Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702

Abstract

Introduction

Endometrial cancer is one of the most common gynecological malignancies. Endometrial cancer cells express the gonadotropin-releasing hormone (GnRH) and its receptor (GnRH-R). Among the various therapeutic approaches for the treatment of endometrial cancer is the use of GnRH conjugates, such as the AN-152, created by linking the (D-Lys6) GnRH with the cytotoxic doxorubicin through an ester bond. An undesirable property of these conjugates is their vulnerability to plasma carboxylesterases, which cleave the ester bond to release doxorubicin before reaching the cancer cells.

Methods:

To overcome this problem, we recently developed the Con-3 and Con-7, which are GnRH analogs conjugated through a disulfide bond with the cytotoxic mitoxantrone. In this study, we determined the cytotoxic properties of the Con-3 and Con-7 on the Ishikawa endometrial cancer cells, assuming that their interaction with the GnRH-R of cells exposes the conjugated mitoxantrone to the cellular thioredoxin. The cellular thioredoxin reduces the disulfide bond of Con-3 & Con-7 to release mitoxantrone, which accumulates in the cancer cells and exerts its cytotoxic actions.

Results:

Indeed, treatment of Ishikawa cells with Con-3, Con-7, or the free unconjugated mitoxantrone increased their apoptosis and decreased their proliferation in a dose- and time-dependent manner, displaying half-maximal inhibitory concentrations (IC) of 0.64 - 1.15 µM. In specific, the ICvalues on days 2, 3, and 4 were 1.45, 0.64, and 0.83 μΜ, respectively, for Con-3, 0.91, 0.82 μΜ, and 1.00 μΜ, respectively for Con-7 and 1.15, 0.98, 0.78 μM, respectively for mitoxantrone. In contrast, the free, mitoxantrone-unconjugated peptides did not affect the proliferation of Ishikawa cells.

Conclusion:

The Con-3 and Con-7 could put the basis for the development of a new class of anticancer drugs for endometrial cancer, which will act as “prodrugs” that deliver the cytotoxic mitoxantrone in a GnRH-R-specific manner.

© 2024 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmp/10.2174/0118761429343090250121052955
2024-01-01
2025-09-27
Loading full text...

Full text loading...

/deliver/fulltext/cmp/17/1/CMP-17-E18761429343090.html?itemId=/content/journals/cmp/10.2174/0118761429343090250121052955&mimeType=html&fmt=ahah

