovenous blood samples, hearts, and kidneys of the animals were collected. Serum MPO, iNOS, CK-MB, creatinine, and HMGB1 levels were measured by ELISA. Associated proteins were measured by immunoblotting. HE staining was used to evaluate histopathological changes in the tissues. In the mortality studies, the mice were monitored every 6 hours for mortality up to 96 hours after saline, LPS, DMSO, and/or Nec-1s injection.
ResultsIn the LPS-injected mice, a rise in serum MPO, iNOS, CK-MB, creatinine, and HMGB1 levels was associated with the enhanced expression/activity of RIPK1/RIPK3/MLKL necrosome, HMGB1, iNOS, nitrotyrosine, gp91phox, and p47phox, in addition to scores related to histopathological changes in their tissues. Nec-1s attenuated the LPS-induced changes. Mortality rates of 10%, 50%, and 60% were observed at the 24th, 36th, and 48th hours, respectively, in the LPS-treated mice. When endotoxemic mice were treated with Nec-1s, mortality rates were 60%, 90%, and 100% at 18, 30, and 42 hours, respectively.
ConclusionThese findings suggest that RIPK1/RIPK3/MLKL necrosome contributes to not only LPS-induced nitrosative stress-mediated cardiorenal inflammatory necroptotic injury, but also mortality.
-
-
-
Cilia Plays a Pivotal Role in the Hypersecretion of Airway Mucus in Mice
Authors: Yulin Liu, Tingting Liu, Ling Ruan, Danli Zhu, Yijing He, Jing Jia and Yirong ChenBackgroundAirway mucus hypersecretion is a prominent pathophysiological characteristic observed in chronic obstructive pulmonary disease (COPD), cystic fibrosis, and asthma. It is a significant risk factor for lung dysfunction and impaired quality of life. Therefore, it is crucial to investigate changes in the major genes expressed in the lungs during airway mucus hypersecretion. Such investigations can help to identify genetic targets for the development of effective treatments to manage airway mucus hypersecretion and improve clinical outcomes for those affected by these respiratory disorders.
ObjectiveOur study aims to identify changes in the expression of key genes in the lungs during airway mucus hypersecretion in mice.
MethodsThirty male C57BL/6 mice were randomly allocated into two groups. The Pyocyanin (PCN) group was intranasally infected with 25 μl of pyocyanin solution (1 μg/μl), while the phosphate-buffered saline (PBS) group received 25 μl of PBS intranasally once daily. The lung tissue of mice was extracted after 21 days for the purpose of identifying causal genes through a combination of transcriptomic and proteomic analysis. Finally, we validated the differentially expressed proteins using qRT-PCR and western blot.
ResultsOur findings revealed significant alterations in 35,268 genes and 7,004 proteins within the lung tissue of mice treated with PCN. Pathway enrichment analysis, utilizing the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, showed that the differentially expressed proteins were mainly associated with apoptosis, galactose metabolism, and asthma, among the overlapping genes and proteins. To validate the results of the transcriptomic and proteomic analyses, we used qRT-PCR to examine the expression levels of fourteen differentially expressed proteins (DEPs), namely Fpr1, Ear1, Lama3, Col19a1, Spag16, Ropn1l, Dnali1, Cfap70, Ear2, Drc1, Ifit3, Lrrc23, Slpi, and Fam166b. Subsequently, we confirmed the expression of Spag16, Dnali1, and Ropn1l by western blotting.
ConclusionsOur study identified three DEPs, namely Spag16, Dnali1, and Ropn1l, which are closely associated with the movement and organization of cilia. This study provides novel insights for the development of therapeutic interventions targeting airway mucus hypersecretion.
-
-
-
Upregulation of LncRNA WT1-AS Inhibits Tumor Growth and Promotes Autophagy in Gastric Cancer via Suppression of PI3K/Akt/mTOR Pathway
Authors: Xiaobei Zhang, Meng Jin, Xiaoying Yao, Jilan Liu, Yonghong Yang, Jian Huang, Guiyuan Jin, Shiqi Liu and Baogui ZhangBackgroundIncreasing evidence has highlighted the involvement of the imbalance of long non-coding RNAs in the development of gastric cancer (GC), which is one of the most common malignancies in the world. This study aimed to determine the role of lncRNA WT1-AS in the progression of GC and explore its underlying mechanism.
MethodsThe expression of lncRNA WT1-AS in gastric cancer tissues was detected using RT-qPCR. We knocked down the expression of WT1-AS in GC cells or treated them with rapamycin or both. Then, transwell assay and scratch assay were carried out to determine the migration of GC cells, and flow cytometry was carried out to determine the cell cycle. The immunofluorescence technique was used to determine the autophagy, and a tumor formation experiment was carried out to determine tumor growth in vivo. The expression of factors related to the PI3K/Akt/mTOR pathway was also measured by Western Blotting.
ResultsIn GC tissues and cells, lncRNA WT1-AS was underexpressed. Moreover, overexpression of lncRNA WT1-AS blocked the PI3K/Akt/mTOR pathway. Upregulation of lncRNA WT1-AS or inhibition of the PI3K/Akt/mTOR pathway suppressed cancer cell migration in vitro, leading to cell cycle arrest, and promoted autophagy while inhibiting tumor growth in vivo. It also reduced the expression levels of Ki-67, MMP2, MMP9, and VEGF. The WT1-AS+rapamycin group was the most prominent in all experiments.
ConclusionThe upregulation of lncRNA WT1-AS could suppress the PI3K/Akt/mTOR pathway, which inhibits cell migration and cell cycle arrest while promoting autophagy in gastric cancer cells.
-
-
-
Protective Effect of Platycodin D on Allergic Rhinitis in Mice through DPP4/JAK2/STAT3 Pathway Inhibition
Authors: Qiaojing Jia, Zhichang Liu, Caixia Wang, Bingyi Yang, Xiangjian Zhang, Chunguang Shan and Jianxing WangBackground:Allergic Rhinitis (AR) is an inflammatory condition characterized by nasal mucosa remodeling, driven by Immunoglobulin E (IgE). Platycodin D (PLD) exhibits a wide range of bioactive properties.
Aim:The aim of this work was to investigate the potential protective effects of PLD on AR, as well as the underlying mechanisms.
Methods:The anti-allergic and anti-inflammatory potential of PLD was investigated in an ovalbumin-sensitized AR mouse model and human nasal mucosa cells (HNEpC) challenged with interleukin-13 combined with PLD. Our assessment included an examination of nasal symptoms, tissue pathology, and goblet cell hyperplasia. The levels of IgE, Interferon-gamma (IFN-γ), and interleukin-4 in the serum were detected using Enzyme-linked Immunosorbent Assay (ELISA). Furthermore, quantitative Real-time Polymerase Chain Reaction (RT-PCR) and ELISA were employed to determine the expressions of IL-1β, Tumor Necrosis Factor-alpha (TNF-α), and IL-6 in in vivo and in vitro settings. Western blot analysis was conducted to investigate the changes in DPP4/JAK2/STAT3 in vivo and in vitro.
Results:Our results demonstrated that oral administration of PLD significantly ameliorated nasal symptoms in AR mice, improved histopathological changes in the nasal mucosa, raised the level of IFN-γ, and reduced IgE as well as IL-4 levels in the serum. PLD inhibited the expressions of IL-1β, IL-6, TNF-α, and DPP4 in in vivo and in vitro settings. Notably, PLD modulated the changes in DPP4, p-JAK2, and p-STAT3 induced by IL-13 in HNEpC cells and AR mice.
Conclusion:The findings suggested the potential of PLD as a therapeutic agent for the treatment of AR.
-
-
-
Aloe-Emodin Relieves Myocardial Intracellular Calcium Homeostasis Imbalance Induced by High-fat Diet via Protein Arginine Methyltransferase/ Ca2+/Calmodulin- Dependent Protein Kinase II Signaling Pathway in Rats
Authors: Wen Li, Juan Hu, Ye Yuan, Zhimin Du, Jia Wang, Yilian Yang, Bing Shao, Jiapan Wang, Mingxiu Zhang, Chunlei Duan, Zhen Chen, Wenjie Liao and Xueqi HeBackgroundChronic high-fat diets (HFDs) lead to an imbalance of calcium homeostasis in cardiomyocytes, which contributes to the development of myocardial ischemia-reperfusion injury, dilated cardiomyopathy, and other cardiovascular diseases. Aloe-emodin (AE) is an anthraquinone component isolated from aloe, rhubarb, and cassia seed, having cardiovascular protective, hepatoprotective, anti-inflammatory, and other pharmacological effects.
ObjectiveThis study aimed to explore the specific role of AE in obesity/hyperlipidemia-induced myocardial intracellular calcium homeostasis imbalance.
MethodsWistar rats (male, 220 ± 20 g) were fed HFD for four weeks and AE (100 mg/kg) was administrated for six weeks after confirmation of the HFD model. Serum lipids, reactive oxygen species levels, malondialdehyde levels, and superoxide dismutase levels were measured by commercial biochemical kits. Electrocardiograms of rats were recorded with the BL-420F biological function experimental system. Calcium transients and resting intracellular Ca2+ concentrations were determined by the Langendorff-perfused heart model. Protein levels of Ca2+/calmodulin-dependent protein kinase II (CaMKII), protein arginine methyltransferase 1 (PRMT1), and cardiac Ca2+ handling proteins were evaluated by western blot analysis.
ResultsHFD-induced hearts exhibited a reduced amplitude of Ca2+ transients and increased resting levels of [Ca2+] in the heart; AE treatment significantly improved these parameters. Furthermore, the HFD-induced heart showed downregulation of PRMT1, upregulation of CaMKII, and abnormalities in the levels of Ca2+ handling proteins. All these deleterious changes were significantly suppressed by the AE treatment. Moreover, AE treatment prevented palmitic acid (PA)-induced calcium overload in H9C2 cells; this effect was reduced by the application of an inhibitor of PRMT1.
