Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702

Abstract

Background

The most prevalent extracranial solid tumor in childhood is neuroblastoma (NB), which arises from undifferentiated neural crest cells. However, the prognosis of this condition remains unfavorable, and the underlying mechanisms of its origin are still elusive. Therefore, this study aimed to investigate the specific mechanism underlying NEAT1-1 in NB.

Methods

In this study, the expressions of NEAT1-1, miR-873-5p, and GalNAcT-I were analyzed by real-time quantitative polymerase chain reaction (qRT-PCR) and Western blot (WB). Then, CCK-8 assays were conducted to evaluate the proliferation of NB cells. The Transwell assay was then performed to evaluate the invasion and migration of NB cells. Further, flow cytometry was utilized for the detection of cell apoptosis. Furthermore, the luciferase reporter gene assay was carried out to investigate the relationship between NEAT1-1 and miR-873-5p, as well as between miR-873-5p and GalNAcT-I. In contrast, an RNA-pull-down assay was conducted to confirm the regulatory relationship between NEAT1-1 and miR-873-5p. The effect of NEAT1-1 on tumor growth was detected in the BALB/c nude mice model.

Results

The qRT-PCR analysis revealed a significantly upregulated expression of NEAT1-1 in NB tumors compared to adjacent non-tumor tissue specimens. Suppression of NEAT1-1 resulted in the inhibition of tumor characteristics and induction of apoptosis in NB cells through the targeted regulation of miR-873-5p. Moreover, NEAT1-1 exerted its regulatory effect on GalNAcT-I protein levels by acting as a sponge for miR-873-5p in NB cells. Importantly, the downregulation of NEAT1-1 effectively suppressed tumor growth .

Conclusion

Collectively, our findings suggest that the down-regulation of NEAT1-1 exerts a suppressive effect on NB progression by modulating the miR-873-5p/GalNAcT-I pathway, thereby providing novel insights into elucidating the underlying mechanisms of NB.

© 2024 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmp/10.2174/0118761429330889250115105915
2024-01-01
2025-09-16
Loading full text...

Full text loading...

/deliver/fulltext/cmp/17/1/CMP-17-E18761429330889.html?itemId=/content/journals/cmp/10.2174/0118761429330889250115105915&mimeType=html&fmt=ahah