References

  1. MakkerV. MacKayH. Ray-CoquardI. LevineD.A. WestinS.N. AokiD. OakninA. Endometrial cancer.Nat. Rev. Dis. Primers2021718810.1038/s41572‑021‑00324‑834887451
    [Google Scholar]
  2. MoriceP. LearyA. CreutzbergC. Abu-RustumN. DaraiE. Endometrial cancer.Lancet2016387100231094110810.1016/S0140‑6736(15)00130‑026354523
    [Google Scholar]
  3. GallagherC.J. OliverR.T.D. OramD.H. FowlerC.G. BlakeP.R. MantellB.S. SlevinM.L. Hope-StoneH.F. A new treatment for endometrial cancer with gonadotrophin releasing hormone analogue.BJOG199198101037104110.1111/j.1471‑0528.1991.tb15343.x1751436
    [Google Scholar]
  4. EmonsG. SchallyA.V. The use of luteinizing hormone releasing hormone agonists and antagonists in gynaecological cancers.Hum. Reprod.1994971364137910.1093/oxfordjournals.humrep.a1387147962452
    [Google Scholar]
  5. EmonsG. GründkerC. The Role of Gonadotropin-Releasing Hormone The role of Gonadotropin-Releasing Hormone (GnRH) in endometrial cancer.Cells202110229210.3390/cells1002029233535622
    [Google Scholar]
  6. EmonsG. MullerV. OrtmannO. GrossmannG. TrautnerU. StuckradB. SchulzK. SchallyA. Luteinizing hormone-releasing hormone agonist triptorelin antagonizes signal transduction and mitogenic activity of epidermal growth factor in human ovarian and endometrial cancer cell lines.Int. J. Oncol.1996961129113710.3892/ijo.9.6.112921541621
    [Google Scholar]
  7. EmonsG. MüllerV. OrtmannO. SchulzK.D. Effects of LHRH-analogues on mitogenic signal transduction in cancer cells.J. Steroid Biochem. Mol. Biol.1998651-619920610.1016/S0960‑0760(97)00189‑19699874
    [Google Scholar]
  8. KleinmanD. DouvdevaniA. SchallyA.V. LevyJ. SharoniY. Direct growth inhibition of human endometrial cancer cells by the gonadotropin-releasing hormone antagonist SB-75: Role of apoptosis.Am. J. Obstet. Gynecol.199417019610210.1016/S0002‑9378(13)70287‑48296852
    [Google Scholar]
  9. ImaiA. TakagiA. HoribeS. TakagiH. TamayaT. Fas and Fas ligand system may mediate antiproliferative activity of gonadotropin-releasing hormone receptor in endometrial cancer cells.Int. J. Oncol.19981319710010.3892/ijo.13.1.979625809
    [Google Scholar]
  10. EmonsG. SchröderB. OrtmannO. WestphalenS. SchulzK.D. SchallyA.V. High affinity binding and direct antiproliferative effects of luteinizing hormone-releasing hormone analogs in human endometrial cancer cell lines.J. Clin. Endocrinol. Metab.1993776145814648263128
    [Google Scholar]
  11. IrmerG. BürgerC. OrtmannO. SchulzK.D. EmonsG. Expression of luteinizing hormone releasing hormone and its mRNA in human endometrial cancer cell lines.J. Clin. Endocrinol. Metab.19947939169198077383
    [Google Scholar]
  12. EngelJ.B. HahneJ.C. HäuslerS.F. MeyerS. SegererS.E. DiessnerJ. DietlJ. HonigA. Peptidomimetic GnRH antagonist AEZS-115 inhibits the growth of ovarian and endometrial cancer cells.Anticancer Res.20123252063206822593489
    [Google Scholar]
  13. PahwaG.S. KullanderS. VollmerG. OberheuserF. KnuppenR. EmonsG. Specific low affinity binding sites for gonadotropin-releasing hormone in human endometrial carcinomata.Eur. J. Obstet. Gynecol. Reprod. Biol.199141213514210.1016/0028‑2243(91)90091‑X1657655
    [Google Scholar]
  14. SrkalovicG. WittliffJ.L. SchallyA.V. Detection and partial characterization of receptors for [D-Trp6]-luteinizing hormone-releasing hormone and epidermal growth factor in human endometrial carcinoma.Cancer Res.1990506184118462155060
    [Google Scholar]