ConclusionTaken together, this study demonstrates that AE could alleviate HFD/PA-induced myocardial intracellular calcium homeostasis imbalance via the PRMT1/CaMKII signaling pathway.
-
-
-
Doxazosin Attenuates Development of Testosterone Propionate-induced Prostate Growth by regulating TGF-β/Smad Signaling Pathway, Prostate-specific Antigen Expression and Reversing Epithelial-Mesenchymal Transition in Mice and Stroma Cells
Authors: YiDan Li, BingHua Tu, ZiTong Wang, ZiChen Shao, ChenHao Fu, JianQiang Hua, ZiWen Zhang, Peng Zhang, Hui Sun, ChenYan Mao and Chi-Ming LiuBackgroundFinasteride and doxazosin are used for the treatment of benign prostatic hyperplasia (BPH) and lower urinary tract symptoms (LUTS). Epithelial–mesenchymal transition (EMT) and TGF-β/Smad signaling pathway play an important role in BPH, little is known about the growth inhibition and anti-fibrosis effects of doxazosin on the regulation of EMT and morphology in the prostate.
ObjectivesThe present study examined the effects of doxazosin on testosterone propionate (TP)-induced prostate growth in vivo and in vitro and its impact on the EMT and TGF-β/Smad signaling pathway.
MethodsMice were treated with TP. Doxazosin (5 or 10 mg/kg) and finasteride (10 mg/kg) were administered orally for 28 days in TP-induced mice. The prostate index (prostate/body weight ratio), morphological characteristics and the protein expression of the prostate were examined. We further examined the effects of doxazosin and finasteride on the EMT and TGF-β/Smad signaling pathway in mice and in human prostate stroma cell (WPMY-1). The protein expressions of TGF-β1, TGFBR2, p-Smad2/3, N-cadherin, vimentin, fibronectin and α-SMA, E-cadherin and prostate specific antigen (PSA) were determined after treatment by western blot.
ResultsThe prostate wet weight, prostate index decreased after treatment. Doxazosin (5 or 10 mg/kg), finasteride (10 mg/kg) or a combination treatment (doxazosin 10 mg/kg + finasteride 10 mg/kg) were shown to reverse the pathological and morphological characteristics of the prostate. Doxazosin and finasteride inhibited TP-induced prostate growth, EMT, and the TGF-β/Smad signaling pathway by downregulating the expression of TGF-β1, TGFBR2, p-Smad2/3, N-cadherin, vimentin, fibronectin and α-SMA, whereas expression of E-cadherin was increased after treatment with either doxazosin or finasteride. Doxazosin (1-50 μM) inhibited normal human prostate stroma cell growth (WPMY-1) after 48 h with or without testosterone treatment. Doxazosin also regulated the EMT and proteins related to the TGF-β/Smad signaling pathway in WPMY-1 cells after 24 h. Additionally, doxazosin decreased protein expression of the PSA both in vivo and in vitro.
ConclusionThis study demonstrated that doxazosin inhibits prostate growth by regulating the EMT and TGF-β/Smad signaling pathways in the prostate. This finding suggests that doxazosin has potential as a new signaling pathway for the treatment of BPH.
-
-
-
Empagliflozin Mitigates High Glucose-disrupted Mitochondrial Respiratory Function in H9c2 Cardiomyoblasts: A Comparative Study with NHE-1 and ROCK Inhibition
Authors: Cheng-I Cheng, Ming-Huei Chou, I-Ling Shih, Po-Han Chen and Ying-Hsien KaoBackgroundHyperglycemia in patients with diabetes mellitus (DM) increases the risk of developing cardiomyopathy and heart failure. Elevation of sodium/proton exchanger-1 (NHE-1) expression and activity in cardiomyocytes leads to greater sensitivity to neurohormonal stimulation and cardiomyopathy, whereas inhibition of sodium-glucose cotransporter 2 (SGLT2) clinically benefits DM population in reducing heart failure risk.
AimsThis study characterized the expression profiles of NHE-1 and SGLT2 in H9c2 cardiomyoblasts under high glucose (HG) exposure and examined the effects of empagliflozin (EMPA), an SGLT2 inhibitor, on the HG-induced cardiomyoblasts deterioration, in comparison with NHE-1 specific inhibitor cariporide and Rho/ROCK inhibitor hydroxy fasudil.
MethodsWestern blotting and immunofluorescent staining were used to monitor protein expression and subcellular location, respectively. Reactive oxygen species (ROS) production and mitochondrial membrane potential were measured by flow cytometry. Kinetic mitochondrial oxygen consumption rate and respiratory function were monitored by a real-time cell metabolic analyzer.
ResultsHG treatment upregulated SGLT2 and NHE-1 expression and RhoA/ROCK activity in H9c2 cardiomyoblasts. The HG-upregulated NHE-1 is localized in actin-rich cortical cytoplasm, implicating its involvement in cell shape and adhesion alterations. Treatment with NHE-1 and ROCK inhibitors, but not EMPA, significantly attenuated the HG-induced ROS overproduction and mitochondrial membrane potential elevation. However, EMPA treatment restored the HG-suppressed mitochondrial maximal respiration, spare respiratory capacity, and non-mitochondrial oxygen consumption rate.
ConclusionIn comparison, Rho/ROCK and NHE-1 inhibitions effectively prevent ROS overproduction, while SGLT2 inhibition rescues the deteriorated mitochondrial respiratory function under diabetogenic conditions. Blockade of SGLT2, NHE-1, or Rho/ROCK activity is useful for the prevention of diabetic cardiomyopathy.
-
-
-
Neuroprotective Potential of Tanshinone-IIA in Mitigating Propionic Acid-induced Experimental Autism-like Behavioral and Neurochemical Alterations: Insights into c-JNK and p38MAPK Pathways
Authors: Kajal Sherawat, Sidharth Mehan, Zuber Khan, Aarti Tiwari, Ghanshyam Das Gupta and Acharan S. NarulaIntroductionAutism is a neurodevelopmental disorder associated with mitochondrial dysfunction, apoptosis, and neuroinflammation. These factors can lead to the overactivation of c-JNK and p38MAPK.
MethodsIn rats, stereotactic intracerebroventricular (ICV) injection of propionic acid (PPA) results in autistic-like characteristics such as poor social interaction, repetitive behaviours, and restricted communication. Research has demonstrated the beneficial effects of phytochemicals derived from plants in treating neurological disorders. Tanshinone-IIA (Tan-IIA) is a chemical found in the root of Salvia miltiorrhiza. It has neuroprotective potential by inhibiting c-JNK and p38MAPK against behavioral and neurochemical alterations in PPA-induced autistic rats. We observe behavioral changes, alterations in apoptotic markers, myelin basic protein (MBP), neurofilament-Light (NEFL), inflammatory cytokines, brain-derived neurotrophic factor (BDNF), and neurotransmitter imbalances using different brain regions (cerebral cortex, hippocampus, striatum), as well as biological samples, cerebrospinal fluid (CSF), and blood plasma.
ResultsPersistent administration of 30 mg/kg and 60 mg/kg Tan-IIA via intraperitoneal injection reduced these alterations dose-dependently. Anisomycin (3 mg/kg.,i.p.) as a SAPK (c-JNK and p38MAPK) agonist was administered to assess the neuroprotective effect of Tan-IIA in autistic rats. Tan-IIA's molecular interactions with c-JNK and p38MAPK were confirmed using silico analysis. We also observed gross morphological, histopathological, and Luxol Fast Blue (LFB) myelin straining changes in whole and coronal brain sections.
ConclusionThus, Tan-IIA has a neuroprotective potential by inhibiting the c-JNK and p38MAPK signalling pathways, which reduces the behavioral and neurochemical abnormalities induced by PPA in adult Wistar rats, indicating that current results should be studied further for the diagnosis and treatment of autism.
-
-
-
Sirt1 Regulates Phenotypic Transformation of Diabetic Cardiac Fibroblasts through Akt/Α-SMA Pathway
Authors: Xiaomei Li, Shimeng Huang, Yuanbo Gao, Ying Wang, Siyu Zhao, Bing Lu and Aibin TaoAims:Cardiac fibrosis causes most pathological alterations of cardiomyopathy in diabetes and heart failure patients. The activation and transformation of cardiac fibroblasts (CFs) are the main pathological mechanisms of cardiac fibrosis. It has been established that Sirtuin1 (Sirt1) plays a protective role in the pathogenesis of cardiovascular disorders. This study aimed to ascertain the Sirt1 effect on the phenotypic transformation of CFs in diabetes and its possible mechanisms.
Methods:Type 1 diabetes was induced in 6-week-old male mice by subcutaneously injecting 50 mg/kg streptozotocin (STZ, i.p.). Western blotting, collagen staining, and echocardiography were performed to detect protein expression and assess cardiac fibrosis and function in vivo. We used high glucose (HG) to culture CFs prior to protein expression measurement in vitro.
Results:Upregulation of Sirt1 expression effectively alleviated the degree of cardiac fibrosis by improving cardiac function in diabetic mice. In vitro experiments revealed that HG decreased the protein expression levels of Sirt1, but increased those of type I collagen and alpha-smooth muscle actin (α-SMA), as well as the transdifferentiation of fibroblasts into myofibroblasts. Further studies confirmed that downregulation of Sirt1 expression in the HG environment reduced the protein kinase-B (Akt) phosphorylation, thereby promoting the transdifferentiation of CFs into myofibroblasts coupled with the deterioration of cardiac function.
Conclusion:Diabetes mellitus leads to downregulation of Sirt1 protein expression in CFs and decreased Akt phosphorylation, which promotes the transdifferentiation of CFs into myofibroblasts, the pathological process of cardiac fibrosis, and mediates the incidence and development of diabetic cardiomyopathy.
