Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702

Abstract

Introduction:

This work aimed to evaluate the anti-inflammatory and myorelaxant effect of thymol (TM) and carvacrol (CAR) in the pregnant rat uterus. Both compounds exhibit considerable antimicrobial, antispasmodic, and anti-inflammatory effects and due to these properties, they were studied in this model of premature birth induced by infection.

Method:

All uterine tissues were studied in uterine contraction tests to determine the inhibitory effect of TM, CAR (10, 56, 100, 150, and 230 µM), and nifedipine (a calcium channel antagonist) on phasic and tonic contraction induced by electro- and pharmacomechanical stimuli. The quantitative determination of cyclic adenosine monophosphate (cAMP) induced by TM and CAR in the uterine lysate was carried out by ELISA. For the determination of the anti-inflammatory effect of TM, the pro-inflammatory cytokine, interleukin (IL)-1β, in uterine samples stimulated with lipopolysaccharide (LPS) was measured. Forskolin (FSK) was used as a positive control to evaluate the cAMP and cytokine levels. TM, CAR, and nifedipine inhibited the uterine contractions at the highest concentration level, however, nifedipine was the most equipotent (<0.05). In addition, TM and CAR did not increase the intracellular cAMP production in comparison with FSK (<0.05). However, both compounds were able to decrease the LPS-induced production in a concentration-dependent manner that was considered statistically significant (>0.05).

Results:

Finally, both the anti-inflammatory and uterine relaxing effects induced by TM and CAR were neither associated with the increase in cAMP levels nor with the production of IL-1β in pregnant rat uterine samples. Therefore, TM and CAR can be considered as alternative adjuvants for the treatment of infection-induced preterm labor. Before the experiments, an in-silico analysis was conducted using the Expaisy online server to evaluate the biological effects of thymol on uterine contraction.

Conclusion:

It is crucial to know the interaction and identification of genes encoding the Voltage-dependent L-type calcium channel subunit alpha-1C proteins, because of the functional relationship it may have in the inhibition of the uterine contraction. These properties place TM as a potentially safe and effective adjuvant agent in cases of preterm birth, an area of pharmacological treatment that requires urgent improvement.

© 2024 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmp/10.2174/0118761429342128241231163610
2024-01-01
2025-09-27
Loading full text...

Full text loading...

/deliver/fulltext/cmp/17/1/CMP-17-E18761429342128.html?itemId=/content/journals/cmp/10.2174/0118761429342128241231163610&mimeType=html&fmt=ahah