  15. JankowskaA.G. AndrusiewiczM. FischerN. WarcholJ.B. Expression of hCG and GnRHs and their receptors in endometrial carcinoma and hyperplasia.Int. J. Gynecol. Cancer20102019210110.1111/IGC.0b013e3181bbe93320130508
    [Google Scholar]
  16. DesaulniersA.T. CederbergR.A. LentsC.A. WhiteB.R. Expression and role of gonadotropin-releasing hormone 2 and Its receptor in mammals.Front. Endocrinol. (Lausanne)2017826910.3389/fendo.2017.0026929312140
    [Google Scholar]
  17. DesaulniersA.T. WhiteB.R. Role of gonadotropin-releasing hormone 2 and its receptor in human reproductive cancers.Front. Endocrinol. (Lausanne)202414134116210.3389/fendo.2023.134116238260130
    [Google Scholar]
  18. SealfonS.C. WeinsteinH. MillarR.P. Molecular mechanisms of ligand interaction with the gonadotropin-releasing hormone receptor.Endocr. Rev.199718218020510.1210/edrv.18.2.02959101136
    [Google Scholar]
  19. EmonsG. KaufmannM. GorchevG. TsekovaV. GründkerC. GünthertA.R. HankerL.C. VelikovaM. SindermannH. EngelJ. SchallyA.V. Dose escalation and pharmacokinetic study of AEZS-108 (AN-152), an LHRH agonist linked to doxorubicin, in women with LHRH receptor-positive tumors.Gynecol. Oncol.2010119345746110.1016/j.ygyno.2010.08.00320828803
    [Google Scholar]
  20. GarridoM.P. HernandezA. VegaM. ArayaE. RomeroC. Conventional and new proposals of GnRH therapy for ovarian, breast, and prostatic cancers.Front. Endocrinol. (Lausanne)202314114326110.3389/fendo.2023.114326137056674
    [Google Scholar]
  21. NagyA. SchallyA.V. ArmatisP. SzepeshaziK. HalmosG. KovacsM. ZarandiM. GrootK. MiyazakiM. JungwirthA. HorvathJ. Cytotoxic analogs of luteinizing hormone-releasing hormone containing doxorubicin or 2-pyrrolinodoxorubicin, a derivative 500-1000 times more potent.Proc. Natl. Acad. Sci. USA199693147269727310.1073/pnas.93.14.72698692981
    [Google Scholar]
  22. SchallyA.V. NagyA. Cancer chemotherapy based on targeting of cytotoxic peptide conjugates to their receptors on tumors.Eur. J. Endocrinol.1999141111410.1530/eje.0.141000110407215
    [Google Scholar]
  23. GründkerC. VölkerP. GriesingerF. RamaswamyA. NagyA. SchallyA.V. EmonsG. Antitumor effects of the cytotoxic luteinizing hormone–releasing hormone analog AN-152 on human endometrial and ovarian cancers xenografted into nude mice.Am. J. Obstet. Gynecol.2002187352853710.1067/mob.2002.12427812237622
    [Google Scholar]
  24. EmonsG. GorchevG. SehouliJ. WimbergerP. StähleA. HankerL. HilpertF. SindermannH. GründkerC. HarterP. Efficacy and safety of AEZS-108 (INN: Zoptarelin Doxorubicin Acetate) an LHRH agonist linked to doxorubicin in women with platinum refractory or resistant ovarian cancer expressing LHRH receptors: A multicenter Phase II trial of the ago-study group (AGO GYN 5).Gynecol. Oncol.2014133342743210.1016/j.ygyno.2014.03.57624713545
    [Google Scholar]
  25. GhalyH.S.A. VaraminiP. New drug delivery strategies targeting the GnRH receptor in breast and other cancers.Endocr. Relat. Cancer20212811R251R26910.1530/ERC‑20‑044234236041
    [Google Scholar]
  26. NagyA. PlonowskiA. SchallyA.V. Stability of cytotoxic luteinizing hormone-releasing hormone conjugate (AN-152) containing doxorubicin 14- O -hemiglutarate in mouse and human serum in vitro: Implications for the design of preclinical studies.Proc. Natl. Acad. Sci. USA200097282983410.1073/pnas.97.2.82910639165
    [Google Scholar]
