Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702

Abstract

Diabetic kidney disease (DKD) is one of the most frequent complications of diabetes and, if left uncontrolled, can progress to renal failure. In the early stage of DKD, significant pathological changes occur in podocytes, leading to proteinuria. However, the mechanism of pathological changes in podocytes has not been clarified. Existing clinical diagnostic methods tend to overlook these subtle pathophysiological changes in the early stages, leading to missed optimal treatment time. Moreover, existing treatment methods are limited. Emerging evidence strongly suggests that podocyte injury is associated with distinct specific miRNA expression profiles that precede the onset of overt proteinuria and glomerular filtration rate decline. This review explores the role of microRNAs in podocyte damage-related pathways in DKD, such as reactive oxygen species (ROS) production and inflammatory responses. Furthermore, we discuss the potential clinical application of miRNAs as molecular markers and their feasibility as a molecular therapy.

© 2024 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmp/10.2174/0118761429363169250313083148
2024-01-01
2025-09-28
Loading full text...

Full text loading...

/deliver/fulltext/cmp/17/1/CMP-17-E18761429363169.html?itemId=/content/journals/cmp/10.2174/0118761429363169250313083148&mimeType=html&fmt=ahah

References

  1. MaR.C.W. Epidemiology of diabetes and diabetic complications in China.Diabetologia20186161249126010.1007/s00125‑018‑4557‑729392352
    [Google Scholar]
  2. SaeediP. PetersohnI. SalpeaP. MalandaB. KarurangaS. UnwinN. ColagiuriS. GuariguataL. MotalaA.A. OgurtsovaK. ShawJ.E. BrightD. WilliamsR. IDF Diabetes Atlas Committee Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition.Diabetes Res. Clin. Pract.201915710784310.1016/j.diabres.2019.10784331518657
    [Google Scholar]
  3. ZhangX.X. KongJ. YunK. Prevalence of diabetic nephropathy among patients with type 2 diabetes mellitus in China: A meta-analysis of observational studies.J. Diabetes Res.2020202011110.1155/2020/231560732090116
    [Google Scholar]
  4. YangW. ZhaoW. XiaoJ. LiR. ZhangP. Kissimova-SkarbekK. SchneiderE. JiaW. JiL. GuoX. ShanZ. LiuJ. TianH. ChenL. ZhouZ. JiQ. GeJ. ChenG. BrownJ. Medical care and payment for diabetes in China: Enormous threat and great opportunity.PLoS One201279e3951310.1371/journal.pone.003951323049727
    [Google Scholar]
  5. JingShi Min JinYing Fang Experts consensus on multidisciplinary diagnosis, treatment and management of diabetic kidney disease.Clin Educ Gen Pract2020186484487
    [Google Scholar]
  6. ZelnickL.R. WeissN.S. KestenbaumB.R. Robinson-CohenC. HeagertyP.J. TuttleK. HallY.N. HirschI.B. de BoerI.H. Diabetes and CKD in the United States population, 2009–2014.Clin. J. Am. Soc. Nephrol.201712121984199010.2215/CJN.0370041729054846
    [Google Scholar]
  7. BikbovB. PurcellC.A. LeveyA.S. SmithM. AbdoliA. AbebeM. AdebayoO.M. AfaridehM. AgarwalS.K. Agudelo-BoteroM. AhmadianE. Al-AlyZ. AlipourV. Almasi-HashianiA. Al-RaddadiR.M. Alvis-GuzmanN. AminiS. AndreiT. AndreiC.L. AndualemZ. AnjomshoaM. ArablooJ. AshagreA.F. AsmelashD. AtaroZ. AtoutM.M.W. AyanoreM.A. BadawiA. BakhtiariA. BallewS.H. BalouchiA. BanachM. BarqueraS. BasuS. BayihM.T. BediN. BelloA.K. BensenorI.M. BijaniA. BoloorA. BorzìA.M. CámeraL.A. CarreroJ.J. CarvalhoF. CastroF. Catalá-LópezF. ChangA.R. ChinK.L. ChungS-C. CirilloM. CousinE. DandonaL. DandonaR. DaryaniA. Das GuptaR. DemekeF.M. DemozG.T. DestaD.M. DoH.P. DuncanB.B. EftekhariA. EsteghamatiA. FatimaS.S. FernandesJ.C. FernandesE. FischerF. FreitasM. GadM.M. GebremeskelG.G. GebresillassieB.M. GetaB. GhafourifardM. GhajarA. GhithN. GillP.S. GinawiI.A. GuptaR. Hafezi-NejadN. Haj-MirzaianA. Haj-MirzaianA. HariyaniN. HasanM. HasankhaniM. HasanzadehA. HassenH.Y. HayS.I. HeidariB. HerteliuC. HoangC.L. HosseiniM. HostiucM. IrvaniS.S.N. IslamS.M.S. Jafari BalalamiN. JamesS.L. JassalS.K. JhaV. JonasJ.B. JoukarF. JozwiakJ.J. KabirA. KahsayA. KasaeianA. KassaT.D. KassayeH.G. KhaderY.S. KhalilovR. KhanE.A. KhanM.S. KhangY-H. KisaA. KovesdyC.P. Kuate DefoB. KumarG.A. LarssonA.O. LimL-L. LopezA.D. LotufoP.A. MajeedA. MalekzadehR. MärzW. MasakaA. MeheretuH.A.A. MiazgowskiT. MiricaA. MirrakhimovE.M. MithraP. MoazenB. MohammadD.K. MohammadpourhodkiR. MohammedS. MokdadA.H. MoralesL. Moreno VelasquezI. MousaviS.M. MukhopadhyayS. NachegaJ.B. NadkarniG.N. NansseuJ.R. NatarajanG. NazariJ. NealB. NegoiR.I. NguyenC.T. NikbakhshR. NoubiapJ.J. NowakC. OlagunjuA.T. OrtizA. OwolabiM.O. PalladinoR. PathakM. PoustchiH. PrakashS. PrasadN. RafieiA. RajuS.B. RamezanzadehK. RawafS. RawafD.L. RawalL. ReinerR.C.Jr RezapourA. RibeiroD.C. RoeverL. RothenbacherD. RwegereraG.M. SaadatagahS. SafariS. SahleB.W. SalemH. SanabriaJ. SantosI.S. SarveazadA. SawhneyM. SchaeffnerE. SchmidtM.I. SchutteA.E. SepanlouS.G. ShaikhM.A. SharafiZ. SharifM. SharifiA. SilvaD.A.S. SinghJ.A. SinghN.P. SisayM.M.M. SoheiliA. SutradharI. TeklehaimanotB.F. TesfayB. TeshomeG.F. ThakurJ.S. TonelliM. TranK.B. TranB.X. Tran NgocC. UllahI. ValdezP.R. VarugheseS. VosT. VuL.G. WaheedY. WerdeckerA. WoldeH.F. WondmienehA.B. Wulf HansonS. YamadaT. YeshawY. YonemotoN. YusefzadehH. ZaidiZ. ZakiL. ZamanS.B. ZamoraN. ZarghiA. ZewdieK.A. ÄrnlövJ. CoreshJ. PericoN. RemuzziG. MurrayC.J.L. VosT. GBD Chronic Kidney Disease Collaboration Global, regional, and national burden of chronic kidney disease, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017.Lancet20203951022570973310.1016/S0140‑6736(20)30045‑332061315