-
-
-
Exploring the Immune-related Molecular Mechanisms Underlying the Comorbidity of Temporal Lobe Epilepsy and Major Depressive Disorder through Integrated Data Set Analysis
Authors: Shi Yan, Zhibin Han, Tianyu Wang, Aowen Wang, Feng Liu, Shengkun Yu, Lin Xu, Hong Shen, Li Liu, Zhiguo Lin and Meng NaBackgroundTemporal lobe epilepsy (TLE) and major depressive disorder (MDD) are prevalent and complex neurological disorders that affect individuals globally. Clinical and epidemiological studies indicate a significant comorbidity between TLE and MDD; however, the shared molecular mechanisms underlying this relationship remain unclear. This study aims to explore the common key genes associated with TLE and MDD through a systematic analysis of gene expression profiles, elucidate their underlying molecular pathological mechanisms, and evaluate the potential applications of these genes in diagnostic and therapeutic contexts.
MethodsBrain tissue gene expression data for TLE and MDD were obtained from the GEO database. Differentially expressed genes (DEGs), weighted gene co-expression network analysis (WGCNA), functional enrichment, and protein-protein interaction (PPI) network construction were performed to identify shared gene modules. LASSO and random forest (RF) machine learning models were used to select diagnostic candidate genes, validated through ROC curve analysis. Immune infiltration analysis explored the immune involvement of key genes, while single-cell sequencing confirmed gene expression across cell types. Potential therapeutic drugs were identified using a drug database.
ResultsA total of 372 DEGs were identified as either up- or down-regulated between TLE and MDD, with WGCNA revealing nine shared gene modules. Seven hub genes, including HTR7 and CDHR2, demonstrated strong ROC performance. Immune infiltration analysis revealed changes in immune cell populations linked to key genes, confirmed by single-cell sequencing. Upadacitinib was identified as a potential therapeutic drug targeting these genes.
ConclusionThis study identified shared gene expression profiles between TLE and MDD, emphasizing immune pathway-related molecular mechanisms. Immune infiltration analysis and single-cell sequencing underscored the significance of immune regulation in their comorbidity, while drug prediction highlights candidates for precision medicine, establishing a foundation for future research and therapeutic strategies.
-
-
-
Evaluating the Anti-inflammatory Efficacy of a Novel Bipyrazole Derivative in Alleviating Symptoms of Experimental Colitis
AimsThis aims to assess the efficacy of 2', 3, 3, 5'-Tetramethyl-4'-nitro-2'H-1, 3'-bipyrazole (TMNB), a novel compound, in colitis treatment.
BackgroundInflammatory bowel disease (IBD) is a chronic inflammatory condition of the gastrointestinal tract with limited effective treatments available. The exploration of new therapeutic agents is critical for advancing treatment options.
ObjectiveTo assess the effect of TMNB in alleviating symptoms of experimental colitis in mice and to compare its effectiveness with that of sulfasalazine, a standard treatment.
MethodsExperimental colitis was induced in mice, which were subsequently treated with TMNB at dosages of 50, 100, and 150 mg/kg. The outcomes were evaluated based on colitis symptoms, Colon damage, Disease Activity Index (DAI) scores, and inflammation markers, including nitric oxide (NO) and myeloperoxidase (MPO) levels. Additional assessments included spleen cell proliferation, pro-inflammatory cytokine production (TNF-α, IL-6, IL-1β), and inflammatory genes expression (IL-1β, IL-6, TNF-α, COX2, and iNOS).
ResultsTMNB treatment significantly alleviated colitis symptoms (100 and 150 mg/kg). These higher doses notably reduced colonic damage, inflammation, hyperemia, edema, and ulceration (p<0.01). The treatment also effectively decreased Disease Activity Index (DAI) scores, demonstrating a marked improvement in clinical signs of colitis (100 mg/kg, p<0.05; 150 mg/kg, p<0.01). Additionally, TMNB substantially lowered myeloperoxidase (MPO) levels, indicating reduced neutrophil activity and inflammation (100 mg/kg, p<0.05; 150 mg/kg, p<0.01), and nitric oxide (NO) levels, suggesting diminished oxidative stress (100 mg/kg, p<0.05; 150 mg/kg, p<0.01). The treatment also led to a significant reduction in spleen cell proliferation (100 mg/kg, p<0.05; 150 mg/kg, p<0.01) and pro-inflammatory cytokine levels, with TNF-α, IL-1β, and IL-6 all showing decreases comparable to those observed with sulfasalazine (p<0.01). Moreover, TMNB effectively downregulated IL-1β, IL-6, TNF-α, COX2, and iNOS (p<0.01), affirming its broad-spectrum anti-inflammatory and immunomodulatory effects.
ConclusionTMNB exhibits potent anti-inflammatory and immunomodulatory activities, suggesting that TMNB could be a new therapeutic agent for managing inflammatory bowel disease. This study supports the need for further clinical trials to explore TMNB's efficacy and safety in human subjects.
-
-
-
Aloperine Alleviates Atherosclerosis by Inhibiting NLRP3 Inflammasome Activation in Macrophages and ApoE-/- Mice
Authors: Zengxu Wang, Yuchuan Wang, Faisal Raza, Hajra Zafar, Chunling Guo, Weihua Sui, Yongchao Yang, Ran Li, Yifen Fang and Bao LiBackground and AimsAtherosclerosis is a chronic cardiovascular disease which is regarded as one of the most common causes of death in the elderly. Recent evidence has shown that atherosclerotic patients can benefit by targeting interleukin-1 beta (IL-1β). Aloperine (ALO) is an alkaloid which is mainly isolated from Sophora alopecuroides L. and has been recognized as an anti-inflammatory disease. Herein, the effect of ALO on atherosclerosis was investigated.
MethodsApoE-/- mice fed with western diet received ALO once daily. Plaques in the aortas were evaluated using oil red O and hematoxylin & eosin (H&E) staining. Inflammation, lipids and kinases phosphorylation levels were evaluated using ELISA assay and western blot. Pyroptosis was examined by THP-1 cells treated with oxidized low-density lipoprotein (ox-LDL).
ResultsPlaque development in aortic sinus and en face aortas were reduced after ALO treatment in ApoE-/- miceTreatment with ALO ameliorated inflammation and profile of blood lipid. Western blot assay showed that ALO treatment substantially inhibited phosphorylation of p38 and Jun N-terminal kinase (JNK) in aorta of ApoE-/- mice. Meanwhile, ALO significantly inhibited levels of IL-1β and IL-18 in serum and cleaved caspase-1 and IL-1β expression in aorta of ApoE-/- mice. Interestingly, ALO mildly increased pro-caspase-1 expression in ApoE-/- aorta in comparison with saline group. In a dose dependent fashion, ALO treatment markedly inhibited ox-LDL-induced IL-1β and IL-18 levels in THP-1 cells and reduced cleaved caspase-1 and IL-1β expression and caspase-1 activity, while ALO had little effect on nod-like receptor protein containing pyrin-3 (NLRP3), apoptosis associated speck-like protein containing a caspase-1 recruitment domain (ASC).
ConclusionIt is of great practical significance to find the natural product to regulate macrophage pyroptosis, which are key drivers to accelerate the progression of atherosclerosis. ALO could inhibit NLRP3 inflammasome activation in macrophages during atherogenesis, which may serve as a potential candidate for the treatment of atherosclerosis.
-
-
-
Targeting Airway Remodeling in Asthma: Anti-EMT Effects of Xuanfei Pingchuan Prescription via TGFβ1/Smad Pathway Modulation
Authors: Lu Zou, Xiao Yu, Ling Tang, Chunrong Guo, Zhumei Sun, Shaobin Li, Yanqi Cheng, Fufeng Li and Hong FangBackgroundAsthma is a chronic airway disease characterized by Airway Remodeling (AR) and persistent inflammation, with Epithelial-Mesenchymal Transition (EMT) playing a crucial role in fibrosis and smooth muscle proliferation. The Transforming Growth Factor-Beta1 (TGFβ1)/Smad pathway is a key driver of EMT in asthma. Current treatments do not effectively prevent AR progression. Traditional Chinese Medicine, particularly the Xuanfei Pingchuan (XFPC) prescription, has shown potential in managing asthma, but its role in EMT regulation remains unclear.
MethodsThis study explored the role of “phlegm and stasis” in airway remodeling (AR) in asthma from the perspective of EMT and investigated the effects and underlying mechanisms of XFPC prescription on EMT in AR. In vitro, human bronchial epithelial (16HBE) cells were induced into EMT with TGFβ1 and treated with XFPC drug-containing serum, with EMT marker expression analyzed via RT-qPCR and Western blot. In vivo, an ovalbumin (OVA)-induced asthma model in Sprague Dawley rats was used to evaluate the effects of different XFPC doses through histopathology, immunofluorescence, and molecular analyses. Additionally, Smurf2 cDNA transfection was conducted to assess the role of Smurf2 in EMT regulation.
ResultsThe results confirmed that XFPC prescription suppressed the pathway of transforming-growth factor-beta1 (TGFβ1)-Smad by reducing Smad ubiquitination regulator 2 (Smurf2), Smad2, Smad3, TGFβ1 receptor (TβRI), N-cadherin, α-SMA, and Vimentin in terms of expressions at messenger ribonucleic acid (mRNA) and protein levels. However, XFPC prescription up-regulated expressions of SnoN and E-cadherin at protein and mRNA levels to inhibit EMT. The result also confirmed that XFPC prescription decreased the ubiquitination of Smad7.
ConclusionXFPC prescription could suppress AR in TGFβ1 induced 16HBE cells and OVA-sensitized animal models through TGFβ1/Smad pathway.