  27. BiniariG. MarkatosC. NteliA. TzoupisH. SimalC. Vlamis-GardikasA. KarageorgosV. PirmettisI. PetrouP. VenihakiM. LiapakisG. TseliosT. Rational design, synthesis and binding affinity studies of anthraquinone derivatives conjugated to Gonadotropin-Releasing Hormone (GnRH) analogues towards selective immunosuppression of hormone-dependent cancer.Int. J. Mol. Sci.202324201523210.3390/ijms24201523237894912
    [Google Scholar]
  28. AllegraJ.C. WoodcockT. WoolfS. HendersonI.C. BryanS. ReismanA. DukartG. A randomized trial comparing mitoxantrone with doxorubicin in patients with stage IV breast cancer.Invest. New Drugs19853215316110.1007/BF001741633894278
    [Google Scholar]
  29. WangS.L. LeeJ.J. LiaoA.T. Comparison of efficacy and toxicity of doxorubicin and mitoxantrone in combination chemotherapy for canine lymphoma.Can. Vet. J.201657327127626933263
    [Google Scholar]
  30. ArnérE.S.J. HolmgrenA. The thioredoxin system in cancer.Semin. Cancer Biol.200616642042610.1016/j.semcancer.2006.10.00917092741
    [Google Scholar]
  31. SenguptaR. HolmgrenA. Thioredoxin and glutaredoxin-mediated redox regulation of ribonucleotide reductase.World J. Biol. Chem.201451687410.4331/wjbc.v5.i1.6824600515
    [Google Scholar]
  32. LincolnD.T. Ali EmadiE.M. TonissenK.F. ClarkeF.M. The thioredoxin-thioredoxin reductase system: over-expression in human cancer.Anticancer Res.2003233B2425243312894524
    [Google Scholar]
  33. BoadleD.J. TattersallM.H.N. PhaseI.I. Phase II study of mitoxantrone in advanced or metastatic endometrial carcinoma.Aust. N. Z. J. Obstet. Gynaecol.198727434134210.1111/j.1479‑828X.1987.tb01023.x3453676
    [Google Scholar]
  34. CuiM. LiuY. LiuY. LiT. ChenX. DaL. Oral nano-formulations for endocrine therapy of endometrioid adenocarcinomas.Biomed. Pharmacother.202417911732810.1016/j.biopha.2024.11732839243435
    [Google Scholar]
  35. BajracharyaR. SongJ.G. PatilB.R. LeeS.H. NohH.M. KimD.H. KimG.L. SeoS.H. ParkJ.W. JeongS.H. LeeC.H. HanH.K. Functional ligands for improving anticancer drug therapy: Current status and applications to drug delivery systems.Drug Deliv.20222911959197010.1080/10717544.2022.208929635762636
    [Google Scholar]
  36. ZhangJ. HuF. ArasO. ChaiY. AnF. Small molecule‐drug conjugates: Opportunities for the development of targeted anticancer drugs.ChemMedChem20241911e20230072010.1002/cmdc.20230072038396351
    [Google Scholar]
  37. BucevičiusJ. LukinavičiusG. GerasimaitėR. The use of Hoechst Dyes for DNA staining and beyond.Chemosensors2018621810.3390/chemosensors6020018
    [Google Scholar]
  38. BellD.H. Characterization of the fluorescence of the antitumor agent, mitoxantrone.Biochim. Biophys. Acta Gene Struct. Expr.1988949113213710.1016/0167‑4781(88)90063‑23334848
    [Google Scholar]
  39. CostiganA. HollvilleE. MartinS.J. Discriminating between apoptosis, necrosis, necroptosis, and ferroptosis by microscopy and flow cytometry.Curr. Protoc.2023312e95110.1002/cpz1.95138112058
    [Google Scholar]
  40. MurugarajJ. GnanasekarS. SivanandhanG. RenganathanA. RajeshM. MubarakAliD. KapildevG. ManickavasagamM. ThajuddinN. PremkumarR. PremkumarK. Biogenic silver nanoparticles for cancer treatment: An experimental report.Colloids Surf. B Biointerfaces2013106C8692
    [Google Scholar]
  41. MajtnerovaP. CapekJ. PetiraF. HandlJ. RousarT. Quantitative spectrofluorometric assay detecting nuclear condensation and fragmentation in intact cells.Sci. Rep.20211111192110.1038/s41598‑021‑91380‑334099803
    [Google Scholar]
  42. HolmgrenA. LuJ. Thioredoxin and thioredoxin reductase: Current research with special reference to human disease.Biochem. Biophys. Res. Commun.2010396112012410.1016/j.bbrc.2010.03.08320494123
