Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702

Abstract

Background

Hyperglycemia in patients with diabetes mellitus (DM) increases the risk of developing cardiomyopathy and heart failure. Elevation of sodium/proton exchanger-1 (NHE-1) expression and activity in cardiomyocytes leads to greater sensitivity to neurohormonal stimulation and cardiomyopathy, whereas inhibition of sodium-glucose cotransporter 2 (SGLT2) clinically benefits DM population in reducing heart failure risk.

Aims

This study characterized the expression profiles of NHE-1 and SGLT2 in H9c2 cardiomyoblasts under high glucose (HG) exposure and examined the effects of empagliflozin (EMPA), an SGLT2 inhibitor, on the HG-induced cardiomyoblasts deterioration, in comparison with NHE-1 specific inhibitor cariporide and Rho/ROCK inhibitor hydroxy fasudil.

Methods

Western blotting and immunofluorescent staining were used to monitor protein expression and subcellular location, respectively. Reactive oxygen species (ROS) production and mitochondrial membrane potential were measured by flow cytometry. Kinetic mitochondrial oxygen consumption rate and respiratory function were monitored by a real-time cell metabolic analyzer.

Results

HG treatment upregulated SGLT2 and NHE-1 expression and RhoA/ROCK activity in H9c2 cardiomyoblasts. The HG-upregulated NHE-1 is localized in actin-rich cortical cytoplasm, implicating its involvement in cell shape and adhesion alterations. Treatment with NHE-1 and ROCK inhibitors, but not EMPA, significantly attenuated the HG-induced ROS overproduction and mitochondrial membrane potential elevation. However, EMPA treatment restored the HG-suppressed mitochondrial maximal respiration, spare respiratory capacity, and non-mitochondrial oxygen consumption rate.

Conclusion

In comparison, Rho/ROCK and NHE-1 inhibitions effectively prevent ROS overproduction, while SGLT2 inhibition rescues the deteriorated mitochondrial respiratory function under diabetogenic conditions. Blockade of SGLT2, NHE-1, or Rho/ROCK activity is useful for the prevention of diabetic cardiomyopathy.

© 2024 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmp/10.2174/0118761429360640250227054103
2024-01-01
2025-09-27
Loading full text...

Full text loading...

/deliver/fulltext/cmp/17/1/CMP-17-E18761429360640.html?itemId=/content/journals/cmp/10.2174/0118761429360640250227054103&mimeType=html&fmt=ahah