References

  1. SzemesM. GreenhoughA. MalikK. Wnt signaling is a major determinant of neuroblastoma cell lineages.Front. Mol. Neurosci.2019129010.3389/fnmol.2019.0009031040767
    [Google Scholar]
  2. Ravi KiranB. SinghP. KuraviS.D. MohantyK. Venkata MohanS. Modulating cultivation regimes of Messastrum gracile SVMIICT7 for biomass productivity integrated with resource recovery via hydrothermal liquefaction.J. Environ. Manage.202435612045810.1016/j.jenvman.2024.12045838479286
    [Google Scholar]
  3. NewmanE.A. AbdessalamS. AldrinkJ.H. AustinM. HeatonT.E. BrunyJ. EhrlichP. DasguptaR. BaertschigerR.M. LautzT.B. RheeD.S. LanghamM.R.Jr MalekM.M. MeyersR.L. NathanJ.D. WeilB.R. PolitesS. MadonnaM.B. APSA Cancer committee Update on neuroblastoma.J. Pediatr. Surg.201954338338910.1016/j.jpedsurg.2018.09.00430305231
    [Google Scholar]
  4. SwiftC.C. EklundM.J. KravekaJ.M. AlazrakiA.L. Updates in diagnosis, management, and treatment of neuroblastoma.Radiographics201838256658010.1148/rg.201817013229528815
    [Google Scholar]
  5. IyerM.K. NiknafsY.S. MalikR. SinghalU. SahuA. HosonoY. BarretteT.R. PrensnerJ.R. EvansJ.R. ZhaoS. PoliakovA. CaoX. DhanasekaranS.M. WuY.M. RobinsonD.R. BeerD.G. FengF.Y. IyerH.K. ChinnaiyanA.M. The landscape of long noncoding RNAs in the human transcriptome.Nat. Genet.201547319920810.1038/ng.319225599403
    [Google Scholar]
  6. ChaoT.C. ZhangQ. LiZ. TiwariS.K. QinY. YauE. SanchezA. SinghG. ChangK. KaulM. KarrisM.A.Y. RanaT.M. The long noncoding RNA HEAL regulates HIV-1 replication through epigenetic regulation of the HIV-1 promoter.MBio2019105e02016-1910.1128/mBio.02016‑1931551335
    [Google Scholar]
  7. LouM.M. TangX.Q. WangG.M. HeJ. LuoF. GuanM.F. WangF. ZouH. WangJ.Y. ZhangQ. XuM.J. ShiQ.L. ShenL.B. MaG.M. WuY. ZhangY.Y. LiangA. WangT.H. XiongL.L. WangJ. XuJ. WangW.Y. Long noncoding RNA BS-DRL1 modulates the DNA damage response and genome stability by interacting with HMGB1 in neurons.Nat. Commun.2021121407510.1038/s41467‑021‑24236‑z34210972
    [Google Scholar]
  8. WangC. YangY. ZhangG. LiJ. WuX. MaX. ShanG. MeiY. Long noncoding RNA EMS connects c-Myc to cell cycle control and tumorigenesis.Proc. Natl. Acad. Sci. USA201911629146201462910.1073/pnas.190343211631262817
    [Google Scholar]
  9. ChenB. DragomirM.P. FabrisL. BayraktarR. KnutsenE. LiuX. TangC. LiY. ShimuraT. IvkovicT.C. Cruz De los SantosM. AnfossiS. ShimizuM. ShahM.Y. LingH. ShenP. MultaniA.S. PardiniB. BurksJ.K. KatayamaH. ReinekeL.C. HuoL. SyedM. SongS. FerracinM. OkiE. FrommB. IvanC. BhuvaneshwarK. GusevY. MimoriK. MenterD. SenS. MatsuyamaT. UetakeH. VasilescuC. KopetzS. Parker-ThornburgJ. TaguchiA. HanashS.M. GirnitaL. SlabyO. GoelA. VaraniG. GageaM. LiC. AjaniJ.A. CalinG.A. The long noncoding RNA CCAT2 induces chromosomal instability through BOP1-AURKB signaling.Gastroenterology2020159621462162.e3310.1053/j.gastro.2020.08.01832805281
    [Google Scholar]
  10. WangP. GuoQ. HaoY. LiuQ. GaoY. ZhiH. LiX. ShangS. GuoS. ZhangY. NingS. LiX. LnCeCell: A comprehensive database of predicted lncRNA-associated ceRNA networks at single-cell resolution.Nucleic Acids Res.202149D1D125D13310.1093/nar/gkaa101733219686
    [Google Scholar]
  11. ChiuH.S. Llobet-NavasD. YangX. ChungW.J. Ambesi-ImpiombatoA. IyerA. KimH.R. SeviourE.G. LuoZ. SehgalV. MossT. LuY. RamP. SilvaJ. MillsG.B. CalifanoA. SumazinP. Cupid: Simultaneous reconstruction of microRNA-target and ceRNA networks.Genome Res.201525225726710.1101/gr.178194.11425378249
    [Google Scholar]
  12. ThomsonD.W. DingerM.E. Endogenous microRNA sponges: Evidence and controversy.Nat. Rev. Genet.201617527228310.1038/nrg.2016.2027040487
    [Google Scholar]