    [Google Scholar]
  43. SaccocciaF. AngelucciF. BoumisG. CarottiD. DesiatoG. MieleA. BellelliA. Thioredoxin reductase and its inhibitors.Curr. Protein Pept. Sci.201415662164610.2174/138920371566614053009191024875642
    [Google Scholar]
  44. SulimanR.S. AlghamdiS.S. AliR. RahmanI. AlqahtaniT. FrahI.K. AljatliD.A. HuwaiziS. AlgheribeS. AlehaidebZ. IslamI. Distinct mechanisms of cytotoxicity in novel nitrogenous heterocycles: Future directions for a new anti-cancer agent.Molecules2022278240910.3390/molecules2708240935458609
    [Google Scholar]
  45. XuC. LiX. LiT. WangX. YangY. XiaoL. ShenH. Combination effects of paclitaxel with signaling inhibitors in endometrial cancer cells.Asian Pac. J. Cancer Prev.201112112951295722393970
    [Google Scholar]
  46. RantanenV. GrénmanS. KulmalaJ. GrénmanR. Comparative evaluation of cisplatin and carboplatin sensitivity in endometrial adenocarcinoma cell lines.Br. J. Cancer199469348248610.1038/bjc.1994.878123477
    [Google Scholar]
  47. MarkatosC. BiniariG. ChepurnyO.G. KarageorgosV. TsakalakisN. KomontachakisG. VlataZ. VenihakiM. HolzG.G. TseliosT. LiapakisG. Cytotoxic activity of novel GnRH analogs conjugated with Mitoxantrone in ovarian cancer cells.Molecules20242917412710.3390/molecules2917412739274973
    [Google Scholar]
  48. PreethiS. KumarH. RawalV.B. AjmeerR. JainV. Overview of mitoxantrone-a potential candidate for treatment of breast cancer.Int. J. Appl. Pharm.20221421022
    [Google Scholar]
  49. EvisonB. J. SleebsB. E. WatsonK. G. PhillipsD. R. CuttsS. M. Mitoxantrone, more than just another topoisomerase II poison. Med Res Rev.201636224826286294
    [Google Scholar]
  50. LilligC.H. HolmgrenA. Thioredoxin and related molecules--from biology to health and disease.Antioxid. Redox Signal.200791254710.1089/ars.2007.9.2517115886
    [Google Scholar]
  51. RubartelliA. BajettoA. AllavenaG. WollmanE. SitiaR. Secretion of thioredoxin by normal and neoplastic cells through a leaderless secretory pathway.J. Biol. Chem.199226734241612416410.1016/S0021‑9258(18)35742‑91332947
    [Google Scholar]
  52. NakamuraH. MasutaniH. YodoiJ. Extracellular thioredoxin and thioredoxin-binding protein 2 in control of cancer.Semin. Cancer Biol.200616644445110.1016/j.semcancer.2006.09.00117095246
    [Google Scholar]
  53. TanudjiM. HeviS. ChuckS.L. The nonclassic secretion of thioredoxin is not sensitive to redox state.Am. J. Physiol. Cell Physiol.20032845C1272C127910.1152/ajpcell.00521.200212529245
    [Google Scholar]
  54. TapeinouA. GiannopoulouE. SimalC. HansenB.E. KalofonosH. ApostolopoulosV. Vlamis-GardikasA. TseliosT. Design, synthesis and evaluation of an anthraquinone derivative conjugated to myelin basic protein immunodominant (MBP85-99) epitope: Towards selective immunosuppression.Eur. J. Med. Chem.201814362163110.1016/j.ejmech.2017.11.06329216561
    [Google Scholar]
  55. EnacheM. ToaderA. EnacheM. Mitoxantrone-surfactant interactions: A physicochemical overview.Molecules20162110135610.3390/molecules2110135627754390
    [Google Scholar]
  56. BurnsC.P. HaugstadB.N. MossmanC.J. NorthJ.A. IngrahamL.M. Membrane lipid alteration: Effect on cellular uptake of mitoxantrone.Lipids198823539339710.1007/BF025355083412115
    [Google Scholar]
  57. LimbirdL.E. Identification of receptors using direct radioligand binding techniques.Cell Surface Receptors: A Short Course on Theory and Methods.Boston, MASpringer US19966112210.1007/978‑1‑4613‑1255‑0_3
