Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702

Abstract

Introduction

This study investigates the effects and mechanisms of (SSF) on passive avoidance learning and memory deficits induced by composite amyloid-β proteins (Aβ) the MEK-ERK-CREB signaling pathway in rats based on network pharmacology and bioinformatics.

Methods

Network pharmacology and bioinformatics identified target pathways. An Alzheimer's disease model was induced in male wistar rats using Aβ, AlCl, and RHTGF-β(referred to as compound Aβ). Memory impairment was confirmed with the Morris water maze. Modeled rats were assigned to a control group and three SSF-treated groups for 33 days. Passive avoidance learning abilities were assessed with a step-down test, and p-creb-ser133 expression in the hippocampus was detected immunohistochemistry. Real-time qPCR and western blotting measured mRNA and protein levels of c-Raf, MEKs, Rsk, and zif268 in the hippocampus and cortex.

Results

Pathways such as the calcium signaling pathway, Apelin signaling pathway and cAMP signaling pathway were highlighted by KEGG analysis. The model had an 83.30% success rate. Model rats showed dry coats and unresponsiveness, while SSF treatment improved appearance and behavior. In passive avoidance tests, model rats made more errors and had shorter latencies (P < 0.01). They also showed decreased p-CREB-Ser133 and increased c-Raf, Rsk, and P-MEKs levels (P < 0.01), with reduced Zif268 (P < 0.01). SSF reversed these effects, enhancing p-CREB-Ser133 and Zif268 while regulating c-Raf, Rsk, and P-MEKs (P < 0.01).

Conclusion

SSF ameliorates learning and memory impairments induced by composite Aβ, acting through the MEK-ERK-CREB pathway in rats.

© 2024 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmp/10.2174/0118761429381010250512060455
2024-01-01
2025-09-27
Loading full text...

Full text loading...

/deliver/fulltext/cmp/17/1/CMP-17-E18761429381010.html?itemId=/content/journals/cmp/10.2174/0118761429381010250512060455&mimeType=html&fmt=ahah