References

  1. OhumaE.O. MollerA.B. BradleyE. ChakweraS. Hussain-AlkhateebL. LewinA. OkwarajiY.B. MahananiW.R. JohanssonE.W. LavinT. FernandezD.E. DomínguezG.G. de CostaA. CresswellJ.A. KrasevecJ. LawnJ.E. BlencoweH. RequejoJ. MoranA.C. National, regional, and global estimates of preterm birth in 2020, with trends from 2010: A systematic analysis.Lancet2023402104091261127110.1016/S0140‑6736(23)00878‑437805217
    [Google Scholar]
  2. ReddyM. McGannonC. MolB.W. Looking back on preterm birth – The successes and failures.Acta Obstet. Gynecol. Scand.2024103341041210.1111/aogs.1473038356249
    [Google Scholar]
  3. RamokoloV. AmabebeE. CohenM.C. AnumbaD.O.C. Editorial: Dialogues on preterm birth—causes and consequences, prevention and mitigation.Front. Glob. Women’s Health.20234124557010.3389/fgwh.2023.124557037711967
    [Google Scholar]
  4. ArmanB.M. BinderN.K. de AlwisN. BeardS. DebruinD.A. HayesA. TongS. Kaitu’u-LinoT.J. HannanN.J. Assessment of the tocolytic nifedipine in preclinical primary models of preterm birth.Sci. Rep.2023131564610.1038/s41598‑023‑31077‑x37024530
    [Google Scholar]
  5. Muñoz-PérezV.M. OrtizM.I. Ponce-MonterH.A. Monter-PérezV. Barragán-RamírezG. Anti-inflammatory and utero-relaxant effect of α-bisabolol on the pregnant human uterus.Korean J. Physiol. Pharmacol.201822439139810.4196/kjpp.2018.22.4.39129962853
    [Google Scholar]
  6. WilsonA. Hodgetts-MortonV.A. MarsonE.J. MarklandA.D. LarkaiE. PapadopoulouA. CoomarasamyA. TobiasA. ChouD. OladapoO.T. PriceM.J. MorrisK. GallosI.D. Tocolytics for delaying preterm birth: A network meta-analysis (0924).Cochrane Database Syst. Rev.202288CD01497835947046
    [Google Scholar]
  7. Gómez-ChávezF. CorreaD. Navarrete-MenesesP. Cancino-DiazJ.C. Cancino-DiazM.E. Rodríguez-MartínezS. NF-κB and its regulators during pregnancy.Front. Immunol.20211267910610.3389/fimmu.2021.67910634025678
    [Google Scholar]
  8. SykesL. MacIntyreD.A. TeohT.G. BennettP.R. Anti-inflammatory prostaglandins for the prevention of preterm labour.Reproduction20141482R29R4010.1530/REP‑13‑058724890751
    [Google Scholar]
  9. LiJ.K.H. LaiP.F. TribeR.M. JohnsonM.R. Transcription factors regulated by cAMP in smooth muscle of the myometrium at human parturition.Biochem. Soc. Trans.2021492997101110.1042/BST2020117333860781
    [Google Scholar]
  10. VarleyA. KoschinskiA. JohnsonM.R. ZaccoloM. cAMP compartmentalisation in human myometrial cells.Cells202312571810.3390/cells1205071836899855
    [Google Scholar]
  11. ZaccoloM. ZerioA. LoboM.J. Subcellular organization of the cAMP signaling pathway.Pharmacol. Rev.202173127830910.1124/pharmrev.120.00008633334857
    [Google Scholar]
  12. SokolM.B. SokhranevaV.A. GrozaN.V. MollaevaM.R. YabbarovN.G. ChirkinaM.V. TrufanovaA.A. PopenkoV.I. NikolskayaE.D. Thymol-modified oleic and linoleic acids encapsulated in polymeric nanoparticles: Enhanced bioactivity, stability, and biomedical potential.Polymers20231617210.3390/polym1601007238201737
    [Google Scholar]
  13. RathodN.B. KulawikP. OzogulF. RegensteinJ.M. OzogulY. Biological activity of plant-based carvacrol and thymol and their impact on human health and food quality.Trends Food Sci. Technol.202111673374810.1016/j.tifs.2021.08.023
    [Google Scholar]
  14. Nagoor MeeranM.F. JavedH. Al TaeeH. AzimullahS. OjhaS.K. Pharmacological properties and molecular mechanisms of thymol: Prospects for its therapeutic potential and pharmaceutical development.Front. Pharmacol.2017838010.3389/fphar.2017.0038028694777