References

  1. JiangY.D. ChangC.H. TaiT.Y. ChenJ.F. ChuangL.M. Incidence and prevalence rates of diabetes mellitus in Taiwan: Analysis of the 2000–2009 Nationwide Health Insurance database.J. Formos. Med. Assoc.20121111159960410.1016/j.jfma.2012.09.01423217595
    [Google Scholar]
  2. KennyH.C. AbelE.D. Heart failure in type 2 diabetes mellitus.Circ. Res.2019124112114110.1161/CIRCRESAHA.118.31137130605420
    [Google Scholar]
  3. Echouffo-TcheuguiJ.B. XuH. DeVoreA.D. SchulteP.J. ButlerJ. YancyC.W. BhattD.L. HernandezA.F. HeidenreichP.A. FonarowG.C. Temporal trends and factors associated with diabetes mellitus among patients hospitalized with heart failure: Findings from Get With The Guidelines–Heart Failure registry.Am. Heart J.201618292010.1016/j.ahj.2016.07.02527914505
    [Google Scholar]
  4. LindM. BouniasI. OlssonM. GudbjörnsdottirS. SvenssonA.M. RosengrenA. Glycaemic control and incidence of heart failure in 20 985 patients with type 1 diabetes: an observational study.Lancet2011378978614014610.1016/S0140‑6736(11)60471‑621705065
    [Google Scholar]
  5. MaliV.R. PanG. DeshpandeM. ThandavarayanR.A. XuJ. YangX.P. PalaniyandiS.S. Cardiac mitochondrial respiratory dysfunction and tissue damage in chronic hyperglycemia correlate with reduced aldehyde dehydrogenase-2 activity.PLoS One20161110e016315810.1371/journal.pone.016315827736868
    [Google Scholar]
  6. WilsonA.J. GillE.K. AbudaloR.A. EdgarK.S. WatsonC.J. GrieveD.J. Reactive oxygen species signalling in the diabetic heart: Emerging prospect for therapeutic targeting.Heart2018104429329910.1136/heartjnl‑2017‑31144828954833
    [Google Scholar]
  7. SuarezJ. HuY. MakinoA. FricovskyE. WangH. DillmannW.H. Alterations in mitochondrial function and cytosolic calcium induced by hyperglycemia are restored by mitochondrial transcription factor A in cardiomyocytes.Am. J. Physiol. Cell Physiol.20082956C1561C156810.1152/ajpcell.00076.200819060297
    [Google Scholar]
  8. TocchettiC.G. StanleyB.A. SivakumaranV. BedjaD. O’RourkeB. PaolocciN. CortassaS. AonM.A. Impaired mitochondrial energy supply coupled to increased H2O2 emission under energy/redox stress leads to myocardial dysfunction during Type I diabetes.Clin. Sci. (Lond.)2015129756157410.1042/CS2015020426186741
    [Google Scholar]
  9. ShenE. LiY. LiY. ShanL. ZhuH. FengQ. ArnoldJ.M.O. PengT. Rac1 is required for cardiomyocyte apoptosis during hyperglycemia.Diabetes200958102386239510.2337/db08‑061719592621
    [Google Scholar]
  10. SardetC. FranchiA. PouysségurJ. Molecular cloning, primary structure, and expression of the human growth factor-activatable antiporter.Cell198956227128010.1016/0092‑8674(89)90901‑X2536298
    [Google Scholar]
  11. PetreccaK. AtanasiuR. GrinsteinS. OrlowskiJ. ShrierA. Subcellular localization of the Na+/H+ exchanger NHE1 in rat myocardium.Am. J. Physiol.19992762H709H7179950874
    [Google Scholar]
  12. MraicheF. OkaT. GanX.T. KarmazynM. FliegelL. Activated NHE1 is required to induce early cardiac hypertrophy in mice.Basic Res. Cardiol.2011106460361610.1007/s00395‑011‑0161‑421359875
    [Google Scholar]
  13. JavadovS. KarmazynM. Mitochondrial permeability transition pore opening as an endpoint to initiate cell death and as a putative target for cardioprotection.Cell. Physiol. Biochem.2007201-412210.1159/00010374717595511
    [Google Scholar]