References

  1. PrinceM. AliG.C. GuerchetM. PrinaA.M. AlbaneseE. WuY.T. Recent global trends in the prevalence and incidence of dementia, and survival with dementia.Alzheimers Res. Ther.2016812310.1186/s13195‑016‑0188‑827473681
    [Google Scholar]
  2. ScheltensP. De StrooperB. KivipeltoM. HolstegeH. ChételatG. TeunissenC.E. CummingsJ. van der FlierW.M. Alzheimer’s disease.Lancet2021397102841577159010.1016/S0140‑6736(20)32205‑433667416
    [Google Scholar]
  3. NaderiS. KhodagholiF. JanahmadiM. MotamediF. TorabiA. BatoolZ. HeydarabadiM.F. PourbadieH.G. Ferroptosis and cognitive impairment: Unraveling the link and potential therapeutic targets.Neuropharmacology202526311021010.1016/j.neuropharm.2024.11021039521042
    [Google Scholar]
  4. WanY.W. Al-OuranR. MangleburgC.G. PerumalT.M. LeeT.V. AllisonK. SwarupV. FunkC.C. GaiteriC. AllenM. WangM. NeunerS.M. KaczorowskiC.C. PhilipV.M. HowellG.R. Martini-StoicaH. ZhengH. MeiH. ZhongX. KimJ.W. DawsonV.L. DawsonT.M. PaoP.C. TsaiL.H. Haure-MirandeJ.V. EhrlichM.E. ChakrabartyP. LevitesY. WangX. DammerE.B. SrivastavaG. MukherjeeS. SiebertsS.K. OmbergL. DangK.D. EddyJ.A. SnyderP. ChaeY. AmberkarS. WeiW. HideW. PreussC. ErgunA. EbertP.J. AireyD.C. MostafaviS. YuL. KleinH.U. CarterG.W. CollierD.A. GoldeT.E. LeveyA.I. BennettD.A. EstradaK. TownsendT.M. ZhangB. SchadtE. De JagerP.L. PriceN.D. Ertekin-TanerN. LiuZ. ShulmanJ.M. MangraviteL.M. LogsdonB.A. Meta-analysis of the Alzheimer’s disease human brain transcriptome and functional dissection in mouse models.Cell Rep.202032210790810.1016/j.celrep.2020.10790832668255
    [Google Scholar]
  5. WalshD.M. KlyubinI. ShankarG.M. TownsendM. FadeevaJ.V. BettsV. PodlisnyM.B. ClearyJ.P. AsheK.H. RowanM.J. SelkoeD.J. The role of cell-derived oligomers of Aβ in Alzheimer’s disease and avenues for therapeutic intervention.Biochem. Soc. Trans.20053351087109010.1042/BST033108716246051
    [Google Scholar]
  6. YanC. GuJ. YinS. WuH. LeiX. GengF. ZhangN. WuX. Design and preparation of naringenin loaded functional biomimetic nano-drug delivery system for Alzheimer’s disease.J. Drug Target.2024321809210.1080/1061186X.2023.229045338044844
    [Google Scholar]
  7. XiaoguangW. JianjunC. QinyingC. HuiZ. LukunY. YazhenS. Establishment of a valuable mimic of Alzheimer’s disease in rat animal model by intracerebroventricular injection of composited amyloid beta protein.J. Vis. Exp.20181375615710.3791/5615730102270
    [Google Scholar]
  8. ShangY.Z. GongM.Y. ZhouX.X. LiS.T. WangB.Y. Improving effects of SSF on memory deficits and pathological changes of neural and immunological systems in senescent mice.Acta Pharmacol. Sin.200122121078108311749803
    [Google Scholar]
  9. ZhuM. SunY. SuY. GuanW. WangY. HanJ. WangS. YangB. WangQ. KuangH. Luteolin: A promising multifunctional natural flavonoid for human diseases.Phytother. Res.20243873417344310.1002/ptr.821738666435
    [Google Scholar]
  10. ShangY-Z. LiuQ-Q. DingS-K. ZhangH. The molecular mechanism of Scutellaria baicalensis georgi stems and leaves flavonoids in promoting neurogenesis and improving memory impairment by the PI3K-AKT-CREB signaling pathway in rats.Comb. Chem. High Throughput Screen.202225591993310.2174/138620732466621050615232033966617
    [Google Scholar]
  11. ShengkaiD. QianqianL. YazhenS. The effects and regulatory mechanism of flavonoids from stems and leaves of Scutellaria baicalensis georgi in promoting neurogenesis and improving memory impairment mediated by the BDNF-ERK-CREB signaling pathway in rats.CNS Neurol. Disord. Drug Targets202221435436610.2174/187152732066621082711204834455975
    [Google Scholar]