-
-
-
Effect of Chrysin and Chrysin Nanocrystals on Chlorpyrifos-Induced Dysfunction of the Hypothalamic-Pituitary-Testicular Axis in Rats
Authors: Tahereh Farkhondeh, Babak Roshanravan, Fariborz Samini and Saeed SamarghandianAims and BackgroundThe escalating global concerns regarding reproductive health underscore the urgency of investigating the impact of environmental pollutants on fertility. This study aims to focus on Chlorpyrifos (CPF), a widely-used organophosphate insecticide, and explores its adverse influence on the hypothalamic-pituitary-testicular axis in Wistar male rats. This study explores the potential protective effects of chrysin nanocrystal (CHN), a flavonoid with known antioxidant and anti-inflammatory properties, against CPF-induced impairments in male Wistar rats.
MethodsChrysin nanocrystals were prepared using a solvent precipitation method. Six sets of male Wistar rats were subjected to 30 days of treatment, comprising a control group, a group treated solely with CPF, groups treated with CHN at doses of 5 mg/kg and 10 mg/kg, and groups co-treated with CPF and CHN. Serum levels of reproductive hormones, enzyme biomarkers of testicular function, oxidative stress, and inflammatory biomarkers were assessed. Additionally, histological examinations were conducted on the hypothalamus, testes, and epididymis.
ResultsCHN exhibited antioxidant and anti-inflammatory properties, effectively counteracting CPF-induced reductions in Luteinizing Hormone (LH), serum testosterone, Follicle-Stimulating Hormone (FSH), and testicular enzyme biomarkers. Moreover, CHN enhanced antioxidant defenses, as evidenced by decreased malondialdehyde (MDA) and increased glutathione (GSH) levels in the hypothalamus, and testes, epididymis. Inflammatory markers, including nitric oxide (NO), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α), were significantly reduced in CHN co-treated groups compared to the CPF-only group. Histopathological analyses confirmed the protective effects of CHN on tissue integrity.
ConclusionChrysin nanocrystal demonstrated promising potential in mitigating CPF-induced reproductive deficits in male rats through its anti-inflammatory and antioxidant properties. This study provides valuable insights into therapeutic interventions against environmental toxin-induced reproductive toxicity, emphasizing the potential of chrysin nanocrystals as a protective agent in the context of CPF exposure.
-
-
-
Fenofibrate Inhibits LPS and Zymosan-induced Inflammatory Responses through Sonic Hedgehog in IMG Cells
BackgroundNeuroinflammatory responses are strongly associated with the pathogenesis of progressive neurodegenerative conditions and mood disorders. Modulating microglial activation is a potential strategy for developing protective treatments for central nervous system (CNS)-related diseases. Fibrates, widely used in clinical practice as cholesterol-lowering medications, exhibit numerous biological activities, such as anticancer and anti-inflammatory activities. However, the mechanisms underlying their beneficial effects on the CNS remain unclear.
ObjectiveThis study investigated the mechanisms through which fibrates influence inflammatory and anti-inflammatory homeostasis in microglial cells.
MethodsCell viability assay, nitric oxide measurement, Western blot analysis,, real-time PCR, and cell transfection were used in this study.
ResultsFenofibrate, a well-known fibrate, reduced the production of nitric oxide and interleukin-6 and the expression of inducible nitric oxide synthase and cyclooxygenase-2 in microglial cells. It also inhibited the expression of various proinflammatory cytokines and chemokines, including tumor necrosis factor-ɑ and interleukin-1β, and chemokine (C-C) motif ligand 2 and chemokine (C-X-C motif) ligand 10. Notably, treatment of fenofibrate dramatically activated the sonic hedgehog (SHH) and sirtuin-1 (SIRT1). Furthermore, the inhibition of SHH or SIRT1 mitigated the anti-inflammatory effects of fenofibrate in IMG microglial cells.
ConclusionOur findings suggest that fenofibrate may inhibit inflammatory responses by activating SIRT1 and SHH in IMG microglial cells. Our study suggests that fenofibrate or targeting SHH molecule is a promising therapeutic strategy for neuroinflammation-associated conditions. Further research with additional cell lines and in vivo models is needed to understand its therapeutic potential.
-
-
-
Mechanism, Potential, and Concerns of Immunotherapy for Hepatocellular Carcinoma and Liver Transplantation
In the last decade, immunotherapy (IT) has revolutionized oncology and found indications in many cancers, including hepatocellular carcinoma (HCC). In HCC, IT has become the leading systemic therapy for advanced diseases. At the same time, it carries the promise of being a valuable therapy in other settings, including intermediate-stage and unresectable disease, as a downstaging or conversion modality. More controversial is the role of IT in relationship to liver transplantation (LT): on one side, it could be a helpful tool to control or downstage HCC before LT or to treat tumor recurrence after LT, while on the other, it carries the risk of graft rejection and graft loss. This review aims to cover these concerns in depth and unravel the current literature.
-
-
-
Recent Advances in the Glycolytic Processes Linked to Tumor Metastasis
Authors: Luo Qiong, Xiao Shuyao, Xu Shan, Fu Qian, Tan Jiaying, Xiao Yao and Ling HuiThe main cause of cancer-related fatalities is cancer metastasis to other body parts, and increased glycolysis is crucial for cancer cells to maintain their elevated levels of growth and energy requirements, ultimately facilitating the invasion and spread of tumors. The Warburg effect plays a significant role in the advancement of cancer, and focusing on the suppression of aerobic glycolysis could offer a promising strategy for anti-cancer treatment. Various glycolysis processes are associated with tumor metastasis, primarily involving non-coding RNA (ncRNAs), signaling pathways, transcription factors, and more. Various categories of noncoding RNAs, including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), have shown promise in influencing glucose metabolism associated with the spread of tumors. Additionally, circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs) predominantly act as competitive endogenous RNAs (ceRNAs) by sequestering microRNAs, thereby modulating the expression of target genes and exerting significant influence on the metabolic processes of cancerous cells. Furthermore, the process of tumor metastasis through glycolysis also encompasses various signaling pathways (such as PI3K/AKT, HIF, Wnt/β-Catenin, and ERK, among others) and transcription factors. This article delineates the primary mechanisms through which non-coding RNAs, signaling pathways, and transcription factors contribute to glycolysis in tumor metastasis. It also investigates the potential use of these factors as prognostic markers and targets for cancer treatment. The manuscript also explores the innovative applications of specific traditional Chinese medicine and clinical Western medications in inhibiting tumor spread through glycolysis mechanisms, offering potential as new candidates for anti-cancer drugs.
-
-
-
The Role of Dapagliflozin in the Modulation of Hypothermia and Renal Injury Caused by Septic Shock in Euglycemic and Hyperglycemic Rat Models
BackgroundRecent research has validated the efficacy of sodium-glucose cotransporter-2 inhibitors (SGLT2i) in reducing glucose levels and exerting a nephroprotective role.
ObjectiveThis study aimed to examine the impact of dapagliflozin in preventing sepsis-induced acute kidney injury (AKI) and related consequences. The study used both normal and diabetic rat models to investigate whether the effectiveness of dapagliflozin is influenced by glycemia levels.
MethodsNormal and diabetic Wistar albino rats were treated with dapagliflozin for two weeks and then received a single dose of lipopolysaccharide (LPS). After sepsis induction, skin and deep body temperatures were recorded every two hours. Blood and kidneys were collected for analysis using histological examination and biochemical assays.
ResultsDapagliflozin attenuated the consequences of sepsis through mitigation of LPS-induced hypothermia and AKI in the normal and diabetic septic groups. Dapagliflozin regulated the serum levels of AKI markers, including creatinine and blood urea nitrogen, as well as ion levels. Dapagliflozin attenuated LPS-induced AKI through modulation of renal inflammation and oxidative stress, which showed well-abundant glomeruli. These results indicated the protective effect of dapagliflozin against LPS-induced hypothermia and AKI, which was likely unrelated to its glucose-lowering properties, as evidenced in the non-diabetic septic group.
ConclusionThe outcomes suggest that dapagliflozin has a potential impact in preventing sepsis-induced hypothermia and AKI via modulation of inflammation and oxidative stress, irrespective of glycemic levels.
-
-
-
Repair Effect of siRNA Double Silencing of the Novel Mechanically Sensitive Ion Channels Piezo1 and TRPV4 on an Osteoarthritis Rat Model
Authors: Zhuqing Jia, Jibin Wang, Xiaofei LI, Qining Yang and Jianguo HanObjectiveThis study aimed to explore the repair effect of siRNA-mediated double silencing of the mechanically sensitive ion channels Piezo1 and TRPV4 proteins on a rat model of osteoarthritis.
MethodsPiezo1 and TRPV4 interference plasmids were constructed using siRNA technology. Sprague Dawley (SD) rats were divided into four groups: the model group, siRNA-Piezo1, siRNA-TRPV4, and double gene silencing groups. Improved Mankin and OARSI scores were calculated based on H&E staining and Safranin O-fast green staining. Immunohistochemical staining was used to determine expression levels of aggrecan and Collagen II proteins. Piezo1, TRPV4, Aggrecan, and Collagen II mRNA expression in knee joint cartilage tissue were assessed using qRT-PCR.
ResultsLentivirus-mediated siRNA plasmids (siRNA-Piezo1, siRNA-TRPV4, and double-gene siRNA silencing plasmids) achieved > 90% transfection efficiency in chondrocytes. RT-PCR results indicated that double-gene siRNA silencing plasmids silenced Piezo1 and TRPV4 mRNA expression (P < 0.05). Modified Mankin and OARSI scores revealed that the repair effect in the double gene silencing group was significantly better than that of the siRNA-Piezo1 and siRNA-TRPV4 groups (P < 0.05). Relative expression of aggrecan and collagen II mRNA in the double gene-silenced group was significantly higher than in the siRNA-Piezo1 and siRNA-TRPV4 groups (P < 0.05).