  14. TeshimaY. AkaoM. JonesS.P. MarbánE. Cariporide (HOE642), a selective Na+-H+ exchange inhibitor, inhibits the mitochondrial death pathway.Circulation2003108182275228110.1161/01.CIR.0000093277.20968.C714568900
    [Google Scholar]
  15. ChengC.I. ChenP.H. LinY.C. KaoY.H. High glucose activates Raw264.7 macrophages through RhoA kinase-mediated signaling pathway.Cell. Signal.201527228329210.1016/j.cellsig.2014.11.01225446262
    [Google Scholar]
  16. DuongK.H.M. ChunK.H. Regulation of glucose transport by RhoA in 3T3-L1 adipocytes and L6 myoblasts.Biochem. Biophys. Res. Commun.2019519488088610.1016/j.bbrc.2019.09.08331561853
    [Google Scholar]
  17. ShiJ. ZhangY.W. YangY. ZhangL. WeiL. ROCK1 plays an essential role in the transition from cardiac hypertrophy to failure in mice.J. Mol. Cell. Cardiol.201049581982810.1016/j.yjmcc.2010.08.00820709073
    [Google Scholar]
  18. TominagaT. IshizakiT. NarumiyaS. BarberD.L. p160ROCK mediates RhoA activation of Na-H exchange.EMBO J.199817164712472210.1093/emboj/17.16.47129707430
    [Google Scholar]
  19. TominagaT. BarberD.L. Na-H exchange acts downstream of RhoA to regulate integrin-induced cell adhesion and spreading.Mol. Biol. Cell1998982287230310.1091/mbc.9.8.22879693382
    [Google Scholar]
  20. GarciarenaC.D. CaldizC.I. CorreaM.V. SchinellaG.R. MoscaS.M. Chiappe de CingolaniG.E. CingolaniH.E. EnnisI.L. Na+/H+ exchanger-1 inhibitors decrease myocardial superoxide production via direct mitochondrial action.J. Appl. Physiol.200810561706171310.1152/japplphysiol.90616.200818801963
    [Google Scholar]
  21. Villa-AbrilleM.C. CingolaniE. CingolaniH.E. AlvarezB.V. Silencing of cardiac mitochondrial NHE1 prevents mitochondrial permeability transition pore opening.Am. J. Physiol. Heart Circ. Physiol.20113004H1237H125110.1152/ajpheart.00840.201021297023
    [Google Scholar]
  22. LytvynY. BjornstadP. UdellJ.A. LovshinJ.A. CherneyD.Z.I. Sodium glucose cotransporter-2 inhibition in heart failure: Potential mechanisms, clinical applications, and summary of clinical trials.Circulation2017136171643165810.1161/CIRCULATIONAHA.117.03001229061576
    [Google Scholar]
  23. PabelS. WagnerS. BollenbergH. BengelP. KovácsÁ. SchachC. TirilomisP. MustrophJ. RennerA. GummertJ. FischerT. Van LinthoutS. TschöpeC. Streckfuss-BömekeK. HasenfussG. MaierL.S. HamdaniN. SossallaS. Empagliflozin directly improves diastolic function in human heart failure.Eur. J. Heart Fail.201820121690170010.1002/ejhf.132830328645
    [Google Scholar]
  24. ZinmanB. WannerC. LachinJ.M. FitchettD. BluhmkiE. HantelS. MattheusM. DevinsT. JohansenO.E. WoerleH.J. BroedlU.C. InzucchiS.E. EMPA-REG OUTCOME Investigators Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes.N. Engl. J. Med.2015373222117212810.1056/NEJMoa150472026378978
    [Google Scholar]
  25. UdellJ.A. YuanZ. RushT. SicignanoN.M. GalitzM. RosenthalN. Cardiovascular outcomes and risks after initiation of a sodium glucose cotransporter 2 inhibitor: Results from the EASEL population-based cohort study.Circulation2018137141450145910.1161/CIRCULATIONAHA.117.03122729133607
    [Google Scholar]
  26. BethelM.A. McMurrayJ.J.V. Class effect for sodium glucose-cotransporter-2 inhibitors in cardiovascular outcomes: Implications for the cardiovascular disease specialist.Circulation2018137121218122010.1161/CIRCULATIONAHA.117.03011729555706
    [Google Scholar]