  12. WangN. TangL. DuanR. ShuY. Investigating the mechanism of hedysarum multijugum maxim in the treatment of liver cancer through network pharmacology and molecular docking validation.Oncology202412410.1159/00054299039681091
    [Google Scholar]
  13. OhK.K. YoonS.J. SongS.H. ParkJ.H. KimJ.S. KimM.J. KwonG.H. KimD.J. SukK.T. The interdisciplinary approach to investigate bona fide agent(s) in flavonoids or alkaloids in treating HCC.Artif. Cells Nanomed. Biotechnol.202452150051110.1080/21691401.2024.241353639387711
    [Google Scholar]
  14. Harigua-SouiaiE. MasmoudiO. MakniS. OualhaR. AbdelkrimY.Z. HamdiS. SouiaiO. GuizaniI. cidalsDB: An AI-empowered platform for anti-pathogen therapeutics research.J. Cheminform.202416113410.1186/s13321‑024‑00929‑739609715
    [Google Scholar]
  15. GaoY. WuM. RizviS.A.A. WeiQ. Exploring the key pathogenic mechanisms and potential intervention targets for Sophorae Flavescentis radix in managing bone metastasis of lung cancer based on network pharmacology and molecular docking techniques.Transl. Cancer Res.202413105616562610.21037/tcr‑24‑194739524998
    [Google Scholar]
  16. YaoY. LiuQ. DingS. ChenY. SongT. ShangY. Scutellaria baicalensis Georgi stems and leaves flavonoids promote neuroregeneration and ameliorate memory loss in rats through cAMP-PKA-CREB signaling pathway based on network pharmacology and bioinformatics analysis.Heliyon2024106e2716110.1016/j.heliyon.2024.e2716138533079
    [Google Scholar]
  17. WangZ. FangL. HanM. LiuK. ZhengY. ZhanY. Exploring the mechanism of avenanthramide in the treatment of atherosclerosis based on network pharmacology and molecular docking: An observational study.Medicine202410351e4093210.1097/MD.000000000004093239705422
    [Google Scholar]
  18. DubeyP. Manjit RaniA. MittalN. MishraB. In-silico exploration of Attukal Kizhangu L. compounds: Promising candidates for periodontitis treatment.Comput. Biol. Chem.202411310818610.1016/j.compbiolchem.2024.10818639255627
    [Google Scholar]
  19. XieA. LiW. YeD. YinY. WangR. WangM. YuR. Sodium propionate alleviates atopic dermatitis by inhibiting ferroptosis via activation of LTBP2/FABP4 signaling pathway.J. Inflamm. Res.202417100471006410.2147/JIR.S49527139634285
    [Google Scholar]
  20. HussainM. KanwalN. JahangirA. AliN. HanifN. UllahO. Computational modeling of cyclotides as antimicrobial agents against Neisseria gonorrhoeae PorB porin protein: Integration of docking, immune, and molecular dynamics simulations.Front Chem.202412149316510.3389/fchem.2024.149316539659871
    [Google Scholar]
  21. Shahin-ShamsabadiA. CappuccittiJ. Proteomics and machine learning: Leveraging domain knowledge for feature selection in a skeletal muscle tissue meta-analysis.Heliyon20241024e4077210.1016/j.heliyon.2024.e4077239720035
    [Google Scholar]
  22. YueJ. LiT. XuJ. ChenZ. LiY. LiangS. LiuZ. WangY. Discovery of anticancer peptides from natural and generated sequences using deep learning.Int. J. Biol. Macromol.202529013888010.1016/j.ijbiomac.2024.13888039706427
    [Google Scholar]
  23. TianL. ZhouN. ZhaoN. QiaoM. HeM. MaoZ. XuW. XuD. WangY. XuY. ChenT. Low level exposure to BDE-47 facilitates the development of prostate cancer through TOP2A/LDHA/lactylation positive feedback circuit.Environ. Res.2024263Pt 212009410.1016/j.envres.2024.12009439362459
    [Google Scholar]
  24. Torres-BonillaK.A. Bayona-SerranoJ.D. Sáenz-SuarezP.A. Venom proteomics and Duvernoy’s venom gland histology of Pseudoboa neuwiedii (Neuwied’s false boa; Dipsadidae, Pseudoboini).Toxicon202410821810.1016/j.toxicon.2024.10821839706372
    [Google Scholar]