    [Google Scholar]
  8. ChengH.T. XuX. LimP.S. HungK.Y. Worldwide epidemiology of diabetes-related end-stage renal disease, 2000–2015.Diabetes Care2021441899710.2337/dc20‑191333203706
    [Google Scholar]
  9. Comprehensive medical evaluation and assessment of comorbidities: Standards of medical care in diabetes-2022.Diabetes Care202245Suppl 1S46S5910.2337/dc24‑S004
    [Google Scholar]
  10. KDOQI KDOQI clinical practice guidelines and clinical practice recommendations for diabetes and chronic kidney disease.Am. J. Kidney Dis.2007492Suppl. 2S12S15410.1053/j.ajkd.2006.12.00517276798
    [Google Scholar]
  11. AndersH.J. HuberT.B. IsermannB. SchifferM. CKD in diabetes: Diabetic kidney disease versus nondiabetic kidney disease.Nat. Rev. Nephrol.201814636137710.1038/s41581‑018‑0001‑y29654297
    [Google Scholar]
  12. SelbyN.M. TaalM.W. An updated overview of diabetic nephropathy: Diagnosis, prognosis, treatment goals and latest guidelines.Diabetes Obes. Metab.202022S1Suppl. 131510.1111/dom.1400732267079
    [Google Scholar]
  13. SindhuD. SharmaG.S. KumbalaD. Management of diabetic kidney disease: Where do we stand?: A narrative review.Medicine202310213e3336610.1097/MD.000000000003336637000108
    [Google Scholar]
  14. EmdinC.A. RahimiK. NealB. CallenderT. PerkovicV. PatelA. Blood pressure lowering in type 2 diabetes: A systematic review and meta-analysis.JAMA2015313660361510.1001/jama.2014.1857425668264
    [Google Scholar]
  15. SuK. YiB. YaoB. XiaT. YangY. ZhangZ. ChenC. Liraglutide attenuates renal tubular ectopic lipid deposition in rats with diabetic nephropathy by inhibiting lipid synthesis and promoting lipolysis.Pharmacol. Res.202015610477810.1016/j.phrs.2020.10477832247822
    [Google Scholar]
  16. WolfG. RitzE. Combination therapy with ACE inhibitors and angiotensin II receptor blockers to halt progression of chronic renal disease: Pathophysiology and indications.Kidney Int.200567379981210.1111/j.1523‑1755.2005.00145.x15698420
    [Google Scholar]
  17. GoodbredA.J. LanganR.C. Chronic kidney disease: Prevention, diagnosis, and treatment.Am. Fam. Physician2023108655456138215416
    [Google Scholar]
  18. RomagnaniP. RemuzziG. GlassockR. LevinA. JagerK.J. TonelliM. MassyZ. WannerC. AndersH.J. Chronic kidney disease.Nat. Rev. Dis. Primers2017311708810.1038/nrdp.2017.8829168475
    [Google Scholar]
  19. SeverinaA.S. TskaevaA.A. YevloyevaM.I. ShamhalovaM.S. ShestakovaM.V. Simultaneous living donor pancreas-kidney transplantation in a patient with type 1 diabetes mellitus after program hemodialysis. Case report.Ter. Arkh.2023951085986310.26442/00403660.2023.10.20242838159018
    [Google Scholar]
  20. ThomasM.C. BrownleeM. SusztakK. SharmaK. Jandeleit-DahmK.A.M. ZoungasS. RossingP. GroopP.H. CooperM.E. Diabetic kidney disease.Nat. Rev. Dis. Primers2015111501810.1038/nrdp.2015.1827188921
    [Google Scholar]
  21. Perez-GomezM.V. Sanchez-NiñoM.D. SanzA.B. ZhengB. Martín-ClearyC. Ruiz-OrtegaM. OrtizA. Fernandez-FernandezB. Targeting inflammation in diabetic kidney disease: Early clinical trials.Expert Opin. Investig. Drugs20162591045105810.1080/13543784.2016.119618427268955
    [Google Scholar]
  22. ZhongS. WangN. ZhangC. Podocyte death in diabetic kidney disease: Potential molecular mechanisms and therapeutic targets.Int. J. Mol. Sci.20242516903510.3390/ijms2516903539201721
    [Google Scholar]
  23. NaylorR.W. MoraisM.R.P.T. LennonR. Complexities of the glomerular basement membrane.Nat. Rev. Nephrol.202117211212710.1038/s41581‑020‑0329‑y32839582
    [Google Scholar]
  24. GargP. A review of podocyte biology.Am. J. Nephrol.201847Suppl. 131310.1159/00048163329852492
    [Google Scholar]
  25. CasalenaG.A. YuL. GilR. RodriguezS. SosaS. JanssenW. AzelogluE.U. LeventhalJ.S. DaehnI.S. The diabetic microenvironment causes mitochondrial oxidative stress in glomerular endothelial cells and pathological crosstalk with podocytes.Cell Commun. Signal.202018110510.1186/s12964‑020‑00605‑x32641054
    [Google Scholar]
  26. HartlebenB. GödelM. Meyer-SchwesingerC. LiuS. UlrichT. KöblerS. WiechT. GrahammerF. ArnoldS.J. LindenmeyerM.T. CohenC.D. PavenstädtH. KerjaschkiD. MizushimaN. ShawA.S. WalzG. HuberT.B. Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice.J. Clin. Invest.201012041084109610.1172/JCI3949220200449
    [Google Scholar]
  27. ZhanP. ZhangY. ShiW. LiuX. QiaoZ. WangZ. WangX. WuJ. TangW. SunY. ZhangY. ZhenJ. ShangJ. LiuM. YiF. Myeloid-derived growth factor deficiency exacerbates mitotic catastrophe of podocytes in glomerular disease.Kidney Int.2022102354655910.1016/j.kint.2022.04.02735623505
    [Google Scholar]
  28. ShanklandS.J. WangY. ShawA.S. VaughanJ.C. PippinJ.W. WesselyO. Podocyte aging: Why and how getting old matters.J. Am. Soc. Nephrol.202132112697271310.1681/ASN.202105061434716239
    [Google Scholar]
  29. JeffersonJ.A. ShanklandS.J. PichlerR.H. Proteinuria in diabetic kidney disease: A mechanistic viewpoint.Kidney Int.2008741223610.1038/ki.2008.12818418356
    [Google Scholar]
  30. DavisB. Dei CasA. LongD.A. WhiteK.E. HaywardA. KuC.H. WoolfA.S. BilousR. VibertiG. GnudiL. Podocyte-specific expression of angiopoietin-2 causes proteinuria and apoptosis of glomerular endothelia.J. Am. Soc. Nephrol.20071882320232910.1681/ASN.200610109317625119