ConclusionDouble silencing Piezo1 and TRPV4 plays a key role in cartilage repair in an osteoarthritic rat model by promoting the expression of Aggrecan and Collagen II.
-
-
-
Corrigendum to: An Essential Role of c-Fos in Notch1-mediated Promotion of Proliferation of KSHV-Infected SH-SY5Y Cells
Authors: Huiling Xu, Jinghong Huang, Lixia Yao, Wenyi Gu, Aynisahan Ruzi, Yufei Ding, Ying Li, Weihua Liang, Jinfang Jiang, Zemin Pan, Dongdong Cao, Naiming Zhou, Dongmei Li and Jinli Zhang
-
-
-
Exploring the Pharmacological Mechanisms of P-hydroxylcinnamaldehyde for Treating Gastric Cancer: A Pharmacological Perspective with Experimental Confirmation
Authors: Sumaya Fatima, Yanru Song, Zhe Zhang, Yuhui Fu, Ruinian Zhao, Khansa Malik and Lianmei ZhaoBackgroundMomordica cochinchinensis is a dried and mature seed of Cucurbitaceae plants, which has the effect of dispersing nodules, detumescence, attacking poison, and treating sores, and is used in the treatment of tumors in the clinic. P-hydroxylcinnamaldehyde (CMSP) is an ethanol extract of cochinchina momordica seed (CMS). Our previous studies have found that CMSP is an effective anti-tumor component with good anti-tumor effects on melanoma and esophageal tumors. However, the inhibitory effect of CMSP on gastric cancer (GC) and its potential mechanism remain to be further elucidated.
MethodsFirst, we utilized network pharmacology to predict potential targets and mechanisms of action for the treatment of GC. Subsequently, a series of biological function experiments were conducted to assess the effects of CMSP on the proliferation and apoptosis of GC cells in vitro. To elucidate the molecular mechanism of CMSP, bioinformatics and high-efficiency liquid chromatography tandem mass spectrometry (HPLC-MS/MS) were employed for analysis. Additionally, a resistant cell line of the chemotherapy drug paclitaxel for GC was established, and the impact of 10μg/mL CMSP on the sensitivity of GC-resistant cells was examined.
ResultsThe network pharmacology results demonstrated that the active components of CMS exert an anti-GC effect through multi-target and multi-pathway mechanisms. The main pathways involved included the PI3K/Akt pathway, p53 signaling pathway, multi-species apoptosis pathway, as well as ADRB2 and CAV1 genes. Cell experiments revealed that CMSP can effectively inhibit the proliferation and induce apoptosis of GC cells in vitro. However, it did not show any sensitizing effect on paclitaxel-resistant cells. Importantly, CMSP exhibited no toxic or side effects on normal gastric epithelial cells. Furthermore, differential protein expression patterns following CMSP treatment were elucidated using HPLC-MS/MS and western blot analysis, highlighting its role in regulating apoptosis signaling pathways.
ConclusionOur study presents novel evidence regarding pertinent potential target genes and signaling pathways through which CMSP mediates its anti-GC effects, with a particular emphasis on its role in modulating apoptotic signaling pathways. Collectively, these findings underscore the promising candidacy of CMSP as a therapeutic agent for GC that merits further investigation in clinical contexts.
-
-
-
Mutations in Rv0678, Rv2535c, and Rv1979c Confer Resistance to Bedaquiline in Clinical Isolates of Mycobacterium Tuberculosis
Authors: Khaoula Balgouthi, Manaf AlMatar, Hamza Saghrouchni, Osman Albarri and Işil VarIntroductionReduced bedaquiline (BDQ) sensitivity to antimycobacterial drugs has been linked to mutations in the Rv0678, pepQ, and Rv1979c genes of Mycobacterium tuberculosis (MTB). Resistance-causing mutations in MTB strains under treatment may have an impact on novel BDQ-based medication regimens intended to reduce treatment time. Due to this, we investigated the genetic basis of BDQ resistance in Turkish TB patients with MTB clinical isolates. Furthermore, mutations in the genes linked to efflux pumps were examined as a backup resistance mechanism.
MethodsWe scrutinized 100 MTB clinical isolates from TB patients using convenience sampling. Eighty MDR and twenty pan-drug susceptible MTB strains were among these isolates. Sequencing was performed on all strains, and genomic analyses were performed to find mutations in BDQ resistance-associated genes, including Rv0678 and pepQ(Rv2535c), which correspond to a putative Xaa-Pro aminopeptidase, and Rv1979c. Of the 74 isolates with PepQ (Rv2535c) mutations, four isolates (2.96%) exhibited MGIT-BDQ susceptibility.
ResultsTwenty-one (19.11%) of the ninety-one isolates carrying mutations, including Rv1979c, were MGIT-BDQ-sensitive. Nonetheless, out of the 39 isolates with Rv0678 mutations, four (2.96%) were sensitive to MGIT-BDQ. It was found that resistance-associated variants (RAVs) in Rv0678, pepQ, and Rv1979c are often linked to BDQ resistance.
ConclusionIn order to include variations in efflux pump genes in genome-based diagnostics for drug-resistant MTB, further evidence about their involvement in resistance is needed.
-
-
-
Short-term Uridine Treatment Alleviates Endoplasmic Reticulum Stress via Regulating Inflammation and Oxidative Stress in Lithium-Pilocarpine Model of Status Epilepticus
Authors: Birnur Aydin, Cansu Koc, Mehmet Cansev and Tulin AlkanBackground:Status Epilepticus (SE) leads to the development of epilepsy with the contribution of endoplasmic reticulum (ER) stress. Uridine, a pyrimidine nucleoside, has been shown to have neuroprotective and antiepileptogenic effects in animal models. This study aimed to determine whether uridine ameliorates ER stress and apoptosis following epileptogenic insult. Secondly, this study aimed to establish the effect of uridine on inflammatory and oxidative stress parameters that contribute to ER stress.
Methods:Status epilepticus was induced using lithium-pilocarpine in adult male Sprague-Dawley rats. Following SE termination, rats were treated with uridine, 4-phenylbutyric acid (4-PBA), or saline twice daily for 48 h. Expressions of hippocampal glucose-regulated protein 78 (GRP78), Inositol-Requiring Protein 1 (IRE1α), Protein kinase RNA-like Endoplasmic Reticulum Kinase (PERK), and C/EBP Homologous Protein (CHOP) were determined by western blotting 48 h after SE. Uridine's effects on apoptosis, inflammation or oxidation were evaluated by analyses of cleaved caspase-3 and poly(ADP-ribose) polymerase 1 (PARP1) protein expressions or pro-inflammatory cytokine levels or levels of oxidative stress markers, respectively.
Results:Expressions of all ER stress-related proteins significantly increased 48 h after SE. Uridine treatment markedly decreased GRP78, IRE1α, and CHOP levels. A decrease in the PERK level was observed following the administration of 4-PBA; however, uridine had no effect. Cleaved caspase-3 and PARP1 levels were increased in the SHAM group, while uridine and 4-PBA treatment effectively decreased their expressions. Treatment with uridine significantly reduced Myeloperoxidase (MPO) and Malondialdehyde (MDA) levels while tending to increase Catalase (CAT) and Glutathione Peroxidase (GPx) levels. Uridine treatment also significantly attenuated levels of TNF-α and IL-1β, the pro-inflammatory cytokines, which increased 48 h post-SE.
Conclusion:Our data indicate that uridine alleviates ER stress after SE. This effect may be attributed to the regulation of inflammation and oxidative stress. Uridine shows promise as a potential preventive agent for epilepsy.
-
-
-
Combined Phloretin and Human Platelet-rich Plasma Effectively Preserved Integrities of Brain Structure and Neurological Function in Rat after Traumatic Brain Damage
Authors: Kun-Chen Lin, Kuan-Hung Chen, Pei-Lin Shao, Han-Tan Chai, Pei-Hsun Sung, John Y. Chiang, Sheung-Fat Ko and Hon-Kan YipBackgroundThis study investigates whether phloretin, a brain-edema inhibitor, can enhance the therapeutic effects of human-derived platelet-rich plasma (hPRP) in reducing brain hemorrhagic volume (BHV) and preserving neurological function in rodents following acute traumatic brain damage (TBD).
MethodsForty rats were divided into five groups: sham-control, TBD, TBD + phloretin (80 mg/kg/dose intraperitoneally at 30 minutes and on days 2/3 post-TBD), TBD + hPRP (80μL by left intra-carotid-artery injection at 3 hours post-TBD), and TBD + phloretin + hPRP. Cerebral tissues were harvested on day 28 post-TBD for analysis.
ResultsBrain MRI on day 28 showed the lowest BHV in the sham-control group and the highest in the TBD group. BHV was significantly lower in the phloretin + hPRP group compared to the phloretin or hPRP alone groups, which had similar BHV. Neurological function followed an inverse pattern to BHV. By day 28, protein levels of upstream (HGMB1, TLR-2, TLR-4, MyD88, Mal, TRAM, TRIF, TRAF6, IKK-α, IKK-ß, p-NF-κB) and downstream (IL-1ß, TNF-α, iNOS) inflammation signalings, apoptosis (caspase3, PARP), and fibrosis (Smad3, TGF-ß) biomarkers, as well as flow cytometric assessment of inflammatory cells (CD11b/c+, Ly6G+, PMO+) and early (AN-V+/PI-) and late (AN-V+/PI+) mononuclear-cell apoptosis, displayed patterns similar to BHV. The number of inflammatory (CD68+, MMP9+) and brain-swelling/myelin-damaged (AQP4+, GFAP+) mediators also followed this pattern, while neuronal-myelin (Doublecortin+, NeuN, nestin) mediators showed an inverse relationship with BHV (all p<0.0001).