  25. ZhengL. WeiZ. NiX. ShangJ. LiuF. PengY. LiuJ. LiY. Exploring the therapeutic potential of Xiangsha Liujunzi Wan in Crohn’s disease: From network pharmacology approach to experimental validation.J. Ethnopharmacol.2025337Pt 211886310.1016/j.jep.2024.11886339343107
    [Google Scholar]
  26. XinL. FengH.C. ZhangQ. CenX.L. HuangR.R. TanG.Y. ZhangQ. Exploring the osteogenic effects of simiao wan through activation of the PI3K/AKT pathway in osteoblasts.J. Ethnopharmacol.2025338Pt 111902310.1016/j.jep.2024.11902339489361
    [Google Scholar]
  27. ChenY. FuY. ZouH. WangP. XuY. XieQ. Network pharmacology and molecular docking reveal the mechanism of action of Bergapten against non‑small cell lung cancer.Oncol. Lett.20242928710.3892/ol.2024.1483339677411
    [Google Scholar]
  28. WangY. PengM. YangX. TuL. LiuJ. YangY. LiR. TangX. HuY. ZhangG. ZhaoQ. LuQ. Total alkaloids in Fritillaria cirrhosa D. Don alleviate OVA-induced allergic asthma by inhibiting M2 macrophage polarization.J. Ethnopharmacol.2025337Pt 311893510.1016/j.jep.2024.11893539396718
    [Google Scholar]
  29. LinX. ZhangC. HuangB. Hepatoprotective action mechanism and quantification of soyasaponin Bb in Abri Herba by HPLC and network pharmacology.J. Ethnopharmacol.2025337Pt 211885010.1016/j.jep.2024.11885039322020
    [Google Scholar]
  30. LinX.X. YangP.Q. LiX.J. XuZ.Z. WuH.T. HuS.M. YangX.L. DingY. YuW.Z. Network pharmacology‑based analysis and in vitro experimental verification of the inhibitory role of luteoloside on gastric cancer cells via the p53/p21 pathway.Oncol. Lett.20242927610.3892/ol.2024.1482239650229
    [Google Scholar]
  31. FengS. LiS. WuZ. LiY. WuT. ZhouZ. LiuX. ChenJ. FuS. WangZ. ZhongZ. ZhongY. Saffron improves the efficacy of immunotherapy for colorectal cancer through the IL-17 signaling pathway.J. Ethnopharmacol.2025337Pt 211885410.1016/j.jep.2024.11885439326815
    [Google Scholar]
  32. HanX. ZhangY. ZhangF. LiX. MengY. HuoJ. ChenM. LiuF. WangW. WangN. Network pharmacology and phytochemical composition combined with validation in vivo and in vitro reveal the mechanism of platycodonis radix ameliorating PM2.5-induced acute lung injury.J. Ethnopharmacol.2025337Pt 111882910.1016/j.jep.2024.11882939278295
    [Google Scholar]
  33. LinX. ChenG.B. LiK.Y. XuY.J. Causal relationship between IgA nephropathy and common neuropsychiatric disorders: A two-sample Mendelian randomization analysis.J. Affect. Disord.202536978278810.1016/j.jad.2024.10.01239419190
    [Google Scholar]
  34. LiangH. ZhouB. LiP. ZhangX. ZhangS. ZhangY. YaoS. QuS. ChenJ. Stemness regulation in prostate cancer: Prostate cancer stem cells and targeted therapy.Ann. Med.2025571244206710.1080/07853890.2024.244206739711287
    [Google Scholar]
  35. YangJ. WuJ. XieX. XiaP. LuJ. LiuJ. BaiL. LiX. YuZ. LiH. Perilipin-2 mediates ferroptosis in oligodendrocyte progenitor cells and myelin injury after ischemic stroke.Neural Regen. Res.20252072015202810.4103/NRR.NRR‑D‑23‑0154039254564
    [Google Scholar]
  36. PanH. WangG. BiZ. LaiC. WangM. Identification of key neutrophil extracellular trap genes in Alzheimer’s disease.J. Alzheimers Dis.202410241027104110.1177/1387287724129537439584744
    [Google Scholar]
  37. LiJ. LiL. CaiS. SongK. HuS. Identification of novel risk genes for Alzheimer’s disease by integrating genetics from hippocampus.Sci. Rep.20241412748410.1038/s41598‑024‑78181‑039523385
    [Google Scholar]
  38. LiuT. HouK. LiJ. HanT. LiuS. WeiJ. Alzheimer’s disease and aging association: Identification and validation of related genes.J. Prev. Alzheimers Dis.202411119621310.14283/jpad.2023.10138230733
    [Google Scholar]