    [Google Scholar]
  15. Abo GhanimaM.M. AlagawanyM. Abd El-HackM.E. TahaA. ElnesrS.S. AjaremJ. AllamA.A. MahmoudA.M. Consequences of various housing systems and dietary supplementation of thymol, carvacrol, and euganol on performance, egg quality, blood chemistry, and antioxidant parameters.Poult. Sci.20209994384439710.1016/j.psj.2020.05.02832867982
    [Google Scholar]
  16. GalliG.M. GerbetR.R. GrissL.G. FortuosoB.F. PetrolliT.G. BoiagoM.M. SouzaC.F. BaldisseraM.D. MesadriJ. WagnerR. da RosaG. MendesR.E. GrisA. Da SilvaA.S. Combination of herbal components (curcumin, carvacrol, thymol, cinnamaldehyde) in broiler chicken feed: Impacts on response parameters, performance, fatty acid profiles, meat quality and control of coccidia and bacteria.Microb. Pathog.202013910391610.1016/j.micpath.2019.10391631812772
    [Google Scholar]
  17. Premrov BajukB. PremL. VakeT. ŽnidaršičN. SnojT. The effect of thymol on acetylcholine-induced contractions of the rat ileum and uterus under ex vivo conditions.Front. Pharmacol.20221399065410.3389/fphar.2022.99065436339611
    [Google Scholar]
  18. Muñoz-PérezV.M. OrtizM.I. Gerardo-MuñozL.S. Cariño-CortésR. Salas-CasasA. Tocolytic effect of the monoterpenic phenol isomer, carvacrol, on the pregnant rat uterus.Chin. J. Physiol.202063520421010.4103/CJP.CJP_56_2033109786
    [Google Scholar]
  19. Muñoz-PérezV.M. Fernández-MartínezE. Ponce-MonterH. OrtizM.I. Relaxant and anti-inflammatory effect of two thalidomide analogs as PDE-4 inhibitors in pregnant rat uterus.Korean J. Physiol. Pharmacol.201721442943710.4196/kjpp.2017.21.4.42928706457
    [Google Scholar]
  20. SehringerB. SchäferW.R. WetzkaB. DeppertW.R. Brunner-SpahrR. BenedekE. ZahradnikH.P. Formation of proinflammatory cytokines in human term myometrium is stimulated by lipopolysaccharide but not by corticotropin-releasing hormone.J. Clin. Endocrinol. Metab.200085124859486510.1210/jc.85.12.485911134154
    [Google Scholar]
  21. FrenetteA.P. Rodríguez-RamosT. ZanuzzoF. RamsayD. SempleS.L. SoullièreC. Rodríguez-CornejoT. HeathG. McKenzieE. IwanczykJ. BruderM. AucoinM.G. GamperlA.K. DixonB. Expression of Interleukin-1β protein in vitro, ex vivo and in vivo salmonid models.Dev. Comp. Immunol.202314710476710.1016/j.dci.2023.10476737406840
    [Google Scholar]
  22. FuentesC. FuentesA. BaratJ.M. RuizM.J. Relevant essential oil components: A minireview on increasing applications and potential toxicity.Toxicol. Mech. Methods202131855956510.1080/15376516.2021.194040834112059
    [Google Scholar]
  23. LiH. JiB. XuT. ZhaoM. ZhangY. SunM. XuZ. GaoQ. Antenatal hypoxia affects pulmonary artery contractile functions via downregulating L‐type Ca 2+ Channels subunit Alpha1 C in adult male offspring.J. Am. Heart Assoc.2021108e01992210.1161/JAHA.120.01992233843249
    [Google Scholar]
  24. KhandreV. PotdarJ. KeertiA. Preterm birth: An overview.Cureus20221412e3300636712773
    [Google Scholar]
  25. GoldenbergR.L. CulhaneJ.F. IamsJ.D. RomeroR. Epidemiology and causes of preterm birth.Lancet20083719606758410.1016/S0140‑6736(08)60074‑418177778
    [Google Scholar]
  26. SimmonsL.E. RubensC.E. DarmstadtG.L. GravettM.G. Preventing preterm birth and neonatal mortality: Exploring the epidemiology, causes, and interventions.Semin. Perinatol.201034640841510.1053/j.semperi.2010.09.00521094415