ConclusionCombined phloretin and hPRP therapy is superior to either treatment alone in protecting the brain against TBD, primarily by suppressing inflammatory signaling and brain-swelling biomarkers.
-
-
-
Positive Regulation of Osteoblast Proliferation and Differentiation in MC3T3-E1 Cells by 7,3′,4′-Trimethoxyflavone
Authors: Sharmeen Fayyaz, Atia tul-Wahab, Bushra Taj and M. Iqbal ChoudharyObjectivesIncreasing ratio of bone fragility, and susceptibility to fractures constitutes a major health problem worldwide. Therefore, we aimed to identify new compounds with a potential to increase proliferation and differentiation of bone forming osteoblasts.
MethodsCellular and molecular assays, such as ALP activity, alizarin staining, and flow cytometry were employed to study effect of 7,3′,4′-Trimethoxyflavone (TMF) on osteogenesis. Moreover, gene expression analysis of certain important genes and transcriptional factors was also performed.
ResultsOur findings report for the first time that natural product TMF is capable of enhancing proliferation, and differentiation in osteoblast cells. Results from flow cytometry analysis also indicated that TMF increases the number of cells in S-phase. Furthermore, treatment with TMF altered the expression of osteogenic genes, OCN and Axin-2, indicating possible activation of Wnt signaling pathway.
ConclusionTaken together, this study identified that 7,3′,4′-Trimethoxyflavone has the potential to enhance osteoblast proliferation and differentiation, possibly through the activation of Wnt/β-catenin pathway. Thus, TMF promotes osteogenesis and thus can contribute in the prevention of bone fragility, and related disorders.
-
-
-
RBM3 Inhibits the Cell Cycle of Cutaneous Squamous Cell Carcinoma through the PI3K/AKT Signaling Pathway
Authors: Yan Huang, Weichao Sun, Danli Zhu, Li Liu, Jianguo Feng and Qian YiBackgroundRBM3 is a key RNA-binding protein that has been implicated in various cellular processes, including cell proliferation and cell cycle regulation. However, its role in cutaneous squamous cell carcinoma (cSCC) remains poorly understood.
AimsWe aimed to investigate the expression levels of RNA-binding motif protein 3 (RBM3) in patients with cSCC and evaluate its effect on cell ability in cSCC and its underlying regulatory mechanisms.
MethodsThe expression of RBM3 in cSCC tissues and A431 cells was determined via immunohistochemistry and western blotting. Plenti-CMV-RBM3-Puro was used to overexpress RBM3. The effect of RBM3 on the proliferation ability of cSCC cells was evaluated using MTT and colony formation assay. Cell apoptosis and cell cycle were determined using flow cytometry, while the protein expressions of BAX, NF-κB, BCL2, CASPASE 3, CYCLIN B, CYCLIN E, CDK1, phosphorylated (P)-CDK1, CDK2, P-CDK2, ERK, P-ERK, P-AMPK, AKT, P-AKT, MDM2, and P53 were assessed using western blotting.
ResultsRBM3 expression was significantly downregulated in cSCC tissues and A431 cells. RBM3 overexpression significantly inhibited the cell proliferation and colony formation ability of A431. Notably, RNA-seq results showed that the differentially expressed genes associated with RBM3 were primarily involved in the regulation of the cell cycle, oocyte meiosis, and P53 signaling pathway, as well as the modulation of the MAPK, AMPK, Hippo, mTOR, PI3K/AKT, Wnt, FoxO, and NF-κB signaling pathways. Additionally, our findings demonstrated that overexpression of RBM3 inhibited cell proliferation and induced cell cycle arrest of cSCC through modulation of the PI3K/AKT signaling pathway.
ConclusionThis study provides novel insights into the suppressive roles of RBM3 in cell proliferation and the cell cycle in cSCC and highlights its therapeutic potential for cSCC.
-
-
-
The Role of Local Angiotensin II/Angiotensin Type 1 Receptor in Endometriosis: A Potential Target for New Treatment Approaches
Authors: Shirin Moazen and Mohammad-Hasan ArjmandEndometriosis is a chronic inflammatory disorder described by the presence of functional endometrial-like tissues at extra-uterine locations that are related to chronic pelvic pain and infertility. Multiple molecular mechanisms, including inflammation, reactive oxygen species (ROS) generation, fibrotic reactions, and angiogenesis, are involved in the pathogenesis of endometriosis; however, the exact cause of this disorder still remains a matter of discussion. Recently, it has been shown that the local renin-angiotensin system (RAS) has been expressed in different tissues, like the gynecological tract, and alterations in its expression are associated with multiple pathological conditions like endometriosis. Angiotensin II (Ang II), as a main peptide of the RAS through angiotensin type 1 receptor (AT1R), upregulates signal transduction pathways such as nuclear factor kappa B (NF-κB), mitogen activation protein kinase (MAPK), and transforming growth factor beta (TGF-β) to promote inflammation, oxidative stress, and fibrogenesis. Angiotensin receptor blockers (ARBs) control high blood pressure, which is increased by excessive AT1R activity. Recently, it has been recognized that ARBs have tissue protective effects because of their anti-inflammatory and antifibrotic effects. In this review, we focused on the role of local Ang II/AT1R axis activity in endometriosis pathogenesis and justified the use of ARB agents as a potential therapeutic strategy to improve endometriosis.
-
-
-
The Therapeutic Potential of Targeting the Connexin43 as a New Approach to Reducing Post-surgical Adhesion
Post-surgical peritoneal adhesions are a serious problem causing complications, such as bowel obstruction, infertility, and pain. There are currently no effective ways of preventing post-surgical adhesions. Excess secretion of proinflammatory cytokines and profibrotic molecules by immune cells and adherent fibroblasts are the main mechanism that promotes post-operative fibrotic scars. Although many studies have been conducted on the pathological causes of this disorder, there are still many unknown facts in this matter, so assessment of the role of different molecules in causing inflammation and adhesion can lead to the creation of new treatment methods. Connexins are a group of proteins related to gap junctions that have a role in cell communication and transmitted signaling between adjacent cells. Between different types of connexin protein isoforms, connexin43 is known to be involved in pathological conditions related to inflammation and fibrosis. Recent studies have reported that inhibition of connexin43 has the potential to reduce inflammation and fibrosis by reducing the expression of molecules like α-SMA and plasminogen activator inhibitor (PAI) that are involved in the early stages of adhesion formation. As well as, inhibition of connexin43 may have therapeutic potential as a target to prevent post-surgical peritoneal adhesions.
-
-
-
Quercetin Enhances 5-fluorouracil Sensitivity by Regulating the Autophagic Flux and Inducing Drp-1 Mediated Mitochondrial Fragmentation in Colorectal Cancer Cells
More LessBackground:While chemotherapy treatment demonstrates its initial effectiveness in eliminating the majority of the tumor cell population, nevertheless, most patients relapse and eventually succumb to the disease upon its recurrence. One promising approach is to explore novel, effective chemotherapeutic adjuvants to enhance the sensitivity of cancer cells to conventional chemotherapeutic agents. In the present study, we explored the effect of quercetin on the sensitivity of colorectal cancer (CRC) cells to conventional chemotherapeutic agent 5-fluorouracil (5-FU) and the molecular mechanisms.
Methods:MTT assay, colony formation assay and Hoechst staining were performed to investigate the growth inhibition effect of quercetin alone or combined with 5-FU. The expression levels of apoptosis and autophagy-related proteins were assessed by western blotting. Intracellular ROS was detected using DCFH-DA. The change in the mitochondrial membrane potential was measured by a JC-1 probe. The effect of quercetin on mitochondrial morphology was examined using a mitochondrial-specific fluorescence probe, Mito-Tracker red.
Results:The results demonstrated quercetin induced apoptosis and autophagy, as well as imbalanced ROS, decreased mitochondrial membrane potential, and Drp-1-mediated mitochondrial fission in CRC cells. Autophagy blockage with autophagy inhibitor chloroquine (CQ) enhanced quercetin-induced cytotoxicity, indicating that quercetin induced cytoprotective autophagy. Meanwhile, quercetin enhanced the sensitivity of CRC cells to 5-FU via the induction of mitochondrial fragmentation, which could be further enhanced when the quercetin-induced protective autophagy was blocked by CQ.
Conclusions:The findings of the study suggested that quercetin could enhance the sensitivity of CRC cells to conventional agent 5-FU by regulating autophagy and Drp-1-mediated mitochondrial fragmentation. Therefore, quercetin may act as a chemotherapeutic adjuvant. Moreover, the regulation of autophagic flux may be a potential therapeutic strategy for colorectal cancer.
-
-
-
siRNA Targeting ECE-1 Partially Reverses Pulmonary Arterial Hypertension-associated Damage in a Monocrotaline Model
Aims:The aim of this study was to develop a possible treatment for pulmonary arterial hypertension.
Background:Pulmonary arterial hypertension (PAH) is a rare disease characterised by a pulmonary arterial pressure greater than 20 mmHg. One of the factors that contribute to PAH is an increase in the production of endothelin-1, a polypeptide that increases vascular resistance in the pulmonary arteries, leading to increased pulmonary arterial pressure and right ventricular hypertrophy.
Objective:The objective of this study was to design, synthesize, and evaluate two siRNAs directed against endothelin-1 in a rat model of PAH induced with monocrotaline.
Methods:Wistar rats were administered monocrotaline (60 mg/kg) to induce a PAH model. Following two weeks of PAH evolution, the siRNAs were administered, and after two weeks, right ventricular hypertrophy was evaluated using the RV/LV+S ratio, blood pressure, weight, and relative expression of ECE-1 (Endothelin-converting enzyme-1) mRNA (messenger RNA) by RT-PCR (real-time PCR).