    [Google Scholar]
  31. AlicicR.Z. RooneyM.T. TuttleK.R. Diabetic kidney disease.Clin. J. Am. Soc. Nephrol.201712122032204510.2215/CJN.1149111628522654
    [Google Scholar]
  32. HeW. ZhuangJ. ZhaoZ.G. LuoH. ZhangJ. miR-328 prevents renal fibrogenesis by directly targeting TGF-β2.Bratisl. Med. J.2018119743444010.4149/BLL_2018_07930160133
    [Google Scholar]
  33. MaJ. WangY. XuH.T. RenN. ZhaoN. WangB.M. DuL.K. MicroRNA: A novel biomarker and therapeutic target to combat autophagy in diabetic nephropathy.Eur. Rev. Med. Pharmacol. Sci.201923146257626331364128
    [Google Scholar]
  34. MandaG. ChecheritaA.I. ComanescuM.V. HinescuM.E. Redox signaling in diabetic nephropathy: Hypertrophy versus death choices in mesangial cells and podocytes.Mediators Inflamm.20152015160420810.1155/2015/60420826491232
    [Google Scholar]
  35. HaM. KimV.N. Regulation of microRNA biogenesis.Nat. Rev. Mol. Cell Biol.201415850952410.1038/nrm383825027649
    [Google Scholar]
  36. LeeY. KimM. HanJ. YeomK.H. LeeS. BaekS.H. KimV.N. MicroRNA genes are transcribed by RNA polymerase II.EMBO J.200423204051406010.1038/sj.emboj.760038515372072
    [Google Scholar]
  37. LandthalerM. YalcinA. TuschlT. The human DiGeorge syndrome critical region gene 8 and Its D. melanogaster homolog are required for miRNA biogenesis.Curr. Biol.200414232162216710.1016/j.cub.2004.11.00115589161
    [Google Scholar]
  38. HanJ. LeeY. YeomK.H. KimY.K. JinH. KimV.N. The Drosha-DGCR8 complex in primary microRNA processing.Genes Dev.200418243016302710.1101/gad.126250415574589
    [Google Scholar]
  39. BohnsackM.T. CzaplinskiK. GörlichD. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs.RNA200410218519110.1261/rna.516760414730017
    [Google Scholar]
  40. ZhangH. KolbF.A. JaskiewiczL. WesthofE. FilipowiczW. Single processing center models for human Dicer and bacterial RNase III.Cell20041181576810.1016/j.cell.2004.06.01715242644
    [Google Scholar]
  41. MeisterG. LandthalerM. PatkaniowskaA. DorsettY. TengG. TuschlT. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs.Mol. Cell200415218519710.1016/j.molcel.2004.07.00715260970
    [Google Scholar]
  42. MiyoshiK. TsukumoH. NagamiT. SiomiH. SiomiM.C. Slicer function of Drosophila Argonautes and its involvement in RISC formation.Genes Dev.200519232837284810.1101/gad.137060516287716
    [Google Scholar]
  43. BartelD.P. MicroRNAs: Target recognition and regulatory functions.Cell2009136221523310.1016/j.cell.2009.01.00219167326
    [Google Scholar]
  44. GhildiyalM. ZamoreP.D. Small silencing RNAs: An expanding universe.Nat. Rev. Genet.20091029410810.1038/nrg250419148191
    [Google Scholar]
  45. EulalioA. HuntzingerE. IzaurraldeE. Getting to the root of miRNA-mediated gene silencing.Cell2008132191410.1016/j.cell.2007.12.02418191211
    [Google Scholar]
  46. TreiberT. TreiberN. MeisterG. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways.Nat. Rev. Mol. Cell Biol.201920152010.1038/s41580‑018‑0059‑130228348
    [Google Scholar]
  47. RamanathanK. PadmanabhanG. MiRNAs as potential biomarker of kidney diseases: A review.Cell Biochem. Funct.2020388990100510.1002/cbf.355532500596
    [Google Scholar]
  48. MahtalN. LenoirO. TinelC. AnglicheauD. TharauxP.L. MicroRNAs in kidney injury and disease.Nat. Rev. Nephrol.2022181064366210.1038/s41581‑022‑00608‑635974169
    [Google Scholar]
  49. MaZ. LiL. LivingstonM.J. ZhangD. MiQ. ZhangM. DingH.F. HuoY. MeiC. DongZ. p53/microRNA-214/ULK1 axis impairs renal tubular autophagy in diabetic kidney disease.J. Clin. Invest.202013095011502610.1172/JCI13553632804155
    [Google Scholar]
  50. TsaiY.C. KuoM.C. HungW.W. WuL.Y. WuP.H. ChangW.A. KuoP.L. HsuY.L. High glucose induces mesangial cell apoptosis through miR-15b-5p and promotes diabetic nephropathy by extracellular vesicle delivery.Mol. Ther.202028396397410.1016/j.ymthe.2020.01.01431991106
    [Google Scholar]
  51. WigginsR.C. The spectrum of podocytopathies: A unifying view of glomerular diseases.Kidney Int.200771121205121410.1038/sj.ki.500222217410103
    [Google Scholar]
  52. SusztakK. RaffA.C. SchifferM. BöttingerE.P. Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy.Diabetes200655122523310.2337/diabetes.55.01.06.db05‑089416380497
    [Google Scholar]
  53. WangX. TangD. ZouY. WuX. ChenY. LiH. ChenS. ShiY. NiuH. A mitochondrial-targeted peptide ameliorated podocyte apoptosis through a HOCl-alb-enhanced and mitochondria-dependent signalling pathway in diabetic rats and in vitro.J. Enzyme Inhib. Med. Chem.201934139440410.1080/14756366.2018.148869730734599
    [Google Scholar]
  54. LiuT. ChenX. SunJ. JiangX. WuY. YangS. HuangH. RuanX. DuX. Palmitic acid-induced podocyte apoptosis via the reactive oxygen species-dependent mitochondrial pathway.Kidney Blood Press. Res.201843120621910.1159/00048767329490300
    [Google Scholar]
  55. DuL. GuoC. ZengS. YuK. LiuM. LiY. Sirt6 overexpression relieves ferroptosis and delays the progression of diabetic nephropathy via Nrf2/GPX4 pathway.Ren. Fail.2024462237778510.1080/0886022X.2024.237778539082470
    [Google Scholar]
  56. Dan HuQ. WangH.L. LiuJ. HeT. TanR.Z. ZhangQ. SuH.W. KantawongF. LanH.Y. WangL. Btg2 promotes focal segmental glomerulosclerosis via smad3‐dependent podocyte‐mesenchymal transition.Adv. Sci.20231032230436010.1002/advs.20230436037749872
    [Google Scholar]