    [Google Scholar]
  27. NjamenD. MvondoM. DjiogueS. Ketcha WandaG. Magne NdeC. VollmerG. Phytotherapy and women’s reproductive health: The Cameroonian perspective.Planta Med.201379760061110.1055/s‑0032‑132832623539352
    [Google Scholar]
  28. KaratiD. VargheseR. MahadikK.R. SharmaR. KumarD. Plant bioactives in the treatment of inflammation of skeletal muscles: A molecular perspective.Evid. Based Complement. Alternat. Med.2022202211810.1155/2022/429580235911155
    [Google Scholar]
  29. MbemyaG.T. VieiraL.A. CanafistulaF.G. PessoaO.D.L. RodriguesA.P.R. Reports on in vivo and in vitro contribution of medicinal plants to improve the female reproductive function.Reproduction & Climacteric201732210911910.1016/j.recli.2016.11.002
    [Google Scholar]
  30. SalehiB. MishraA.P. ShuklaI. Sharifi-RadM. ContrerasM.M. Segura-CarreteroA. FathiH. NasrabadiN.N. KobarfardF. Sharifi-RadJ. Thymol, thyme, and other plant sources: Health and potential uses.Phytother. Res.20183291688170610.1002/ptr.610929785774
    [Google Scholar]
  31. GarrettA.S. MeansS.A. RoeslerM.W. MillerK.J.W. ChengL.K. ClarkA.R. Modeling and experimental approaches for elucidating multi-scale uterine smooth muscle electro- and mechano-physiology: A review.Front. Physiol.202213101764910.3389/fphys.2022.101764936277190
    [Google Scholar]
  32. RehmanN.U. AnsariM.N. HaileT. KarimA. AbujheishaK.Y. AhamadS.R. ImamF. Possible tracheal relaxant and antimicrobial effects of the essential oil of ethiopian thyme species (Thymus serrulatus Hochst. ex Benth.): A multiple mechanistic approach.Front. Pharmacol.20211261522810.3389/fphar.2021.61522833883992
    [Google Scholar]
  33. PatraC. Disclosure: Kristoff Foster declares no relevant financial relationships with ineligible companies. Disclosure: James Corley declares no relevant financial relationships with ineligible companies. Disclosure: Manjari Dimri declares no relevant financial relationships with ineligible companies. Disclosure: Mark Brady declares no relevant financial relationships with ineligible companies..BiochemistryStatPearlsTreasure Island (FL)2024
    [Google Scholar]
  34. YanK. GaoL.N. CuiY.L. ZhangY. ZhouX. The cyclic AMP signaling pathway: Exploring targets for successful drug discovery (Review).Mol. Med. Rep.20161353715372310.3892/mmr.2016.500527035868
    [Google Scholar]
  35. GárrizA. MorokumaJ. ToribioD. ZoukhriD. Role of the adenylate cyclase/cyclic AMP pathway in oxytocin-induced lacrimal gland myoepithelial cells contraction.Exp. Eye Res.202323310952610.1016/j.exer.2023.10952637290630
    [Google Scholar]
  36. FrickeE.M. ElginT.G. GongH. ReeseJ. Gibson-CorleyK.N. WeissR.M. ZimmermanK. BowdlerN.C. KalanteraK.M. MillsD.A. UnderwoodM.A. McElroyS.J. Lipopolysaccharide‐induced maternal inflammation induces direct placental injury without alteration in placental blood flow and induces a secondary fetal intestinal injury that persists into adulthood.Am. J. Reprod. Immunol.2018795e1281610.1111/aji.1281629369434
    [Google Scholar]
  37. BoyleA.K. RinaldiS.F. NormanJ.E. StockS.J. Preterm birth: Inflammation, fetal injury and treatment strategies.J. Reprod. Immunol.2017119626610.1016/j.jri.2016.11.00828122664
    [Google Scholar]
  38. OwenJ.C. GarrickS.P. PetersonB.M. BergerP.J. NoldM.F. SehgalA. Nold-PetryC.A. The role of interleukin-1 in perinatal inflammation and its impact on transitional circulation.Front Pediatr.202311113001310.3389/fped.2023.113001336994431