  39. ZhangJ. LiX. XiaoJ. XiangY. YeF. Analysis of gene expression profiles in Alzheimer’s disease patients with different lifespan: A bioinformatics study focusing on the disease heterogeneity.Front. Aging Neurosci.202315107218410.3389/fnagi.2023.107218436909942
    [Google Scholar]
  40. ZhaoK. WenQ. LiQ. LiP. LiuT. ZhuF. TanQ. ZhangL. Identification of oxidative stress-related hub genes for predicting prognosis in diffuse large B-cell lymphoma.Gene202593514907710.1016/j.gene.2024.14907739500385
    [Google Scholar]
  41. TangY. YangY. LuoF. LuoJ. HuJ. YuH. LiW. GaoJ. FuF. Identification of novel natural anti-browning agents based on phenotypic and metabolites differences in potato cultivars.Food Chem.2025463Pt 414145010.1016/j.foodchem.2024.14145039362095
    [Google Scholar]
  42. SongT. ChenY. LiC. YaoY. MaS. ShangY. ChengJ. Identification of molecular correlations of GSDMD with pyroptosis in Alzheimer’s disease.Comb. Chem. High Throughput Screen.202427142125213910.2174/011386207328549724022606193639099451
    [Google Scholar]
  43. LongY. HuangF. ZhangJ. ZhangJ. ChengR. ZhuL. ChenQ. YangD. PanX. YangW. QinM. HuangJ. Identification of SUMOylation-related signature genes associated with immune infiltration in ulcerative colitis through bioinformatics analysis and experimental validation.Gene202593514899610.1016/j.gene.2024.14899639395728
    [Google Scholar]
  44. LiuJ. FanJ. DuanH. ChenG. ZhangW. WangP. Identification and validation of susceptibility modules and hub genes in polyarticular juvenile idiopathic arthritis using WGCNA and machine learning.Autoimmunity2025581243723910.1080/08916934.2024.243723939699225
    [Google Scholar]
  45. WangY. FuY. Identification of circRNA-miRNA-mRNA networks to explore underlying mechanism in lung cancer.Health Inf. Sci. Syst.2024131510.1007/s13755‑024‑00318‑239676897
    [Google Scholar]
  46. YangC. GaoJ. GongK. MaQ. ChenG. Comprehensive analysis of hub mRNA, lncRNA and miRNA, and associated ceRNA networks implicated in cobia (Rachycentron canadum) scales under hypoosmotic adaption.Comp. Biochem. Physiol. Part D Genomics Proteomics20255310135310.1016/j.cbd.2024.10135339586219
    [Google Scholar]
  47. ZhanX. LiY. SongZ. LiX. YeL. LinM. WangR. SunL. FangJ. ChenD. QiX. Comparative transcriptome analysis and transient assays revealed AaGST and AaBGAL, respectively, contribute to skin and flesh coloration in A. arguta.Gene202593714914310.1016/j.gene.2024.14914339643145
    [Google Scholar]
  48. shenZ. ZhaoY. XuX. YangH. HeS. MaJ. ZhangS. HouP. SuiF. Single-cell RNA sequencing integrated with bulk RNA sequencing analysis of clock circadian regulator with prognostic and immune microenvironment in thyroid cancer.Transl. Oncol.20255310229910.1016/j.tranon.2025.10229939892222
    [Google Scholar]
  49. TaheriP. YaghmaeiP. HajebrahimiZ. ParivarK. Neuroprotective effects of nerolidol against Alzheimer’s disease in Wistar rats.Drug Dev. Res.20228381858186610.1002/ddr.2200236321205
    [Google Scholar]
  50. SzalkowskiC.E. BookerA.B. TruongD.T. ThrelkeldS.W. RosenG.D. FitchR.H. Knockdown of the candidate dyslexia susceptibility gene homolog dyx1c1 in rodents: Effects on auditory processing, visual attention, and cortical and thalamic anatomy.Dev. Neurosci.2013351506810.1159/00034843123594585
    [Google Scholar]
  51. ZhangH. LiuQ. DingS. LiH. ShangY.Z. Flavonoids from stems and leaves of Scutellaria Baicalensis georgi improve composited Aβ-induced Alzheimer’s disease model rats’ memory and neuroplasticity disorders.Comb. Chem. High Throughput Screen.20232681519153210.2174/138620732566622100309262736200197