  57. ChenC.A. ChangJ.M. ChangE.E. ChenH.C. YangY.L. Crosstalk between transforming growth factor-β1 and endoplasmic reticulum stress regulates alpha-smooth muscle cell actin expression in podocytes.Life Sci.201820991410.1016/j.lfs.2018.07.05030059670
    [Google Scholar]
  58. LeeH.S. Mechanisms and consequences of TGF-ß overexpression by podocytes in progressive podocyte disease.Cell Tissue Res.2012347112914010.1007/s00441‑011‑1169‑721541658
    [Google Scholar]
  59. YangQ. HuJ. YangY. ChenZ. FengJ. ZhuZ. WangH. YangD. LiangW. DingG. Sirt6 deficiency aggravates angiotensin II-induced cholesterol accumulation and injury in podocytes.Theranostics202010167465747910.7150/thno.4500332642006
    [Google Scholar]
  60. NiranjanT. BieleszB. GruenwaldA. PondaM.P. KoppJ.B. ThomasD.B. SusztakK. The Notch pathway in podocytes plays a role in the development of glomerular disease.Nat. Med.200814329029810.1038/nm173118311147
    [Google Scholar]
  61. LiuX.D. ZhangL.Y. ZhuT.C. ZhangR.F. WangS.L. BaoY. Overexpression of miR-34c inhibits high glucose-induced apoptosis in podocytes by targeting Notch signaling pathways.Int. J. Clin. Exp. Pathol.2015854525453426191142
    [Google Scholar]
  62. WangD. DaiC. LiY. LiuY. Canonical Wnt/β-catenin signaling mediates transforming growth factor-β1-driven podocyte injury and proteinuria.Kidney Int.201180111159116910.1038/ki.2011.25521832980
    [Google Scholar]
  63. ZhouL. LiY. HaoS. ZhouD. TanR.J. NieJ. HouF.F. KahnM. LiuY. Multiple genes of the renin-angiotensin system are novel targets of Wnt/β-catenin signaling.J. Am. Soc. Nephrol.201526110712010.1681/ASN.201401008525012166
    [Google Scholar]
  64. ShahzadK. FatimaS. KhawajaH. ElwakielA. GadiI. AmbreenS. ZimmermannS. MertensP.R. BiemannR. IsermannB. Podocyte-specific Nlrp3 inflammasome activation promotes diabetic kidney disease.Kidney Int.2022102476677910.1016/j.kint.2022.06.01035779608
    [Google Scholar]
  65. KokaS. XiaM. ZhangC. ZhangY. LiP.L. BoiniK.M. Podocyte NLRP3 inflammasome activation and formation by adipokine visfatin.Cell. Physiol. Biochem.201953235536510.33594/00000014331385664
    [Google Scholar]
  66. LiG. HuangD. LiN. RitterJ.K. LiP.L. Regulation of TRPML1 channel activity and inflammatory exosome release by endogenously produced reactive oxygen species in mouse podocytes.Redox Biol.20214310201310.1016/j.redox.2021.10201334030116
    [Google Scholar]
  67. ZhaoS.M. ZhangT. QiuQ. XuC. MaL.J. LiuJ. WangZ. LiY.C. HuangJ. ZhangM. MiRNA-337 leads to podocyte injury in mice with diabetic nephropathy.Eur. Rev. Med. Pharmacol. Sci.201923198485849231646579
    [Google Scholar]
  68. JialalI. MajorA.M. DevarajS. Global toll-like receptor 4 knockout results in decreased renal inflammation, fibrosis and podocytopathy.J. Diabetes Complications201428675576110.1016/j.jdiacomp.2014.07.00325116192
    [Google Scholar]
  69. IlatovskayaD.V. BlassG. PalyginO. LevchenkoV. PavlovT.S. GrzybowskiM.N. WinsorK. ShuyskiyL.S. GeurtsA.M. CowleyA.W.Jr BirnbaumerL. StaruschenkoA. A NOX4/TRPC6 pathway in podocyte calcium regulation and renal damage in diabetic kidney disease.J. Am. Soc. Nephrol.20182971917192710.1681/ASN.201803028029793963
    [Google Scholar]
  70. XuY. ZhangJ. FanL. HeX. miR-423-5p suppresses high-glucose-induced podocyte injury by targeting Nox4.Biochem. Biophys. Res. Commun.2018505233934510.1016/j.bbrc.2018.09.06730245133
    [Google Scholar]
  71. ZhangS.Z. QiuX.J. DongS.S. ZhouL.N. ZhuY. WangM.D. JinL.W. MicroRNA-770-5p is involved in the development of diabetic nephropathy through regulating podocyte apoptosis by targeting TP53 regulated inhibitor of apoptosis 1.Eur. Rev. Med. Pharmacol. Sci.20192331248125630779094
    [Google Scholar]
  72. GuoJ. HanJ. LiuJ. WangS. MicroRNA-770-5p contributes to podocyte injury via targeting E2F3 in diabetic nephropathy.Braz. J. Med. Biol. Res.2020539e936010.1590/1414‑431x2020936032696822
    [Google Scholar]
  73. DeGregoriJ. JohnsonD.G. Distinct and overlapping roles for E2F family members in transcription, proliferation and apoptosis.Curr. Mol. Med.20066773974817100600
    [Google Scholar]
  74. ZhaF. BaiL. TangB. LiJ. WangY. ZhengP. JiT. BaiS. MicroRNA‐503 contributes to podocyte injury via targeting E2F3 in diabetic nephropathy.J. Cell. Biochem.20191208125741258110.1002/jcb.2852430834596
    [Google Scholar]
  75. DingX. JingN. ShenA. GuoF. SongY. PanM. MaX. ZhaoL. ZhangH. WuL. QinG. ZhaoY. MiR-21-5p in macrophage-derived extracellular vesicles affects podocyte pyroptosis in diabetic nephropathy by regulating A20.J. Endocrinol. Invest.20214461175118410.1007/s40618‑020‑01401‑732930981
    [Google Scholar]
  76. WangW. DingX.Q. GuT.T. SongL. LiJ.M. XueQ.C. KongL.D. Pterostilbene and allopurinol reduce fructose-induced podocyte oxidative stress and inflammation via microRNA-377.Free Radic. Biol. Med.20158321422610.1016/j.freeradbiomed.2015.02.02925746774
    [Google Scholar]
  77. SunJ. LiZ.P. ZhangR.Q. ZhangH.M. Repression of miR-217 protects against high glucose-induced podocyte injury and insulin resistance by restoring PTEN-mediated autophagy pathway.Biochem. Biophys. Res. Commun.2017483131832410.1016/j.bbrc.2016.12.14528017719
    [Google Scholar]
  78. XuM. YiM. LiN. MicroRNA -17-5p restrains the dysfunction of Ang-II induced podocytes by suppressing secreted modular calcium-binding protein 2 via NF-κB and TGFβ signaling.Environ. Toxicol.20213671402141110.1002/tox.2313633835671