  13. TianY. MaR. SunY. LiuH. ZhangH. SunY. LiuL. LiY. SongL. GaoP. SP1-activated long noncoding RNA lncRNA GCMA functions as a competing endogenous RNA to promote tumor metastasis by sponging miR-124 and miR-34a in gastric cancer.Oncogene202039254854486810.1038/s41388‑020‑1330‑432439864
    [Google Scholar]
  14. ShiQ. LiY. LiS. JinL. LaiH. WuY. CaiZ. ZhuM. LiQ. LiY. WangJ. LiuY. WuZ. SongE. LiuQ. LncRNA DILA1 inhibits Cyclin D1 degradation and contributes to tamoxifen resistance in breast cancer.Nat. Commun.2020111551310.1038/s41467‑020‑19349‑w33139730
    [Google Scholar]
  15. EsfandiF. TaheriM. OmraniM.D. ShadmehrM.B. Arsang-JangS. ShamsR. Ghafouri-FardS. Expression of long non-coding RNAs (lncRNAs) has been dysregulated in non-small cell lung cancer tissues.BMC Cancer201919122210.1186/s12885‑019‑5435‑530866866
    [Google Scholar]
  16. KangC.M. BaiH.L. LiX.H. HuangR.Y. ZhaoJ.J. DaiX.Y. ZhengL. QiuY.R. HuY.W. WangQ. The binding of lncRNA RP11-732M18.3 with 14-3-3 β/α accelerates p21 degradation and promotes glioma growth.EBioMedicine201945586910.1016/j.ebiom.2019.06.00231202814
    [Google Scholar]
  17. YangH. ZhangX. ZhaoY. SunG. ZhangJ. GaoY. LiuQ. ZhangW. ZhuH. Downregulation of lncRNA XIST represses tumor growth and boosts radiosensitivity of neuroblastoma via Modulation of the miR-375/L1CAM Axis.Neurochem. Res.202045112679269010.1007/s11064‑020‑03117‑932857295
    [Google Scholar]
  18. ChenM. ZhaoM. HouY. ZhuB. Expression of lncRNA CCAT2 in children with neuroblastoma and its effect on cancer cell growth.Mol. Cell. Biochem.202147641871187910.1007/s11010‑020‑04042‑933475889
    [Google Scholar]
  19. ZhangY. HuY. PanA. HeL. WangJ. ZhouF. LeiY. WangY. Long non-coding RNA NHEG1/hsa-miR-665/HMGB1 axis is involved in the regulation of neuroblastoma progression.Bioengineered2021122115841159610.1080/21655979.2021.198327734889712
    [Google Scholar]
  20. NaveedA. CooperJ.A. LiR. HubbardA. ChenJ. LiuT. WiltonS.D. FletcherS. FoxA.H. NEAT1 polyA-modulating antisense oligonucleotides reveal opposing functions for both long non-coding RNA isoforms in neuroblastoma.Cell. Mol. Life Sci.20217852213223010.1007/s00018‑020‑03632‑632914209
    [Google Scholar]
  21. ZhangX. JingF. GuoC. LiX. LiJ. LiangG. Tumor-suppressive function and mechanism of miR-873-5p in glioblastoma: Evidence based on bioinformatics analysis and experimental validation.Aging (Albany NY)202315125412542510.18632/aging.20480037382594
    [Google Scholar]
  22. KishiS. MoriS. Fujiwara-TaniR. OgataR. SasakiR. IkemotoA. GotoK. SasakiT. MiyakeM. SasagawaS. KawaichiM. LuoY. BhawalU.K. FujimotoK. NakagawaH. KuniyasuH. ERVK13-1/miR-873-5p/GNMT axis promotes metastatic potential in human bladder cancer though sarcosine production.Int. J. Mol. Sci.202324221636710.3390/ijms24221636738003554
    [Google Scholar]
  23. ChanG.C.F. ChanC.M. Anti-GD2 directed immunotherapy for high-risk and metastatic neuroblastoma.Biomolecules202212335810.3390/biom1203035835327550
    [Google Scholar]
  24. FurukawaK. HamamuraK. OhkawaY. OhmiY. FurukawaK. Disialyl gangliosides enhance tumor phenotypes with differential modalities.Glycoconj. J.2012298-957958410.1007/s10719‑012‑9423‑022763744
    [Google Scholar]
  25. WondimuA. LiuY. SuY. BobbD. MaJ.S.Y. ChakrabartiL. RadojaS. LadischS. Gangliosides drive the tumor infiltration and function of myeloid-derived suppressor cells.Cancer Res.201474195449545710.1158/0008‑5472.CAN‑14‑092725115301
    [Google Scholar]
  26. RuanS. LloydK.O. Glycosylation pathways in the biosynthesis of gangliosides in melanoma and neuroblastoma cells: Relative glycosyltransferase levels determine ganglioside patterns.Cancer Res.19925220572557311394196
    [Google Scholar]
  27. FleurenceJ. FougerayS. BahriM. CochonneauD. ClémenceauB. ParisF. HeczeyA. BirkléS. Targeting O -Acetyl-GD2 ganglioside for cancer immunotherapy.J. Immunol. Res.2017201711610.1155/2017/560489128154831