    [Google Scholar]
  58. HislopJ.N. MadzivaM.T. EverestH.M. HardingT. UneyJ.B. WillarsG.B. MillarR.P. TroskieB.E. DavidsonJ.S. McArdleC.A. Desensitization and internalization of human and xenopus gonadotropin-releasing hormone receptors expressed in alphaT4 pituitary cells using recombinant adenovirus.Endocrinology2000141124564457510.1210/endo.141.12.781311108269
    [Google Scholar]
  59. MillarR.P. PawsonA.J. MorganK. RissmanE.F. LuZ.L. Diversity of actions of GnRHs mediated by ligand-induced selective signaling.Front. Neuroendocrinol.2008291173510.1016/j.yfrne.2007.06.00217976709
    [Google Scholar]
  60. ChenC.L. CheungL.W.T. LauM.T. ChoiJ.H. AuerspergN. WangH.S. WongA.S.T. LeungP.C.K. Differential role of gonadotropin-releasing hormone on human ovarian epithelial cancer cell invasion.Endocr. J.200731331132010.1007/s12020‑007‑0041‑817906381
    [Google Scholar]
  61. VreclM. HedingA. HanyalogluA. TaylorP.L. EidneK.A. Internalization kinetics of the gonadotropin-releasing hormone (GnRH) receptor.Pflugers Arch.2000439S1Suppl. 1r019r02010.1007/s00424000007528176059
    [Google Scholar]
  62. PawsonA.J. KatzA. SunY.M. LopesJ. IllingN. MillarR.P. DavidsonJ.S. Contrasting internalization kinetics of human and chicken gonadotropin-releasing hormone receptors mediated by C-terminal tail.J. Endocrinol.19981563R9R1210.1677/joe.0.156r0099582516
    [Google Scholar]
  63. SugiyamaM. ImaiA. FuruiT. TamayaT. Gonadotropin-releasing hormone retards doxorubicin-induced apoptosis and serine/threonine phosphatase inhibition in ovarian cancer cells.Oncol. Rep.200513581381710.3892/or.13.5.81315809743
    [Google Scholar]
  64. KimJ.H. ParkD.C. KimJ.W. ChoiY.K. LewY.O. KimD.H. JungJ.K. LimY.A. NamkoongS.E. Antitumor effect of GnRH agonist in epithelial ovarian cancer.Gynecol. Oncol.199974217018010.1006/gyno.1999.541310419728
    [Google Scholar]
  65. ZhangN. QiuJ. ZhengT. ZhangX. HuaK. ZhangY. Goserelin promotes the apoptosis of epithelial ovarian cancer cells by upregulating forkhead box O1 through the PI3K/AKT signaling pathway.Oncol. Rep.20183931034104229286125
    [Google Scholar]
  66. GründkerC. VölkerP. EmonsG. Antiproliferative signaling of luteinizing hormone-releasing hormone in human endometrial and ovarian cancer cells through G protein α(I)-mediated activation of phosphotyrosine phosphatase.Endocrinology200114262369238010.1210/endo.142.6.819011356684
    [Google Scholar]
  67. CastellónE. ClementiM. HitschfeldC. SánchezC. BenítezD. SáenzL. ContrerasH. HuidobroC. Effect of leuprolide and cetrorelix on cell growth, apoptosis, and GnRH receptor expression in primary cell cultures from human prostate carcinoma.Cancer Invest.200624326126810.1080/0735790060062959116809153
    [Google Scholar]
  68. Montagnani MarelliM. MorettiR. MaiS. ProcacciP. LimontaP. Gonadotropin-releasing hormone agonists reduce the migratory and the invasive behavior of androgen-independent prostate cancer cells by interfering with the activity of IGF-I.Int. J. Oncol.200730126127110.3892/ijo.30.1.26117143537
    [Google Scholar]
  69. RavennaL. SalvatoriL. MorroneS. LubranoC. CardilloM.R. SciarraF. FratiL. Di SilverioF. PetrangeliE. Effects of triptorelin, a gonadotropin-releasing hormone agonist, on the human prostatic cell lines PC3 and LNCaP.J. Androl.200021454955710.1002/j.1939‑4640.2000.tb02120.x10901441
    [Google Scholar]