  27. LeeH.C. ShiouY.L. JhuoS.J. ChangC.Y. LiuP.L. JhuangW.J. DaiZ.K. ChenW.Y. ChenY.F. LeeA.S. The sodium–glucose co-transporter 2 inhibitor empagliflozin attenuates cardiac fibrosis and improves ventricular hemodynamics in hypertensive heart failure rats.Cardiovasc. Diabetol.20191814510.1186/s12933‑019‑0849‑630935417
    [Google Scholar]
  28. HammoudiN. JeongD. SinghR. FarhatA. KomajdaM. MayouxE. HajjarR. LebecheD. Empagliflozin improves left ventricular diastolic dysfunction in a genetic model of type 2 diabetes.Cardiovasc. Drugs Ther.201731323324610.1007/s10557‑017‑6734‑128643218
    [Google Scholar]
  29. VermaS. MazerC.D. YanA.T. MasonT. GargV. TeohH. ZuoF. QuanA. FarkouhM.E. FitchettD.H. GoodmanS.G. GoldenbergR.M. Al-OmranM. GilbertR.E. BhattD.L. LeiterL.A. JüniP. ZinmanB. ConnellyK.A. Effect of Empagliflozin on left ventricular mass in patients with type 2 diabetes mellitus and coronary artery disease: The EMPA-HEART CardioLink-6 randomized clinical trial.Circulation2019140211693170210.1161/CIRCULATIONAHA.119.04237531434508
    [Google Scholar]
  30. ChengC.I. LeeY.H. ChenP.H. LinY.C. ChouM.H. KaoY.H. Cobalt chloride induces RhoA/ROCK activation and remodeling effect in H9c2 cardiomyoblasts: Involvement of PI3K/Akt and MAPK pathways.Cell. Signal.201736253310.1016/j.cellsig.2017.04.01328435089
    [Google Scholar]
  31. UthmanL. BaartscheerA. BleijlevensB. SchumacherC.A. FioletJ.W.T. KoemanA. JancevM. HollmannM.W. WeberN.C. CoronelR. ZuurbierC.J. Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts: inhibition of Na(+)/H(+) exchanger, lowering of cytosolic Na+ and vasodilation.Diabetologia201861372272610.1007/s00125‑017‑4509‑729197997
    [Google Scholar]
  32. DenkerS.P. HuangD.C. OrlowskiJ. FurthmayrH. BarberD.L. Direct binding of the Na-H exchanger NHE1 to ERM proteins regulates the cortical cytoskeleton and cell shape independently of H(+) translocation.Mol. Cell2000661425143610.1016/S1097‑2765(00)00139‑811163215
    [Google Scholar]
  33. CingolaniH.E. EnnisI.L. Sodium-hydrogen exchanger, cardiac overload, and myocardial hypertrophy.Circulation200711591090110010.1161/CIRCULATIONAHA.106.62692917339567
    [Google Scholar]
  34. KarmazynM. KilićA. JavadovS. The role of NHE-1 in myocardial hypertrophy and remodelling.J. Mol. Cell. Cardiol.200844464765310.1016/j.yjmcc.2008.01.00518329039
    [Google Scholar]
  35. WagnerS. SeidlerT. PichtE. MaierL.S. KazanskiV. TeucherN. SchillingerW. PieskeB. IsenbergG. HasenfussG. KöglerH. Na+–Ca2+ exchanger overexpression predisposes to reactive oxygen species-induced injury.Cardiovasc. Res.200360240441210.1016/j.cardiores.2003.08.00614613870
    [Google Scholar]
  36. Del ReD.P. MiyamotoS. BrownJ.H. RhoA/Rho kinase up-regulate Bax to activate a mitochondrial death pathway and induce cardiomyocyte apoptosis.J. Biol. Chem.2007282118069807810.1074/jbc.M60429820017234627
    [Google Scholar]
  37. LiY. ZhuW. TaoJ. XinP. LiuM. LiJ. WeiM. Fasudil protects the heart against ischemia-reperfusion injury by attenuating endoplasmic reticulum stress and modulating SERCA activity: The differential role for PI3K/Akt and JAK2/STAT3 signaling pathways.PLoS One2012710e4811510.1371/journal.pone.004811523118936
    [Google Scholar]