    [Google Scholar]
  79. TabeiA. SakairiT. HamataniH. OhishiY. WatanabeM. NakasatomiM. IkeuchiH. KanekoY. KoppJ.B. HiromuraK. The miR-143/145 cluster induced by TGF-β1 suppresses Wilms’ tumor 1 expression in cultured human podocytes.Am. J. Physiol. Renal Physiol.20233251F121F13310.1152/ajprenal.00313.202237167274
    [Google Scholar]
  80. Perez-HernandezJ. Riffo-CamposA.L. OrtegaA. Martinez-ArroyoO. Perez-GilD. OlivaresD. SolazE. MartinezF. Martínez-HervásS. ChavesF.J. RedonJ. CortesR. Urinary- and plasma-derived exosomes reveal a distinct MicroRNA signature associated with albuminuria in hypertension.Hypertension202177396097110.1161/HYPERTENSIONAHA.120.1659833486986
    [Google Scholar]
  81. KogaK. YokoiH. MoriK. KasaharaM. KuwabaraT. ImamakiH. IshiiA. MoriK.P. KatoY. OhnoS. TodaN. SaleemM.A. SugawaraA. NakaoK. YanagitaM. MukoyamaM. MicroRNA-26a inhibits TGF-β-induced extracellular matrix protein expression in podocytes by targeting CTGF and is downregulated in diabetic nephropathy.Diabetologia20155892169218010.1007/s00125‑015‑3642‑426063197
    [Google Scholar]
  82. SopelN. OhsA. SchifferM. Müller-DeileJ. A tight control of non-canonical TGF-β pathways and micrornas downregulates nephronectin in podocytes.Cells202211114910.3390/cells1101014935011710
    [Google Scholar]
  83. ShiS. YuL. ZhangT. QiH. XavierS. JuW. BottingerE. Smad2-dependent downregulation of miR-30 is required for TGF-β-induced apoptosis in podocytes.PLoS One201389e7557210.1371/journal.pone.007557224086574
    [Google Scholar]
  84. LeeH.W. KhanS.Q. KhaliqdinaS. AltintasM.M. GrahammerF. ZhaoJ.L. KohK.H. TardiN.J. FaridiM.H. GeraghtyT. CimbalukD.J. SusztakK. MoitaL.F. BaltimoreD. TharauxP.L. HuberT.B. KretzlerM. BitzerM. ReiserJ. GuptaV. Absence of miR-146a in podocytes increases risk of diabetic glomerulopathy via up-regulation of ErbB4 and Notch-1.J. Biol. Chem.2017292273274710.1074/jbc.M116.75382227913625
    [Google Scholar]
  85. WangH. LiuH. ZhangY. ChenW. MiR-34a alleviates podocyte injury in mice with diabetic nephropathy by targeted downregulation of Notch signaling pathway.Nan Fang Yi Ke Da Xue Xue Bao202242121839184536651252
    [Google Scholar]
  86. ZhangX. SongS. LuoH. Regulation of podocyte lesions in diabetic nephropathy via miR-34a in the Notch signaling pathway.Medicine20169544e505010.1097/MD.000000000000505027858840
    [Google Scholar]
  87. LiangY. LiuH. ZhuJ. SongN. LuZ. FangY. TengJ. DaiY. DingX. Inhibition of p53/miR-34a/SIRT1 axis ameliorates podocyte injury in diabetic nephropathy.Biochem. Biophys. Res. Commun.2021559485510.1016/j.bbrc.2021.04.02533932899
    [Google Scholar]
  88. MilasO. GadaleanF. VladA. DumitrascuV. VelciovS. GluhovschiC. BobF. PopescuR. UrsoniuS. JianuD.C. MatuszP. PusztaiA.M. SecaraA. SimulescuA. StefanM. PatruicaM. PetricaF. VladD. PetricaL. Pro-inflammatory cytokines are associated with podocyte damage and proximal tubular dysfunction in the early stage of diabetic kidney disease in type 2 diabetes mellitus patients.J. Diabetes Complications202034210747910.1016/j.jdiacomp.2019.10747931806428
    [Google Scholar]
  89. DingH. LiJ. LiY. YangM. NieS. ZhouM. ZhouZ. YangX. LiuY. HouF.F. MicroRNA-10 negatively regulates inflammation in diabetic kidney via targeting activation of the NLRP3 inflammasome.Mol. Ther.20212972308232010.1016/j.ymthe.2021.03.01233744467
    [Google Scholar]
  90. FanX. HaoZ. LiZ. WangX. WangJ. Inhibition of miR-17~92 cluster ameliorates high glucose-induced podocyte damage.Mediators Inflamm.2020202011210.1155/2020/612649032774146
    [Google Scholar]
  91. WangL. LiH. MiR-770-5p facilitates podocyte apoptosis and inflammation in diabetic nephropathy by targeting TIMP3.Biosci. Rep.2020404BSR2019365310.1042/BSR2019365332309847
    [Google Scholar]
  92. WangX. GaoY. YiW. QiaoY. HuH. WangY. HuY. WuS. SunH. ZhangT. Inhibition of miRNA-155 alleviates high glucose-induced podocyte inflammation by targeting SIRT1 in diabetic mice.J. Diabetes Res.2021202111110.1155/2021/559739433748285
    [Google Scholar]
  93. LinX. YouY. WangJ. QinY. HuangP. YangF. MicroRNA-155 deficiency promotes nephrin acetylation and attenuates renal damage in hyperglycemia-induced nephropathy.Inflammation201538254655410.1007/s10753‑014‑9961‑724969676
    [Google Scholar]
  94. YaoT. ZhaD. GaoP. ShuiH. WuX. MiR-874 alleviates renal injury and inflammatory response in diabetic nephropathy through targeting toll-like receptor-4.J. Cell. Physiol.2019234187187910.1002/jcp.2690830171701
    [Google Scholar]
  95. JiangY. WangW. LiuZ.Y. XieY. QianY. CaiX.N. Overexpression of miR-130a-3p/301a-3p attenuates high glucose-induced MPC5 podocyte dysfunction through suppression of TNF-α signaling.Exp. Ther. Med.20181511021102829434693
    [Google Scholar]
  96. LiM. GuoQ. CaiH. WangH. MaZ. ZhangX. miR-218 regulates diabetic nephropathy via targeting IKK-β and modulating NK-κB-mediated inflammation.J. Cell. Physiol.202023543362337110.1002/jcp.2922431549412
    [Google Scholar]
  97. LiuS. YuanY. XueY. XingC. ZhangB. Podocyte injury in diabetic kidney disease: A focus on mitochondrial dysfunction.Front. Cell Dev. Biol.20221083288710.3389/fcell.2022.83288735321238
    [Google Scholar]
  98. WangY. FengF. HeW. SunL. HeQ. JinJ. RETRACTED ARTICLE: MiR-188-3p abolishes germacrone-mediated podocyte protection in a mouse model of diabetic nephropathy in type I diabetes through triggering mitochondrial injury.Bioengineered202213177478810.1080/21655979.2021.201291934847832