  70. LuZ.L. GallagherR. SellarR. CoetseeM. MillarR.P. Mutations remote from the human gonadotropin-releasing hormone (GnRH) receptor-binding sites specifically increase binding affinity for GnRH II but not GnRH I: Evidence for ligand-selective, receptor-active conformations.J. Biol. Chem.200528033297962980310.1074/jbc.M41352020015967801
    [Google Scholar]
  71. MillarR.P. PawsonA.J. Outside-in and inside-out signaling: The new concept that selectivity of ligand binding at the gonadotropin-releasing hormone receptor is modulated by the intracellular environment.Endocrinology200414583590359310.1210/en.2004‑046115265825
    [Google Scholar]
  72. KenakinT.P. How different tissues process drug response.A Pharmacology Primer.4th ed KenakinT.P. San DiegoAcademic Press2014214310.1016/B978‑0‑12‑407663‑1.00002‑8
    [Google Scholar]
  73. MaW. WangX. ZhangD. MuX. Research progress of disulfide bond based tumor microenvironment targeted drug delivery system.Int. J. Nanomedicine2024197547756610.2147/IJN.S47173439071505
    [Google Scholar]
  74. SantraS. KaittanisC. SantiestebanO.J. PerezJ.M. Cell-specific, activatable, and theranostic prodrug for dual-targeted cancer imaging and therapy.J. Am. Chem. Soc.201113341166801668810.1021/ja207463b21910482
    [Google Scholar]
  75. SheyiR. de la TorreB.G. AlbericioF. Linkers: An assurance for controlled delivery of antibody-drug conjugate.Pharmaceutics202214239610.3390/pharmaceutics1402039635214128
    [Google Scholar]
  76. MinkoT. Rodriguez-RodriguezL. PozharovV. Nanotechnology approaches for personalized treatment of multidrug resistant cancers.Adv. Drug Deliv. Rev.20136513-141880189510.1016/j.addr.2013.09.01724120655
    [Google Scholar]
  77. SaadM. GarbuzenkoO.B. BerE. ChandnaP. KhandareJ.J. PozharovV.P. MinkoT. Receptor targeted polymers, dendrimers, liposomes: Which nanocarrier is the most efficient for tumor-specific treatment and imaging?J. Control. Release2008130210711410.1016/j.jconrel.2008.05.02418582982
    [Google Scholar]
  78. TaratulaO. KuzmovA. ShahM. GarbuzenkoO.B. MinkoT. Nanostructured lipid carriers as multifunctional nanomedicine platform for pulmonary co-delivery of anticancer drugs and siRNA.J. Control. Release2013171334935710.1016/j.jconrel.2013.04.01823648833
    [Google Scholar]
  79. KhandareJ.J. ChandnaP. WangY. PozharovV.P. MinkoT. Novel polymeric prodrug with multivalent components for cancer therapy.J. Pharmacol. Exp. Ther.2006317392993710.1124/jpet.105.09885516469865
    [Google Scholar]
  80. CochraneD.R. SpoelstraN.S. HoweE.N. NordeenS.K. RicherJ.K. MicroRNA-200c mitigates invasiveness and restores sensitivity to microtubule-targeting chemotherapeutic agents.Mol. Cancer Ther.2009851055106610.1158/1535‑7163.MCT‑08‑104619435871
    [Google Scholar]
  81. MoxleyK.M. McMeekinD.S. Endometrial carcinoma: A review of chemotherapy, drug resistance, and the search for new agents.Oncologist201015101026103310.1634/theoncologist.2010‑008720930101
    [Google Scholar]
  82. VollmerG. Endometrial cancer: Experimental models useful for studies on molecular aspects of endometrial cancer and carcinogenesis.Endocr. Relat. Cancer2003101234210.1677/erc.0.010002312653669
    [Google Scholar]
  83. Van NyenT. MoiolaC.P. ColasE. AnnibaliD. AmantF. Modeling endometrial cancer: Past, present, and future.Int. J. Mol. Sci.2018198234810.3390/ijms1908234830096949
    [Google Scholar]
/content/journals/cmp/10.2174/0118761429343090250121052955
Loading
/content/journals/cmp/10.2174/0118761429343090250121052955
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test