  38. ZhangY.S. TangL.J. TuH. WangS.J. LiuB. ZhangX.J. LiN.S. LuoX.J. PengJ. Fasudil ameliorates the ischemia/reperfusion oxidative injury in rat hearts through suppression of myosin regulatory light chain/NADPH oxidase 2 pathway.Eur. J. Pharmacol.201882211210.1016/j.ejphar.2018.01.00729337194
    [Google Scholar]
  39. KikuchiY. YamadaM. ImakiireT. KushiyamaT. HigashiK. HyodoN. YamamotoK. OdaT. SuzukiS. MiuraS. A Rho-kinase inhibitor, fasudil, prevents development of diabetes and nephropathy in insulin-resistant diabetic rats.J. Endocrinol.2007192359560310.1677/JOE‑06‑004517332527
    [Google Scholar]
  40. ChenJ. LiQ. DongR. GaoH. PengH. WuY. The effect of the Ras homolog gene family (Rho), member A/Rho associated coiled-coil forming protein kinase pathway in atrial fibrosis of type 2 diabetes in rats.Exp. Ther. Med.20148383684010.3892/etm.2014.184325120610
    [Google Scholar]
  41. ZhouH. ZhangK.X. LiY.J. GuoB.Y. WangM. WangM. Fasudil hydrochloride hydrate, a Rho-kinase inhibitor, suppresses high glucose-induced proliferation and collagen synthesis in rat cardiac fibroblasts.Clin. Exp. Pharmacol. Physiol.201138638739410.1111/j.1440‑1681.2011.05523.x21457293
    [Google Scholar]
  42. GaoH. HouF. DongR. WangZ. ZhaoC. TangW. WuY. Rho-Kinase inhibitor fasudil suppresses high glucose-induced H9c2 cell apoptosis through activation of autophagy.Cardiovasc. Ther.201634535235910.1111/1755‑5922.1220627333569
    [Google Scholar]
  43. GurkarA.U. ChuK. RajL. BouleyR. LeeS.H. KimY.B. DunnS.E. MandinovaA. LeeS.W. Identification of ROCK1 kinase as a critical regulator of Beclin1-mediated autophagy during metabolic stress.Nat. Commun.201341218910.1038/ncomms318923877263
    [Google Scholar]
  44. ZhouH. WangS. ZhuP. HuS. ChenY. RenJ. Empagliflozin rescues diabetic myocardial microvascular injury via AMPK-mediated inhibition of mitochondrial fission.Redox Biol.20181533534610.1016/j.redox.2017.12.01929306791
    [Google Scholar]
  45. YokoyamaH. GunasegaramS. HardingS.E. AvkiranM. Sarcolemmal Na+/H+ exchanger activity and expression in human ventricular myocardium.J. Am. Coll. Cardiol.200036253454010.1016/S0735‑1097(00)00730‑010933369
    [Google Scholar]
  46. BaartscheerA. SchumacherC.A. van BorrenM.M. BeltermanC.N. CoronelR. FioletJ.W. Increased Na+/H+-exchange activity is the cause of increased [Na+]i and underlies disturbed calcium handling in the rabbit pressure and volume overload heart failure model.Cardiovasc. Res.20035741015102410.1016/S0008‑6363(02)00809‑X12650879
    [Google Scholar]
  47. BaartscheerA. SchumacherC.A. WüstR.C.I. FioletJ.W.T. StienenG.J.M. CoronelR. ZuurbierC.J. Empagliflozin decreases myocardial cytoplasmic Na+ through inhibition of the cardiac Na(+)/H(+) exchanger in rats and rabbits.Diabetologia201760356857310.1007/s00125‑016‑4134‑x27752710
    [Google Scholar]
  48. LeeW.C. ChauY.Y. NgH.Y. ChenC.H. WangP.W. LiouC.W. LinT.K. ChenJ.B. Empagliflozin protects HK-2 cells from high glucose-mediated injuries via a mitochondrial mechanism.Cells201989108510.3390/cells809108531540085
    [Google Scholar]
  49. WangZ. LiuQ. WangX. WangP. WangZ. ZhangF. Empagliflozin improves cardiac function in rats with chronic heart failure.Naunyn Schmiedebergs Arch. Pharmacol.202439721037104410.1007/s00210‑023‑02655‑737566305
    [Google Scholar]
/content/journals/cmp/10.2174/0118761429360640250227054103
Loading
/content/journals/cmp/10.2174/0118761429360640250227054103
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test