    [Google Scholar]
  99. ZhangY. XiaS. TianX. YuanL. GaoY. LiuD. QiH. WangS. LiuZ. LiY. ZhaoZ. LiuW. miR -4645-3p attenuates podocyte injury and mitochondrial dysfunction in diabetic kidney disease by targeting Cdk5.FASEB J.20243810e2366810.1096/fj.202300357RR38742811
    [Google Scholar]
  100. LiuJ. XiongY. MoH. NiuH. MiaoJ. ShenW. ZhouS. WangX. LiX. ZhangY. MaK. ZhouL. MicroRNA-29b plays a vital role in podocyte injury and glomerular diseases through inducing mitochondrial dysfunction.Int. J. Biol. Sci.202420124654467310.7150/ijbs.9350639309435
    [Google Scholar]
  101. CaiY. ChenS. JiangX. WuQ. GuoB. WangF. Inhibition of miR-30d-5p promotes mitochondrial autophagy and alleviates high glucose-induced injury in podocytes.Zhejiang Da Xue Xue Bao Yi Xue Ban202453675676410.3724/zdxbyxb‑2024‑050439668610
    [Google Scholar]
  102. DaiC. StolzD.B. KissL.P. MongaS.P. HolzmanL.B. LiuY. Wnt/beta-catenin signaling promotes podocyte dysfunction and albuminuria.J. Am. Soc. Nephrol.20092091997200810.1681/ASN.200901001919628668
    [Google Scholar]
  103. ChenX. TanH. XuJ. TianY. YuanQ. ZuoY. ChenQ. HongX. FuH. HouF.F. ZhouL. LiuY. Klotho-derived peptide 6 ameliorates diabetic kidney disease by targeting Wnt/β-catenin signaling.Kidney Int.2022102350652010.1016/j.kint.2022.04.02835644285
    [Google Scholar]
  104. ChenQ. ChenJ. WangC. ChenX. LiuJ. ZhouL. LiuY. MicroRNA‐466o‐3p mediates β‐catenin‐induced podocyte injury by targeting Wilms tumor 1.FASEB J.20203411144241443910.1096/fj.202000464R32888352
    [Google Scholar]
  105. WangC. LiuJ. ZhangX. ChenQ. BaiX. HongX. ZhouL. LiuY. Role of miRNA-671-5p in mediating Wnt/β-catenin-triggered podocyte injury.Front. Pharmacol.20221278448910.3389/fphar.2021.78448935111054
    [Google Scholar]
  106. ZhouZ. WanJ. HouX. GengJ. LiX. BaiX. MicroRNA-27a promotes podocyte injury via PPARγ-mediated β-catenin activation in diabetic nephropathy.Cell Death Dis.201783e265810.1038/cddis.2017.7428277542
    [Google Scholar]
  107. ShiM. TianP. LiuZ. ZhangF. ZhangY. QuL. LiuX. WangY. ZhouX. XiaoY. GuoB. MicroRNA-27a targets Sfrp1 to induce renal fibrosis in diabetic nephropathy by activating Wnt/β-Catenin signalling.Biosci. Rep.2020406BSR2019279410.1042/BSR2019279432484208
    [Google Scholar]
  108. HuangH. HuangX. LuoS. ZhangH. HuF. ChenR. HuangC. SuZ. The MicroRNA MiR-29c alleviates renal fibrosis via TPM1-mediated suppression of the Wnt/β-catenin pathway.Front. Physiol.20201133110.3389/fphys.2020.0033132346368
    [Google Scholar]
  109. LiD. LuZ. JiaJ. ZhengZ. LinS. MiR-124 is related to podocytic adhesive capacity damage in STZ-induced uninephrectomized diabetic rats.Kidney Blood Press. Res.2013374-542243110.1159/00035572124247359
    [Google Scholar]
  110. LiD. LuZ. JiaJ. ZhengZ. LinS. Curcumin ameliorates Podocytic adhesive capacity damage under mechanical stress by inhibiting miR-124 expression.Kidney Blood Press. Res.2013381617110.1159/00035575524556741
    [Google Scholar]
  111. MingL. NingJ. GeY. ZhangY. RuanZ. Excessive apoptosis of podocytes caused by dysregulation of microRNA‐182‐5p and CD2AP confers to an increased risk of diabetic nephropathy.J. Cell. Biochem.201912010165161652310.1002/jcb.2891131131477
    [Google Scholar]
  112. ChenB. HeQ. miR-1187 induces podocyte injury and diabetic nephropathy through autophagy.Diab. Vasc. Dis. Res.20232031479164123117213910.1177/1479164123117213937208852
    [Google Scholar]
  113. LiuF. GuoJ. QiaoY. PanS. DuanJ. LiuD. LiuZ. MiR‐138 plays an important role in diabetic nephropathy through SIRT1–p38–TTP regulatory axis.J. Cell. Physiol.202123696607661810.1002/jcp.3023833843045
    [Google Scholar]
  114. WuG.J. ZhaoH.B. ZhangX.W. Death-associated protein kinase 1 correlates with podocyte apoptosis and renal damage and can be mediated by miR-361.Histol. Histopathol.202136111155116734269397
    [Google Scholar]
  115. ChenZ. LiangW. HuJ. ZhuZ. FengJ. MaY. YangQ. DingG. Sirt6 deficiency contributes to mitochondrial fission and oxidative damage in podocytes via ROCK1‐Drp1 signalling pathway.Cell Prolif.20225510e1329610.1111/cpr.1329635842903
    [Google Scholar]
  116. ZhangZ. HuangH. TaoY. LiuH. FanY. Sirt6 ameliorates high glucose-induced podocyte cytoskeleton remodeling via the PI3K/AKT signaling pathway.Ren. Fail.2024462241039610.1080/0886022X.2024.241039639378103
    [Google Scholar]
  117. WangY. DaiS. YangJ. MaJ. WangP. ZhaoX. LiuJ. XiaoA. SongY. GaoL. MiR-33a overexpression exacerbates diabetic nephropathy through Sirt6-dependent notch signaling.Iran. J. Kidney Dis.202418316817838904337
    [Google Scholar]
  118. RadcliffeN.J. SeahJ. ClarkeM. MacIsaacR.J. JerumsG. EkinciE.I. Clinical predictive factors in diabetic kidney disease progression.J. Diabetes Investig.20178161810.1111/jdi.1253327181363
    [Google Scholar]
  119. ForbesA. GallagherH. Chronic kidney disease in adults: Assessment and management.Clin. Med.202020212813210.7861/clinmed.cg.20.232165439
    [Google Scholar]
  120. YamanouchiM. FuruichiK. HoshinoJ. ToyamaT. HaraA. ShimizuM. KinowakiK. FujiiT. OhashiK. YuzawaY. KitamuraH. SuzukiY. SatoH. UesugiN. HisanoS. UedaY. NishiS. YokoyamaH. NishinoT. SamejimaK. KohaguraK. ShibagakiY. MiseK. MakinoH. MatsuoS. UbaraY. WadaT. Research Group of Diabetic Nephropathy, the Ministry of Health, Labour and Welfare, and the Japan Agency for Medical Research and Development Nonproteinuric versus proteinuric phenotypes in diabetic kidney disease: A propensity score–matched analysis of a nationwide, biopsy-based cohort study.Diabetes Care201942589190210.2337/dc18‑132030833372