Results:The monocrotaline group showed an increase in the hypertrophy index and in ECE-1 mRNA, as well as a significant decrease in weight compared to the control group, while in the monocrotaline + siRNA group, a significant decrease was observed in the relative expression of ECE-1 mRNA, as well as in right ventricular hypertrophy.
Conclusions:Based on the above information, we conclude that the administration of siRNAs directed to ECE-1 decreases the damage associated with PAH.
-
-
-
RNA Interference-based Therapies for the Reduction of Cardiovascular Risk
Globally, there remains an unwavering increase in the incidence of cvd - from 271 million in 1990 to 523 million in 2019. Among the several modifiable and non-modifiable risk factors of heart disease, dyslipidemia is an important and prevalent risk factor mediated by both genetics and lifestyle factors. Hence, lowering lipid levels, specifically, ldl-c levels (low-density lipoprotein cholesterol), is a key strategy in decreasing the risk of cardiovascular disease. A reduction of 20 mg/dl in ldl-c levels has been found to prevent 2-3 cases of coronary artery disease (cad) for every 1000 individuals. Studies have also found reductions in ldl-c levels to be associated with a mortality benefit. However, ldl-c levels reduction may not eliminate the risk of significant cardiovascular events.
-
-
-
IMPDH2 Positively Impacts the Proliferation Potential of Hepatoblastoma Cells by Activating JunB Signaling Pathway
Authors: Li Yuan, Liang Zeng, Feng Ye, Kai Chen, Zhengrong Chen and Liping LiBackground:Amplification of inosine monophosphate dehydrogenase II, EC 1,1,1,205 (IMPDH2) has been reported in various cancers, which results in transformation and tumorigenicity. In our current work, we have explored the oncogenic properties and the underlying pathophysiology of IMPDH2 in hepatoblastoma (HB).
Methods:To investigate IMPDH2 expression in HB tissues and prognostic significance in HB patients, gene expression profiling interactive analysis (GEPIA) has been adopted. Immunohistochemistry has also helped to validate the protein expression of IMPDH2 in HB tissues. The effect of IMPDH2 overexpression or depletion on the proliferation of Hepatoblastoma cells in vitro has been evaluated by CCK8 assays and colony formation assays. Xenograft tumor growth of mice has been detected. Luciferase reporter assays have been conducted to determine the interaction of IMPDH2 and JunB, which was further asserted by pharmacological inhibition of JunB.
Results:IMPDH2 was highly expressed in HB tissues. Experimentally, the proliferation and colony formation of HuH6 cells were increased by IMPDH2 overexpression. Conversely, genetic inactivation of IMPDH2 impaired the proliferative efficiency and colony-forming rate of HepG2 cells. Besides, the luciferase reporter assay validated IMPDH2 overexpression to be associated with enhanced JunB transcriptional activity, while its activity was diminished in the case of IMPDH2 depletion. JunB inhibitor neutralized the IMPDH2-mediated increased phosphorylation of JunB.
Conclusion:Our findings, thus, suggest that IMPDH2 exhibits its oncogenic role in HB partially via JunB-dependent proliferation.
-
-
-
Sanguinarine Attenuates Lung Cancer Progression via Oxidative Stress-induced Cell Apoptosis
Background:Lung cancer (LC) incidence is rising globally and is reflected as a leading cause of cancer-associated deaths. Lung cancer leads to multistage carcinogenesis with gradually increasing genetic and epigenetic changes.
Aims:Sanguinarine (sang) mediated the anticancer effect in LCC lines by involving the stimulation of reactive oxygen species (ROS), impeding Bcl2, and enhancing Bax and other apoptosis-associated protein Caspase-3, -9, and -PARP, subsequently inhibiting the LC invasion and migration.
Objective:This study was conducted to investigate the apoptotic rate and mechanism of Sang in human LC cells (LCC) H522 and H1299.
Methods:MTT assay to determine the IC50, cell morphology, and colony formation assay were carried out to show the sanguinarine effect on the LC cell line. Moreover, scratch assay and transwell assay were performed to check the migration. Western blotting and qPCR were done to show its effects on targeted proteins and genes. ELISA was performed to show the VEGF effect after Sanguinarine treatment. Immunofluorescence was done to check the interlocution of the targeted protein.
Results:Sang significantly inhibited the growth of LCC lines in both time- and dose-dependent fashions. Flow cytometry examination and Annexin-V labeling determined that Sang increased the apoptotic cell percentage. H522 and H1299 LCC lines treated with Sang showed distinctive characteristics of apoptosis, including morphological changes and DNA fragmentation.
Conclusion:Sang exhibited anticancer potential in LCC lines and could induce apoptosis and impede the invasion and migration of LCC, emerging as a promising anticancer natural agent in lung cancer management.
-
-
-
Two GnRH-mitoxantrone Conjugates, Con-3 and Con-7, Target Endometrial Cancer Cells
IntroductionEndometrial cancer is one of the most common gynecological malignancies. Endometrial cancer cells express the gonadotropin-releasing hormone (GnRH) and its receptor (GnRH-R). Among the various therapeutic approaches for the treatment of endometrial cancer is the use of GnRH conjugates, such as the AN-152, created by linking the (D-Lys6) GnRH with the cytotoxic doxorubicin through an ester bond. An undesirable property of these conjugates is their vulnerability to plasma carboxylesterases, which cleave the ester bond to release doxorubicin before reaching the cancer cells.
Methods:To overcome this problem, we recently developed the Con-3 and Con-7, which are GnRH analogs conjugated through a disulfide bond with the cytotoxic mitoxantrone. In this study, we determined the cytotoxic properties of the Con-3 and Con-7 on the Ishikawa endometrial cancer cells, assuming that their interaction with the GnRH-R of cells exposes the conjugated mitoxantrone to the cellular thioredoxin. The cellular thioredoxin reduces the disulfide bond of Con-3 & Con-7 to release mitoxantrone, which accumulates in the cancer cells and exerts its cytotoxic actions.
Results:Indeed, treatment of Ishikawa cells with Con-3, Con-7, or the free unconjugated mitoxantrone increased their apoptosis and decreased their proliferation in a dose- and time-dependent manner, displaying half-maximal inhibitory concentrations (IC50) of 0.64 - 1.15 µM. In specific, the IC50 values on days 2, 3, and 4 were 1.45, 0.64, and 0.83 μΜ, respectively, for Con-3, 0.91, 0.82 μΜ, and 1.00 μΜ, respectively for Con-7 and 1.15, 0.98, 0.78 μM, respectively for mitoxantrone. In contrast, the free, mitoxantrone-unconjugated peptides did not affect the proliferation of Ishikawa cells.
Conclusion:The Con-3 and Con-7 could put the basis for the development of a new class of anticancer drugs for endometrial cancer, which will act as “prodrugs” that deliver the cytotoxic mitoxantrone in a GnRH-R-specific manner.
-
-
-
Nrf2 Mediates Effect of Resveratrol in Ischemia-reperfusion Injury
Ischemia-Reperfusion Injury (IRI) is a paradoxical phenomenon where removing the source of injury can cause additional damage. Ischemia reduces ATP production and intracellular pH, reducing oxidative reactions, increasing lactic acid release, and activating anaerobic metabolism. Reperfusion restores aerobic respiration and increases ROS production, leading to malfunction of transmembrane transport, activation of proteases, DNA dissolution, and protein denaturation, leading to apoptotic cell death. Nrf2 is a transcription factor that regulates cellular inflammation and oxidative responses. It is activated by oxidants and electrophiles and enhances detoxifying enzyme expression, maintaining redox homeostasis. It also activates ARE, which activates several ARE-regulated genes that favor cell survival by exhibiting resistance to oxidants and electrophiles. Nrf2 regulates the antioxidant defense system by producing phase II and antioxidant defense enzymes, including HO-1, NQO-1, g-glutamylcysteine synthetase, and rate-limiting enzymes for glutathione synthesis. Nrf2 protects mitochondria from damage and supports mitochondrial function in stress conditions. Resveratrol is a stilbene-based compound with a wide variety of health benefits for humans, including antioxidant, anticarcinogenic, antitumor, and estrogenic/antiestrogenic. Resveratrol protects against IRI through several signaling pathways, including the Nrf2/ARE pathway. Here, we review the studies that investigated the mechanisms of resveratrol protection against IRI through modulation of the Nrf2 signaling pathway.
-
-
-
Thymol and Carvacrol as Potential Tocolytic and Anti-inflammatory Agents in Pregnant Rat Uterus
More LessIntroduction:This work aimed to evaluate the anti-inflammatory and myorelaxant effect of thymol (TM) and carvacrol (CAR) in the pregnant rat uterus. Both compounds exhibit considerable antimicrobial, antispasmodic, and anti-inflammatory effects and due to these properties, they were studied in this in vitro model of premature birth induced by infection.
Method:All uterine tissues were studied in uterine contraction tests to determine the inhibitory effect of TM, CAR (10, 56, 100, 150, and 230 µM), and nifedipine (a calcium channel antagonist) on phasic and tonic contraction induced by electro- and pharmacomechanical stimuli. The quantitative determination of cyclic adenosine monophosphate (cAMP) induced by TM and CAR in the uterine lysate was carried out by ELISA. For the determination of the anti-inflammatory effect of TM, the pro-inflammatory cytokine, interleukin (IL)-1β, in uterine samples stimulated with lipopolysaccharide (LPS) was measured. Forskolin (FSK) was used as a positive control to evaluate the cAMP and cytokine levels. TM, CAR, and nifedipine inhibited the uterine contractions at the highest concentration level, however, nifedipine was the most equipotent (p<0.05). In addition, TM and CAR did not increase the intracellular cAMP production in comparison with FSK (p<0.05). However, both compounds were able to decrease the LPS-induced production in a concentration-dependent manner that was considered statistically significant (p>0.05).