    [Google Scholar]
  28. LiL. YuS. DouN. WangX. GaoY. LiY. A new tandem repeat‐enriched lncRNA XLOC_008672 promotes gastric carcinogenesis by regulating G3BP1 expression.Cancer Sci.202411561851186510.1111/cas.1617238581120
    [Google Scholar]
  29. MuruganA.K. Al-HindiH. AlzahraniA.S. LncRNA GAS8-AS1 dinucleotide genetic variantn.713A>G, n.714T>C is associated with early-stage disease, lymph node, and distant metastasis in differentiated thyroid cancer.Endocrine20248531278128810.1007/s12020‑024‑03802‑738580894
    [Google Scholar]
  30. MengX. FangE. ZhaoX. FengJ. Identification of prognostic long noncoding RNAs associated with spontaneous regression of neuroblastoma.Cancer Med.20209113800381510.1002/cam4.302232216054
    [Google Scholar]
  31. SongJ. NiC. DongX. ShengC. QuY. ZhuL. Bub1 as a potential oncogene and a prognostic biomarker for neuroblastoma.Front. Oncol.20221298841510.3389/fonc.2022.98841536237324
    [Google Scholar]
  32. AtaeiA. TahsiliM. HayadokhtG. DaneshvarM. Mohammadi NourS. SoofiA. MasoudiA. KabiriM. NatamiM. Targeting long noncoding RNAs in neuroblastoma: Progress and prospects.Chem. Biol. Drug Des.2023102364065210.1111/cbdd.1426337291742
    [Google Scholar]
  33. XuY. QiuZ. ChenJ. HuangL. ZhangJ. LinJ. LINC00460 promotes neuroblastoma tumorigenesis and cisplatin resistance by targeting miR-149-5p/DLL1 axis and activating Notch pathwayin vitro and in vivo.Drug Deliv. Transl. Res.202310.1007/s13346‑023‑01505‑638161194
    [Google Scholar]
  34. Pengfei Xie Zhen Wang Xia Chen Ying Han Mei Yang Zhuang Ye Regulations of LINC0196/miR-584-5p/miR-34a-5p/TRIM59 on progression of pediatric neuroblastoma.Cell. Mol. Biol.202268611712310.14715/cmb/2022.68.6.1936227666
    [Google Scholar]
  35. ZhaoW. SunF. ZhangL. OuyangJ. NEAT1 variant 1 weakens the genome-wide effect of miR-3122 on blocking H3K79me3 in bladder cancer.Aging (Albany NY)202214114819482610.18632/aging.20411335687898
    [Google Scholar]
  36. ZhenS. JiaY. ZhaoY. WangJ. ZhengB. LiuT. DuanY. LvW. WangJ. XuF. LiuY. ZhangY. LiuL. NEAT1_1 confers gefitinib resistance in lung adenocarcinoma through promoting AKR1C1-mediated ferroptosis defence.Cell Death Discov.202410113110.1038/s41420‑024‑01892‑w38472205
    [Google Scholar]
  37. LuJ. ZhuY. WilliamsS. WattsM. TontaM.A. ColemanH.A. ParkingtonH.C. ClaudianosC. Autism-associated miR-873 regulates ARID1B, SHANK3 and NRXN2 involved in neurodevelopment.Transl. Psychiatry202010141810.1038/s41398‑020‑01106‑833262327
    [Google Scholar]
  38. YaoY. LiuX.Q. YangF.Y. MuJ.W. MiR‐873‐5p modulates progression of tongue squamous cell carcinoma via targeting SEC11A.Oral Dis.20222861509151810.1111/odi.1383033675129
    [Google Scholar]
  39. HuX. MuY. WangJ. ZhaoY. LncRNA TDRG1 promotes the metastasis of NSCLC cell through regulating miR‐873‐5p/ZEB1 axis.J. Cell. Biochem.2021122996998210.1002/jcb.2955931742752
    [Google Scholar]
  40. HuZ. XuW. WangH. LiM. WangJ. SunC. YangX. CARM1-induced lncRNA NEAT1 synchronously activates MYCN and GalNAcT-I to accelerate the progression of neuroblastoma.Gene202593814916410.1016/j.gene.2024.14916439675397
    [Google Scholar]
  41. PanW. WuA. YuH. YuQ. ZhengB. YangW. TianD. GaoY. LiP. NEAT1 negatively regulates cell proliferation and migration of neuroblastoma cells by miR-183-5p/FOXP1 via the ERK/AKT pathway.Cell Transplant.20202910.1177/096368972094360832693640
    [Google Scholar]
/content/journals/cmp/10.2174/0118761429330889250115105915
Loading
/content/journals/cmp/10.2174/0118761429330889250115105915
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Apoptosis; GalNAcT-I; MiR-873-5p; NEAT1-1; Neuroblastoma; Proliferation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test