    [Google Scholar]
  121. RoblesN.R. VillaJ. FelixF.J. Fernandez-BergesD. LozanoL. Non-proteinuric diabetic nephropathy is the main cause of chronic kidney disease: Results of a general population survey in Spain.Diabetes Metab. Syndr.201711Suppl. 2S777S78110.1016/j.dsx.2017.05.01628602847
    [Google Scholar]
  122. CocaS.G. YusufB. ShlipakM.G. GargA.X. ParikhC.R. Long-term risk of mortality and other adverse outcomes after acute kidney injury: A systematic review and meta-analysis.Am. J. Kidney Dis.200953696197310.1053/j.ajkd.2008.11.03419346042
    [Google Scholar]
  123. SelbyN.M. TaalM.W. Long-term outcomes after AKI—a major unmet clinical need.Kidney Int.2019951212310.1016/j.kint.2018.09.00530606416
    [Google Scholar]
  124. RognantN. LemoineS. LavilleM. Hadj-AïssaA. DubourgL. Performance of the chronic kidney disease epidemiology collaboration equation to estimate glomerular filtration rate in diabetic patients.Diabetes Care20113461320132210.2337/dc11‑020321540431
    [Google Scholar]
  125. NakamuraK. HernándezG. SharmaG.G. WadaY. BanwaitJ.K. GonzálezN. PereaJ. BalaguerF. TakamaruH. SaitoY. ToiyamaY. KoderaY. BolandC.R. BujandaL. QuinteroE. GoelA. A liquid biopsy signature for the detection of patients with early-onset colorectal cancer.Gastroenterology2022163512421251.e210.1053/j.gastro.2022.06.08935850198
    [Google Scholar]
  126. ShahidS. ShahidW. ShaheenJ. AkhtarM.W. SadafS. Circulating miR-146a expression as a non-invasive predictive biomarker for acute lymphoblastic leukemia.Sci. Rep.20211112278310.1038/s41598‑021‑02257‑434815474
    [Google Scholar]
  127. SakumaH. MaruyamaK. AonumaT. KobayashiY. HayasakaT. KanoK. KawaguchiS. NakajimaK. KawabeJ. HasebeN. NakagawaN. Inducible deletion of microRNA activity in kidney mesenchymal cells exacerbates renal fibrosis.Sci. Rep.20241411096310.1038/s41598‑024‑61560‑y38745066
    [Google Scholar]
  128. KatoM. CastroN.E. NatarajanR. MicroRNAs: Potential mediators and biomarkers of diabetic complications.Free Radic. Biol. Med.201364859410.1016/j.freeradbiomed.2013.06.00923770198
    [Google Scholar]
  129. ZoubirK. DescampsV. AubryA. HelleF. FrancoisC. CastelainS. BrochotE. DemeyB. Comparison of two RT-qPCR methods targeting BK polyomavirus microRNAs in kidney transplant recipients.Front. Med.202310128162510.3389/fmed.2023.128162538093979
    [Google Scholar]
  130. MilasO. GadaleanF. VladA. DumitrascuV. GluhovschiC. GluhovschiG. VelciovS. PopescuR. BobF. MatuszP. PusztaiA.M. CretuO.M. SecaraA. SimulescuA. UrsoniuS. VladD. PetricaL. Deregulated profiles of urinary microRNAs may explain podocyte injury and proximal tubule dysfunction in normoalbuminuric patients with type 2 diabetes mellitus.J. Investig. Med.201866474775410.1136/jim‑2017‑00055629279420
    [Google Scholar]
  131. MishraA. BhartiP.S. RaniN. NikolajeffF. KumarS. A tale of exosomes and their implication in cancer.Biochim. Biophys. Acta Rev. Cancer20231878418890810.1016/j.bbcan.2023.18890837172650
    [Google Scholar]
  132. HanL. WangS. LiJ. ZhaoL. ZhouH. Urinary exosomes from patients with diabetic kidney disease induced podocyte apoptosis via microRNA-145-5p/Srgap2 and the RhoA/ROCK pathway.Exp. Mol. Pathol.202313410487710.1016/j.yexmp.2023.10487737952894
    [Google Scholar]
  133. LiJ. LiuB. XueH. ZhouQ.Q. PengL. miR-217 is a useful diagnostic biomarker and regulates human podocyte cells apoptosis via targeting TNFSF11 in membranous nephropathy.BioMed Res. Int.201720171910.1155/2017/216876729214160
    [Google Scholar]
  134. López-MartínezM. ArmengolM.P. PeyI. FarréX. Rodríguez-MartínezP. FerrerM. PorriniE. Luis-LimaS. Díaz-MartínL. Rodríguez-RodríguezA.E. Cruz-PereraC. AlcaldeM. Navarro-DíazM. Integrated miRNA–mRNA analysis reveals critical mirnas and targets in diet-induced obesity-related glomerulopathy.Int. J. Mol. Sci.20242512643710.3390/ijms2512643738928144
    [Google Scholar]
  135. ZoungasS. PatelA. ChalmersJ. de GalanB.E. LiQ. BillotL. WoodwardM. NinomiyaT. NealB. MacMahonS. GrobbeeD.E. KengneA.P. MarreM. HellerS. ADVANCE Collaborative Group Severe hypoglycemia and risks of vascular events and death.N. Engl. J. Med.2010363151410141810.1056/NEJMoa100379520925543
    [Google Scholar]
  136. BangaloreS. KumarS. MesserliF.H. Angiotensin-converting enzyme inhibitor associated cough: Deceptive information from the Physicians’ Desk Reference.Am. J. Med.2010123111016103010.1016/j.amjmed.2010.06.01421035591
    [Google Scholar]
  137. GriffinS.J. Borch-JohnsenK. DaviesM.J. KhuntiK. RuttenG.E.H.M. SandbækA. SharpS.J. SimmonsR.K. van den DonkM. WarehamN.J. LauritzenT. Effect of early intensive multifactorial therapy on 5-year cardiovascular outcomes in individuals with type 2 diabetes detected by screening (ADDITION-Europe): A cluster-randomised trial.Lancet2011378978615616710.1016/S0140‑6736(11)60698‑321705063
    [Google Scholar]
  138. AnsquerJ.C. DaltonR.N. CausséE. CrimetD. Le MalicotK. FoucherC. Effect of fenofibrate on kidney function: A 6-week randomized crossover trial in healthy people.Am. J. Kidney Dis.200851690491310.1053/j.ajkd.2008.01.01418501783