Results:Finally, both the anti-inflammatory and uterine relaxing effects induced by TM and CAR were neither associated with the increase in cAMP levels nor with the production of IL-1β in pregnant rat uterine samples. Therefore, TM and CAR can be considered as alternative adjuvants for the treatment of infection-induced preterm labor. Before the in vitro experiments, an in-silico analysis was conducted using the Expaisy online server to evaluate the biological effects of thymol on uterine contraction.
Conclusion:It is crucial to know the interaction and identification of genes encoding the Voltage-dependent L-type calcium channel subunit alpha-1C proteins, because of the functional relationship it may have in the inhibition of the uterine contraction. These properties place TM as a potentially safe and effective adjuvant agent in cases of preterm birth, an area of pharmacological treatment that requires urgent improvement.
-
-
-
Advancements in the Research of GEF-H1: Biological Functions and Tumor Associations
Authors: Liqi Li, Yunyun Li and Xiaoshu ZhouGuanine nucleotide exchange factor H1 (GEF-H1) is a unique protein modulated by the GDP/GTP exchange. As a regulator of the Rho-GTPase family, GEF-H1 can be activated through a microtubule-depended mechanism and phosphorylation regulation, enabling it to perform various pivotal biological functions across multiple cellular activities. These include the regulation of Rho-GTPase, cytoskeleton formation, cellular barrier, cell cycle, mitosis, cell differentiation, and vesicle trafficking. Recent studies have revealed its crucial effect on the tumor microenvironment (TME) components, promoting tumor initiation and progress. Consequently, an in-depth exploration of GEF-H1’s biological roles and association with tumors holds promise for its potential as a valuable molecular target in tumor treatment.
-
-
-
The Involvement of the NEAT1-1/miR-873-5p/GalNAcT-I Axis in the Development of Neuroblastoma
Authors: Zhigang Hu, Huiming Wang, Juan Wang, Yanbin Fang, Chi Sun, Xiaofeng Yang and Weili XuBackgroundThe most prevalent extracranial solid tumor in childhood is neuroblastoma (NB), which arises from undifferentiated neural crest cells. However, the prognosis of this condition remains unfavorable, and the underlying mechanisms of its origin are still elusive. Therefore, this study aimed to investigate the specific mechanism underlying NEAT1-1 in NB.
MethodsIn this study, the expressions of NEAT1-1, miR-873-5p, and GalNAcT-I were analyzed by real-time quantitative polymerase chain reaction (qRT-PCR) and Western blot (WB). Then, CCK-8 assays were conducted to evaluate the proliferation of NB cells. The Transwell assay was then performed to evaluate the invasion and migration of NB cells. Further, flow cytometry was utilized for the detection of cell apoptosis. Furthermore, the luciferase reporter gene assay was carried out to investigate the relationship between NEAT1-1 and miR-873-5p, as well as between miR-873-5p and GalNAcT-I. In contrast, an RNA-pull-down assay was conducted to confirm the regulatory relationship between NEAT1-1 and miR-873-5p. The effect of NEAT1-1 on tumor growth in vivo was detected in the BALB/c nude mice model.
ResultsThe qRT-PCR analysis revealed a significantly upregulated expression of NEAT1-1 in NB tumors compared to adjacent non-tumor tissue specimens. Suppression of NEAT1-1 resulted in the inhibition of tumor characteristics and induction of apoptosis in NB cells through the targeted regulation of miR-873-5p. Moreover, NEAT1-1 exerted its regulatory effect on GalNAcT-I protein levels by acting as a sponge for miR-873-5p in NB cells. Importantly, the downregulation of NEAT1-1 effectively suppressed tumor growth in vivo.
ConclusionCollectively, our findings suggest that the down-regulation of NEAT1-1 exerts a suppressive effect on NB progression by modulating the miR-873-5p/GalNAcT-I pathway, thereby providing novel insights into elucidating the underlying mechanisms of NB.
-
-
-
Impact of Nicosulfuron on Sperm Quality: Insights into Testicular Cell Apoptosis and NF-κB Signaling Pathway in Mice Testes
Authors: Jianqiu Han, Chen Zhao, Qing Shen, Yalei Qi, Yanjia Zhang, Faisal Raza, Yongmei Li, Hajra Zafar, Tengfei Liu, Juan Tan, Honghui Han and Xueyun MaBackground:Nicosulfuron, a widely used herbicide in crops, has raised concerns due to its escalating presence as an environmental pollutant, particularly in soil and water. The potential adverse effects of nicosulfuron on animals, including reproductive toxicity, have garnered attention.
Objective:The study aimed to evaluate the reproductive toxicity of nicosulfuron in male mice.
Methods:Male mice were orally administrated with three different concentration gradients (350, 700, and 1400 mg/kg) of nicosulfuron for 35 days. The investigation delved into sperm quality, testicular structures, and expression of cleaved caspase-3 and NF-κB p65 of the testes.
Results:The finding unveiled a correlation between nicosulfuron exposure and detrimental effects on sperm quality and alteration of testicular structure. Notably, parameters, such as sperm survival rate (SUR) and sperm motility (MOT), exhibited a decline in relation to increasing nicosulfuron dosages. Moreover, in the mice subjected to higher doses of nicosulfuron, elevated expression of cleaved caspase-3 and NF-κB p65 was observed in the testes. Interestingly, we also observed an increase of NF-κB p65 expression in the mice exposed to the nicosulfuron.
Conclusion:Our research revealed that exposure to nicosulfuron resulted in compromised sperm quality and alterations in testicular structure. The correlation between nicosulfuron and apoptosis, especially via the NF-κB pathway, provided significant insights into the mechanisms underpinning these detrimental effects. These findings significantly enhance our comprehension of the potential hazards associated with nicosulfuron exposure and its impacts on the reproductive health of animals.
-
-
-
The Mitochondrial-targeting Drug SkQ1 Attenuates the Progression of Post-traumatic Osteoarthritis through Suppression of Mitochondrial Oxidative Stress
Authors: Zhen-Ya Zhi and Peng-Cheng WangBackgroundPost-traumatic osteoarthritis (PTOA) constitutes a distinct subtype of osteoarthritis (OA). Despite extensive research, no effective pharmacological intervention has been established to prevent or halt the progression of PTOA. Current therapeutic approaches are primarily limited to symptomatic management and pain relief. SkQ1, a novel mitochondria-targeted antioxidant, has emerged as a promising therapeutic agent due to its dual capacity to scavenge excessive intracellular reactive oxygen species (ROS) and modulate inflammatory responses.
ObjectiveThis study aimed to investigate the therapeutic potential of SkQ1 in the early stages of PTOA and elucidate its underlying molecular mechanisms.
MethodsChondrocytes were cultured under varying concentrations of SkQ1 to evaluate its cytotoxicity. Additionally, an in vitro oxidative stress model was established to assess the antioxidant effects of SkQ1 across different concentration levels, from which the optimal concentration for PTOA treatment was determined. The rat PTOA model was established through medial meniscal tear (MMT) surgery, followed by intra-articular administration of SkQ1 postoperatively. The gait characteristics of rats in each group were assessed biweekly following surgery. Outcome measures were evaluated at 2 and 6 weeks postoperatively, including pathological evaluation of knee cartilage, ROS levels, markers of oxidative damage, such as malondialdehyde (MDA) and 8-hydroxy-deoxyguanosine (8-OHdG), mitochondrial membrane potential, mitochondrial DNA copy number, and apoptosis-related cytokines.
ResultsIn vitro, lower concentrations of SkQ1 (500 nM) exhibited superior antioxidant efficacy while minimizing cytotoxicity. The results indicated that SkQ1 administration significantly enhanced knee joint functionality and mitigated articular cartilage degeneration in both the acute and subacute phases of PTOA by inhibiting oxidative stress pathways. In a rat model of PTOA, SkQ1 not only alleviated gait abnormalities, but also substantially reduced levels of oxidative stress biomarkers, including ROS, MDA, and 8-OHdG. Furthermore, SkQ1 effectively preserved mitochondrial membrane potential and increased mitochondrial DNA copy number. Mechanistically, SkQ1 inhibited the release of cytochrome C (Cyt-C) and apoptosis-inducing factor (AIF) and downregulated key components of the mitochondria-mediated apoptotic pathway, such as Bax, Bak, cleaved caspase-3, and cleaved caspase-9.
ConclusionThe findings suggested that SkQ1 exerts its therapeutic effects via multiple mechanisms, including the reduction of ROS accumulation, mitigation of oxidative damage, preservation of mitochondrial function, and inhibition of apoptotic pathways. These diverse actions position SkQ1 as a promising disease-modifying agent for PTOA treatment, potentially offering benefits that extend beyond those provided by current symptom-focused therapies.
-
-
-
Anticancer Properties of Baicalin against Breast Cancer and other Gynecological Cancers: Therapeutic Opportunities based on Underlying Mechanisms
Gynecological cancers are serious life-threatening diseases responsible for high morbidity and mortality around the world. Chemotherapy, radiotherapy, and surgery are considered standard therapeutic modalities for these cancers. Since the mentioned treatments have undesirable side effects and are not effective enough, further attempts are required to explore potent complementary and/or alternative treatments. This study was designed to review and discuss the anticancer potentials of baicalin against gynecological cancers based on causal mechanisms and underlying pathways. Traditional medicine has been used for thousands of years in the therapy of diverse human diseases. The therapeutic effects of natural compounds like baicalin have been widely investigated in cancer therapy. Baicalin was effective against gynecological cancers by regulating key cellular mechanisms, including apoptosis, autophagy, and angiogenesis. Baicalin exerted its anticancer property by regulating most molecular signaling pathways, including PI3K/Akt/mTOR, NFκB, MAPK/ERK, and Wnt/β-catenin. However, more numerous experimental and clinical studies should be designed to find the efficacy of baicalin and the related mechanisms of action.
-
Most Read This Month Most Read RSS feed