    [Google Scholar]
  52. ChengJ.J. GuoQ. WuX.G. MaS. GaoY. Ya-ZhenS. Scutellaria barbata flavonoids improve the composited Aβ-induced abnormal changes in glial cells of the brains of rats.Comb. Chem. High Throughput Screen.2021251647610.2174/138620732366620120909235833297910
    [Google Scholar]
  53. SunL. LiC. LiuJ. LiN. HanF. QiaoD. TaoZ. ZhanM. ChenW. ZhangY. ZhengX. Effects of ischemia-hypoperfusion on neuro-vascular units in dual transgenic mice with Alzheimer’s disease.Folia Neuropathol.202260223724910.5114/fn.2022.11727835950476
    [Google Scholar]
  54. DhurandharY. TomarS. NamdeoK.P. Excitatory amino acids as therapeutic agents: Reversing neurodegenerative trajectory by tackling excitotoxicity.Neurol. Sci.202446254956010.1007/s10072‑024‑07880‑339542999
    [Google Scholar]
  55. LiM. YuQ. AnayyatU. YangH. WeiY. WangX. Rotating magnetic field improved cognitive and memory impairments in a sporadic ad model of mice by regulating microglial polarization.Geroscience20244666229625610.1007/s11357‑024‑01223‑y38904930
    [Google Scholar]
  56. LiH. YangS. WuJ. JiL. ZhuL. CaoL. HuangJ. JiangQ. WeiJ. LiuM. MaoK. WeiN. XieW. YangZ. cAMP/PKA signaling pathway contributes to neuronal apoptosis via regulating IDE expression in a mixed model of type 2 diabetes and Alzheimer’s disease.J. Cell. Biochem.201811921616162610.1002/jcb.2632128771808
    [Google Scholar]
  57. WuJ. HanM. TanX. ZengL. YangZ. ZhongH. JiangX. YaoS. LiuW. LiW. LiuX. WuW. Green synthesis of neuroprotective spirocyclic chalcone derivatives and their role in protecting against traumatic optic nerve injury.Eur. J. Med. Chem.202428011693310.1016/j.ejmech.2024.11693339368262
    [Google Scholar]
  58. GaoY. WangX.Q. MaS. DongY.C. ShangY.Z. Flavonoids from stem and leaf of scutellaria baicalensis georgi inhibit the phosphorylation on multi-sites of tau protein induced by okadaic acid and the regulative mechanism of protein kinases in rats.Comb. Chem. High Throughput Screen.20212471126113610.2174/138620732366620090110123332875975
    [Google Scholar]
  59. ShangY. MiaoG. ZhaoH. GuoK. ChengJ. ZhangS. ZhangX. CaiZ. MiaoH. Mechanisms underlying attenuation of apoptosis of cortical neurons in the hypoxic brain by flavonoids from the stems and leaves of Scutellaria baicalensis Georgi.Neural Regen. Res.20149171592159810.4103/1673‑5374.14178425368645
    [Google Scholar]
  60. ShangY.Z. MiaoH. ChengJ.J. QiJ.M. Effects of amelioration of total flavonoids from stems and leaves of Scutellaria baicalensis Georgi on cognitive deficits, neuronal damage and free radicals disorder induced by cerebral ischemia in rats.Biol. Pharm. Bull.200629480581010.1248/bpb.29.80516595923
    [Google Scholar]
  61. ChengY. TianD.Y. WangY.J. Peripheral clearance of brain-derived Aβ in Alzheimer’s disease: Pathophysiology and therapeutic perspectives.Transl. Neurodegener.2020911610.1186/s40035‑020‑00195‑132381118
    [Google Scholar]
  62. FrozzaR.L. HornA.P. HoppeJ.B. SimãoF. GerhardtD. ComiranR.A. SalbegoC.G. A comparative study of beta-amyloid peptides Abeta1-42 and Abeta25-35 toxicity in organotypic hippocampal slice cultures.Neurochem. Res.200934229530310.1007/s11064‑008‑9776‑818686032
    [Google Scholar]
  63. KawaharaM. KatoM. KurodaY. Effects of aluminum on the neurotoxicity of primary cultured neurons and on the aggregation of β-amyloid protein.Brain Res. Bull.200155221121710.1016/S0361‑9230(01)00475‑011470317
    [Google Scholar]
  64. GaoL. TangQ. HeX. BiM. Effect of icariin on learning and memory abilities and activity of cholinergic system of senescence-accelerated mice SAMP10.Zhongguo Zhongyao Zazhi201237142117212123126196