    [Google Scholar]
  39. ParkS. ShinJ. BaeJ. HanD. ParkS.R. ShinJ. LeeS.K. ParkH.W. SIRT1 alleviates LPS-Induced IL-1β production by suppressing NLRP3 inflammasome activation and ROS production in trophoblasts.Cells20209372810.3390/cells903072832188057
    [Google Scholar]
  40. LopezT.E. ZhangH. BouysseE. NeiersF. YeX.Y. GarridoC. WendremaireM. LirussiF. A pivotal role for the IL-1β and the inflammasome in preterm labor.Sci. Rep.2024141423410.1038/s41598‑024‑54507‑w38378749
    [Google Scholar]
  41. DasG. PatraJ.K. KangS.S. ShinH.S. Pharmaceutical importance of some promising plant species with special reference to the isolation and extraction of bioactive compounds: A review.Curr. Pharm. Biotechnol.2022231152910.2174/138920102266621012212585433480340
    [Google Scholar]
  42. YahiaY. BenabderrahimM.A. TliliN. BaguesM. NagazK. Bioactive compounds, antioxidant and antimicrobial activities of extracts from different plant parts of two Ziziphus Mill. species.PLoS One2020155e023259910.1371/journal.pone.023259932428000
    [Google Scholar]
  43. GholijaniN. GharagozlooM. FarjadianS. AmirghofranZ. Modulatory effects of thymol and carvacrol on inflammatory transcription factors in lipopolysaccharide-treated macrophages.J. Immunotoxicol.201613215716410.3109/1547691X.2015.102914525812626
    [Google Scholar]
  44. MarsM. NéantI. LeclercC. BoschS. RouviereC. MoreauM. LachambreS. PaulC. TauberM. GravierE. DouzalC. DuplanH. BabinM. BrocarioA. ThouveninM.D. GuéryJ.C. RedoulesD. LestienneF. PelletierL. SavignacM. Cav1.4 calcium channels control cytokine production by human peripheral TH17 cells and psoriatic skin-infiltrating T cells.J. Allergy Clin. Immunol.202214941348135710.1016/j.jaci.2021.09.03034653514
    [Google Scholar]
  45. Veytia-BucheliJ.I. Alvarado-VelázquezD.A. PossaniL.D. González-AmaroR. RosensteinY. The Ca2+ channel blocker verapamil inhibits the in vitro activation and function of T lymphocytes: A 2022 reappraisal.Pharmaceutics2022147147810.3390/pharmaceutics1407147835890372
    [Google Scholar]
  46. DasR. BurkeT. Van WagonerD.R. PlowE.F. L-type calcium channel blockers exert an antiinflammatory effect by suppressing expression of plasminogen receptors on macrophages.Circ. Res.2009105216717510.1161/CIRCRESAHA.109.20031119520970
    [Google Scholar]
  47. BaderA. MartiniF. SchinellaG.R. RiosJ.L. PrietoJ.M. Modulation of Cox-1, 5-, 12- and 15-Lox by popular herbal remedies used in southern Italy against psoriasis and other skin diseases.Phytother. Res.201529110811310.1002/ptr.523425278440
    [Google Scholar]
  48. Merecz-SadowskaA. SitarekP. ŚliwińskiT. ZajdelR. Anti-inflammatory activity of extracts and pure compounds derived from plants via modulation of signaling pathways, especially PI3K/AKT in macrophages.Int. J. Mol. Sci.20202124960510.3390/ijms2124960533339446
    [Google Scholar]
  49. ZurfluhL. DuvaudL. InciN. PotteratO. Simões-WüstA.P. MosbacherJ. Bryophyllum pinnatum inhibits oxytocin and vasopressin signaling in myometrial cells.Planta Med.2024901075776510.1055/a‑2303‑960838599625
    [Google Scholar]
/content/journals/cmp/10.2174/0118761429342128241231163610
Loading
/content/journals/cmp/10.2174/0118761429342128241231163610
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Carvacrol; Cytokine; Infection; Inflammation; Preterm birth; Thymol
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test