    [Google Scholar]
  139. DuanY.R. ChenB.P. ChenF. YangS.X. ZhuC.Y. MaY.L. LiY. ShiJ. Exosomal microRNA-16-5p from human urine-derived stem cells ameliorates diabetic nephropathy through protection of podocyte.J. Cell. Mol. Med.20212523107981081310.1111/jcmm.1455831568645
    [Google Scholar]
  140. WangZ. SunW. LiR. LiuY. miRNA-93-5p in exosomes derived from M2 macrophages improves lipopolysaccharide-induced podocyte apoptosis by targeting Toll-like receptor 4.Bioengineered20221337683769610.1080/21655979.2021.202379435291915
    [Google Scholar]
  141. ZhaoT. JinQ. KongL. ZhangD. TengY. LinL. YaoX. JinY. LiM. microRNA-15b-5p shuttled by mesenchymal stem cell-derived extracellular vesicles protects podocytes from diabetic nephropathy via downregulation of VEGF/PDK4 axis.J. Bioenerg. Biomembr.2022541173010.1007/s10863‑021‑09919‑y34806156
    [Google Scholar]
  142. D’AddioF. TrevisaniA. Ben NasrM. BassiR. El EssawyB. AbdiR. SecchiA. FiorinaP. Harnessing the immunological properties of stem cells as a therapeutic option for diabetic nephropathy.Acta Diabetol.201451689790410.1007/s00592‑014‑0603‑124894496
    [Google Scholar]
  143. SunJ. ZhaoF. ZhangW. LvJ. LvJ. YinA. BMSC s and miR-124a ameliorated diabetic nephropathy via inhibiting notch signalling pathway.J. Cell. Mol. Med.201822104840485510.1111/jcmm.1374730024097
    [Google Scholar]
  144. SunJ. LvJ. ZhangW. LiL. LvJ. GengY. YinA. Combination with miR-124a improves the protective action of BMSCs in rescuing injured rat podocytes from abnormal apoptosis and autophagy.J. Cell. Biochem.201811997166717610.1002/jcb.2677129904949
    [Google Scholar]
  145. GaoJ. LiangZ. ZhaoF. LiuX. MaN. Triptolide inhibits oxidative stress and inflammation via the microRNA-155-5p/brain-derived neurotrophic factor to reduce podocyte injury in mice with diabetic nephropathy.Bioengineered2022135122751228810.1080/21655979.2022.206729335603354
    [Google Scholar]
  146. HeM. WangJ. YinZ. ZhaoY. HouH. FanJ. LiH. WenZ. TangJ. WangY. WangD.W. ChenC. MiR-320a induces diabetic nephropathy via inhibiting MafB.Aging201911103055307910.18632/aging.10196231102503
    [Google Scholar]
  147. WangW. NanY. PanZ.H. PuM. Morphological evaluation of retinal ganglion cells expressing the L132C/T159C ChR2 mutant transgene in young adult cynomolgus monkeys.Sci. China Life Sci.201760111157116710.1007/s11427‑017‑9055‑x28550523
    [Google Scholar]
  148. WangP. YangJ. DaiS. GaoP. QiY. ZhaoX. LiuJ. WangY. GaoY. miRNA-193a-mediated WT1 suppression triggers podocyte injury through activation of the EZH2/β-catenin/NLRP3 pathway in children with diabetic nephropathy.Exp. Cell Res.2024442211423810.1016/j.yexcr.2024.11423839251057
    [Google Scholar]
  149. KimS.K. BaeG.S. BaeT. KuS.K. ChoiB. KwakM.K. Renal microRNA-144-3p is associated with transforming growth factor-β1-induced oxidative stress and fibrosis by suppressing the NRF2 pathway in hypertensive diabetic kidney disease.Free Radic. Biol. Med.202422554655910.1016/j.freeradbiomed.2024.10.28639423929
    [Google Scholar]
  150. ZhangZ.W. TangM.Q. LiuW. SongY. GaoM.J. NiP. ZhangD.D. MoQ. ZhaoB.Q. Dapagliflozin prevents kidney podocytes pyroptosis via miR-155-5p/HO-1/NLRP3 axis modulation.Int. Immunopharmacol.202413111178510.1016/j.intimp.2024.11178538479158
    [Google Scholar]
  151. GuoK. LiY. XuanC. HouZ. YeS. LiL. ChenL. HanL. BianH. Yiqi Yangyin Huazhuo Tongluo Formula alleviates diabetic podocyte injury by regulating miR-21a-5p/FoxO1/PINK1-mediated mitochondrial autophagy.Nan Fang Yi Ke Da Xue Xue Bao2025451273439819709
    [Google Scholar]
  152. BadalS.S. WangY. LongJ. CorcoranD.L. ChangB.H. TruongL.D. KanwarY.S. OverbeekP.A. DaneshF.R. miR-93 regulates Msk2-mediated chromatin remodelling in diabetic nephropathy.Nat. Commun.2016711207610.1038/ncomms1207627350436
    [Google Scholar]
  153. JiJ. ShiH. LiZ. JinR. QuG. ZhengH. WangE. QiaoY. LiX. DingL. DingD. DingL. GanW. WangB. ZhangA. Satellite cell-derived exosome-mediated delivery of microRNA-23a/27a/26a cluster ameliorates the renal tubulointerstitial fibrosis in mouse diabetic nephropathy.Acta Pharmacol. Sin.202344122455246810.1038/s41401‑023‑01140‑437596398
    [Google Scholar]
  154. IchiiO. Otsuka-KanazawaS. NakamuraT. UenoM. KonY. ChenW. RosenbergA.Z. KoppJ.B. Podocyte injury caused by indoxyl sulfate, a uremic toxin and aryl-hydrocarbon receptor ligand.PLoS One201499e10844810.1371/journal.pone.010844825244654
    [Google Scholar]
  155. WangY.N. MiaoH. YuX.Y. GuoY. SuW. LiuF. CaoG. ZhaoY.Y. Oxidative stress and inflammation are mediated via aryl hydrocarbon receptor signalling in idiopathic membranous nephropathy.Free Radic. Biol. Med.20232078910610.1016/j.freeradbiomed.2023.07.01437451370
    [Google Scholar]
  156. MiaoH. WangY.N. YuX.Y. ZouL. GuoY. SuW. LiuF. CaoG. ZhaoY.Y. Lactobacillus species ameliorate membranous nephropathy through inhibiting the aryl hydrocarbon receptor pathway via tryptophan‐produced indole metabolites.Br. J. Pharmacol.2024181116217910.1111/bph.1621937594378
    [Google Scholar]
  157. YANGJ N. Research progress in effect of mirna on podocyte injury in diabetic nephropathy and its mechanism.J. Jilin Univ.2023490616771682
    [Google Scholar]
/content/journals/cmp/10.2174/0118761429363169250313083148
Loading
/content/journals/cmp/10.2174/0118761429363169250313083148
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test