    [Google Scholar]
  65. Martín-BelmonteA. AguadoC. Alfaro-RuizR. Moreno-MartínezA.E. de la OssaL. AsoE. Gómez-AceroL. ShigemotoR. FukazawaY. CiruelaF. LujánR. Nanoscale alterations in GABAB receptors and GIRK channel organization on the hippocampus of APP/PS1 mice.Alzheimers Res. Ther.202214113610.1186/s13195‑022‑01078‑536131327
    [Google Scholar]
  66. HuangZ. WanC. WangY. QiaoP. ZouQ. MaJ. LiuZ. CaiZ. Anti-cognitive decline by Yinxing-Mihuan-oral-liquid via activating CREB/BDNF signaling and inhibiting neuroinflammatory process.Exp. Aging Res.202147327328710.1080/0361073X.2021.187875633499761
    [Google Scholar]
  67. ZhuX. LeeH. RainaA.K. PerryG. SmithM.A. The role of mitogen-activated protein kinase pathways in Alzheimer’s disease.Neurosignals200211527028110.1159/00006742612566928
    [Google Scholar]
  68. Fritsche-GuentherR. WitzelF. SieberA. HerrR. SchmidtN. BraunS. BrummerT. SersC. BlüthgenN. Strong negative feedback from Erk to Raf confers robustness to MAPK signalling.Mol. Syst. Biol.20117148910.1038/msb.2011.2721613978
    [Google Scholar]
  69. ShohayebB. DiabM. AhmedM. NgD.C.H. Factors that influence adult neurogenesis as potential therapy.Transl. Neurodegener.201871410.1186/s40035‑018‑0109‑929484176
    [Google Scholar]
  70. ZającA. Sumorek-WiadroJ. MaciejczykA. ChojnackiM. WertelI. RzeskiW. Jakubowicz-GilJ. The engagement of Ras/Raf/MEK/ERK and PLCγ1/PKC pathways regulated by TrkB receptor in resistance of glioma cells to elimination upon apoptosis induction.Neuropharmacology202526211020410.1016/j.neuropharm.2024.11020439521041
    [Google Scholar]
  71. RokniM. Sadeghi ShakerM. KavosiH. ShokoofiS. MahmoudiM. FarhadiE. The role of endothelin and RAS/ERK signaling in immunopathogenesis-related fibrosis in patients with systemic sclerosis: An updated review with therapeutic implications.Arthritis Res. Ther.202224110810.1186/s13075‑022‑02787‑w35562771
    [Google Scholar]
  72. LiH. YuD. LiL. XiaoJ. ZhuY. LiuY. MouL. TianY. ChenL. ZhuF. DuanQ. XueP. BCKDK promotes ovarian cancer proliferation and migration by activating the MEK/ERK signaling pathway.J. Oncol.2022202211410.1155/2022/369163535498541
    [Google Scholar]
  73. WengZ.K. LinT.H. ChangK.H. ChiuY.J. LinC.H. TsengP.H. SunY.C. LinW. Lee-ChenG.J. ChenC.M. Using ΔK280 TauRD folding reporter cells to screen TRKB agonists as Alzheimer’s disease treatment strategy.Biomolecules202313221910.3390/biom1302021936830589
    [Google Scholar]
  74. RenaudineauS. PoucetB. LarocheS. DavisS. SaveE. Impaired long-term stability of CA1 place cell representation in mice lacking the transcription factor zif268 / egr1.Proc. Natl. Acad. Sci. USA200910628117711177510.1073/pnas.090048410619556537
    [Google Scholar]
  75. BaiW. WuY. ZhangP. XiY. Correlations between expression levels of thymidylate synthase, thymidine phosphorylase and dihydropyrimidine dehydrogenase, and efficacy of 5-fluorouracil-based chemotherapy for advanced colorectal cancer.Int. J. Clin. Exp. Pathol.2015810123331234526722420
    [Google Scholar]
  76. LaiR. LiJ. HuP. WenJ. JieQ. DongY. PengT. LiuX. XieD. Role of p19ink4d in the pathogenesis of hearing loss.Int. J. Clin. Exp. Pathol.2015810122431225126722409
    [Google Scholar]
  77. ZhengM. FanP. YangP. ZhengJ. ZhaoD. Respiratory syncytial virus nonstructural protein 1 promotes 5-Lipoxygenase via miR-19a-3p.J. Immunol. Res.2022202211010.1155/2022/408671035637792
    [Google Scholar]
/content/journals/cmp/10.2174/0118761429381010250512060455
Loading
/content/journals/cmp/10.2174/0118761429381010250512060455
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test